Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
Add more filters

Country/Region as subject
Publication year range
1.
EMBO Rep ; 25(4): 1962-1986, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38548973

ABSTRACT

Oncogenic intercellular signaling is regulated by extracellular vesicles (EVs), but the underlying mechanisms remain mostly unclear. Since TCTP (translationally controlled tumor protein) is an EV component, we investigated whether it has a role in genotoxic stress signaling and malignant transformation. By generating a Tctp-inducible knockout mouse model (Tctp-/f-), we report that Tctp is required for genotoxic stress-induced apoptosis signaling via small EVs (sEVs). Human breast cancer cells knocked-down for TCTP show impaired spontaneous EV secretion, thereby reducing sEV-dependent malignant growth. Since Trp53-/- mice are prone to tumor formation, we derived tumor cells from Trp53-/-;Tctp-/f- double mutant mice and describe a drastic decrease in tumori-genicity with concomitant decrease in sEV secretion and content. Remarkably, Trp53-/-;Tctp-/f- mice show highly prolonged survival. Treatment of Trp53-/- mice with sertraline, which inhibits TCTP function, increases their survival. Mechanistically, TCTP binds DDX3, recruiting RNAs, including miRNAs, to sEVs. Our findings establish TCTP as an essential protagonist in the regulation of sEV-signaling in the context of apoptosis and tumorigenicity.


Subject(s)
Biomarkers, Tumor , Neoplasms , Mice , Humans , Animals , Biomarkers, Tumor/metabolism , Neoplasms/pathology , Apoptosis , Signal Transduction
2.
Trends Immunol ; 42(8): 654-657, 2021 08.
Article in English | MEDLINE | ID: mdl-34246558

ABSTRACT

Broadly neutralizing antibodies against rapidly evolving viruses (e.g., HIV-1 and influenza virus), often manifest antigen-binding promiscuity. Based on a recent study, we hypothesize on the significance of antibody polyreactivity in neutralization of rapidly evolving viruses. We propose that polyreactivity contributes to toleration of viral variants and shortens the time for generating neutralizing antibodies.


Subject(s)
HIV-1 , Orthomyxoviridae , Adaptive Immunity , Antibodies, Neutralizing , Antibodies, Viral , HIV Antibodies , Humans
3.
Arterioscler Thromb Vasc Biol ; 43(8): 1349-1361, 2023 08.
Article in English | MEDLINE | ID: mdl-37317847

ABSTRACT

Independent of etiology, hemolytic diseases are associated with thrombosis, inflammation and immune dysregulation, all together contributing to organ damage and poor outcome. Beyond anemia and the loss of the anti-inflammatory functions of red blood cells, hemolysis leads to the release of damage-associated molecular patterns including ADP, hemoglobin, and heme, which act through multiple receptors and signaling pathways fostering a hyperinflammatory and hypercoagulable state. Extracellular free heme is promiscuous alarmin capable of triggering oxido-inflammatory and thrombotic events by inducing the activation of platelets, endothelial and innate cells as well as the coagulation and complement cascades. In this review, we discuss the main mechanisms by which hemolysis and, in particular, heme, drive this thrombo-inflammatory milieu and discuss the consequences of hemolysis on the host response to secondary infections.


Subject(s)
Hemoglobins , Hemolysis , Humans , Hemoglobins/metabolism , Erythrocytes/metabolism , Heme , Inflammation/metabolism
4.
Haematologica ; 108(5): 1322-1334, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36655430

ABSTRACT

Neutralizing anti-factor VIII (FVIII) antibodies, known as FVIII inhibitors, represent a major drawback of replacement therapy in persons with congenital hemophilia A (PwHA), rendering further infusions of FVIII ineffective. FVIII inhibitors can also appear in non-hemophilic individuals causing acquired hemophilia A (AHA). The use of non-FVIII bypassing agents in cases of bleeds or surgery in inhibitor-positive patients is complicated by the lack of reliable biological monitoring and increased thrombotic risk. Imlifidase (IdeS) is an endopeptidase that degrades human immunoglobulin G (IgG); it was recently approved for hyperimmune patients undergoing renal transplants. Here we investigated the ability of IdeS to eliminate FVIII inhibitors in vitro and in a model of inhibitor-positive HA mice. IdeS cleaved anti-FVIII plasma IgG from PwHA and AHA patients, and hydrolyzed recombinant human anti-FVIII IgG independently from their subclass or specificity for the A2, A3, C1 or C2 domains of FVIII. In HA mice passively immunized with recombinant human anti-FVIII IgG, IdeS restored the hemostatic efficacy of FVIII, as evidenced by the correction of the bleeding tendency. Our results provide the proof of concept for the transient removal of FVIII inhibitors by IdeS, thereby opening a therapeutic window for efficient FVIII replacement therapy in inhibitor-positive patients.


Subject(s)
Hemophilia A , Hemostatics , Humans , Mice , Animals , Hemophilia A/drug therapy , Hemorrhage , Immunoglobulin G , Immunosuppressive Agents/therapeutic use
5.
Trends Immunol ; 41(5): 379-393, 2020 05.
Article in English | MEDLINE | ID: mdl-32273170

ABSTRACT

The typical functions of antibodies are based on linking the process of antigen recognition with initiation of innate immune reactions. With the introduction of modern research technologies and the use of sophisticated model systems, recent years have witnessed the discovery of a number of noncanonical functions of antibodies. These functions encompass either untypical strategies for neutralization of pathogens or exertion of activities that are characteristic for other proteins (cytokines, chaperones, or enzymes). Here, we provide an overview of the noncanonical functions of antibodies and discuss their mechanisms and implications in immune regulation and defense. A better comprehension of these functions will enrich our knowledge of the adaptive immune response and shall inspire the development of novel therapeutics.


Subject(s)
Adaptive Immunity , Antibodies , Antibodies/immunology , Humans , Immune System/immunology
6.
Int J Mol Sci ; 24(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36834827

ABSTRACT

The interaction of some human antibodies with heme results in posttranslational acquisition of binding to various self- and pathogen-derived antigens. The previous studies on this phenomenon were performed with oxidized heme (Fe3+). In the present study, we elucidated the effect of other pathologically relevant species of heme, i.e., species that were formed after contact of heme with oxidizing agents such as hydrogen peroxide, situations in which heme's iron could acquire higher oxidation states. Our data reveal that hyperoxidized species of heme have a superior capacity to heme (Fe3+) in triggering the autoreactivity of human IgG. Mechanistic studies demonstrated that oxidation status of iron was of critical importance for the heme's effect on antibodies. We also demonstrated that hyperoxidized heme species interacted at higher affinities with IgG and that this binding occurred through a different mechanism as compared to heme (Fe3+). Regardless of their profound functional impact on the antigen-binding properties of antibodies, hyperoxidized species of heme did not affect Fc-mediated functions of IgG, such as binding to the neonatal Fc receptor. The obtained data contribute to a better understanding of the pathophysiological mechanism of hemolytic diseases and of the origin of elevated antibody autoreactivity in patients with some hemolytic disorders.


Subject(s)
Heme , Immunoglobulin G , Infant, Newborn , Humans , Heme/metabolism , Oxidation-Reduction , Adaptive Immunity , Iron
7.
Biol Chem ; 403(11-12): 1083-1090, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36254402

ABSTRACT

Heme regulates important biological processes by transient interactions with many human proteins. The goal of the present study was to assess extends of protein binding promiscuity of heme. To this end we evaluated interaction of heme with >9000 human proteins. Heme manifested high binding promiscuity by binding to most of the proteins in the array. Nevertheless, some proteins have outstanding heme binding capacity. Bioinformatics analyses revealed that apart from typical haemoproteins, these proteins are frequently involved in metal binding or have the potential to recognize DNA. This study can contribute for understanding the regulatory functions of labile heme.


Subject(s)
Heme , Humans , Heme/metabolism , Protein Binding
8.
J Immunol ; 205(10): 2850-2860, 2020 11 15.
Article in English | MEDLINE | ID: mdl-33077645

ABSTRACT

Neonatal Fc receptor (FcRn) has a key role in the homeostasis of IgG. Despite its physiological and clinical importance, the interaction of IgG and FcRn remains not completely comprehended. Thus, IgG molecules with identical constant portions but with minor differences in their V regions have been demonstrated to interact with FcRn with a considerable heterogeneity in the binding affinity. To understand this discrepancy, we dissected the physicochemical mechanism of the interaction of 10 human IgG1 to human FcRn. The interactions of two Abs in the presence of their cognate Ags were also examined. Data from activation and equilibrium thermodynamics analyses as well as pH dependence of the kinetics revealed that the V region of IgG could modulate a degree of conformational changes and binding energy of noncovalent contacts at the FcRn binding interface. These results suggest that the V domains modulate FcRn binding site in Fc by allosteric effects. These findings contribute for a deeper understanding of the mechanism of IgG-FcRn interaction. They might also be of relevance for rational engineering of Abs for optimizing their pharmacokinetic properties.


Subject(s)
Antibodies, Monoclonal/metabolism , Histocompatibility Antigens Class I/metabolism , Immunoglobulin G/metabolism , Protein Domains/immunology , Receptors, Fc/metabolism , Allosteric Regulation/immunology , Antibodies, Monoclonal/chemistry , Antigens/metabolism , Binding Sites , Histocompatibility Antigens Class I/chemistry , Humans , Hydrogen-Ion Concentration , Immunoglobulin G/chemistry , Protein Binding/immunology , Receptors, Fc/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Thermodynamics
9.
Proc Natl Acad Sci U S A ; 116(13): 6280-6285, 2019 03 26.
Article in English | MEDLINE | ID: mdl-30850533

ABSTRACT

Hemolytic diseases are frequently linked to multiorgan failure subsequent to vascular damage. Deciphering the mechanisms leading to organ injury upon hemolytic event could bring out therapeutic approaches. Complement system activation occurs in hemolytic disorders, such as sickle cell disease, but the pathological relevance and the acquisition of a complement-activating phenotype during hemolysis remain unclear. Here we found that intravascular hemolysis, induced by injection of phenylhydrazine, resulted in increased alanine aminotransferase plasma levels and NGAL expression. This liver damage was at least in part complement-dependent, since it was attenuated in complement C3-/- mice and by injection of C5-blocking antibody. We evidenced C3 activation fragments' deposits on liver endothelium in mice with intravascular hemolysis or injected with heme as well as on cultured human endothelial cells (EC) exposed to heme. This process was mediated by TLR4 signaling, as revealed by pharmacological blockade and TLR4 deficiency in mice. Mechanistically, TLR4-dependent surface expression of P-selectin triggered an unconventional mechanism of complement activation by noncovalent anchoring of C3 activation fragments, including the typical fluid-phase C3(H2O), measured by surface plasmon resonance and flow cytometry. P-selectin blockade by an antibody prevented complement deposits and attenuated the liver stress response, measured by NGAL expression, in the hemolytic mice. In conclusion, these results revealed the critical impact of the triad TLR4/P-selectin/complement in the liver damage and its relevance for hemolytic diseases. We anticipate that blockade of TLR4, P-selectin, or the complement system could prevent liver injury in hemolytic diseases like sickle cell disease.


Subject(s)
Endothelium, Vascular/metabolism , Heme/metabolism , Hemolysis , P-Selectin/metabolism , Toll-Like Receptor 4/metabolism , Alanine Transaminase/blood , Anemia, Sickle Cell , Animals , Complement Activation , Complement C3/metabolism , Disease Models, Animal , Gene Silencing , Hemolysis/drug effects , Humans , Lipocalin-2/metabolism , Liver/injuries , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenylhydrazines/antagonists & inhibitors , Signal Transduction , Toll-Like Receptor 4/drug effects , Toll-Like Receptor 4/genetics
10.
Cell Immunol ; 355: 104151, 2020 09.
Article in English | MEDLINE | ID: mdl-32615414

ABSTRACT

B cells with regulatory properties (Bregs) were identified in human and in mice among different B-cell subsets. Their regulatory properties rely mainly on the production of anti-inflammatory cytokines, in particular IL10, IL-35 and TGFß, and were extensively studied in mouse models of autoimmune and inflammatory diseases. However, the exact nature of the stimulatory signals conferring regulatory properties to B cells is still not clear. We serendipitously observed that fluorescein isothiocyanate (FITC) binds to a significant proportion of naïve mouse B cells. Binding of FITC to the B-cell surface implicated at least in part the B-cell receptor. It triggered IL-10 production and allowed the endocytosis of FITC-coupled antigens followed by their presentation to CD4+ T cells. In particular, B cells incubated with FITC-OVA polarized OTII T cells towards a Tr1/Th2 phenotype in vitro. Further, the adoptive transfer of B cells incubated with FITC-labeled myelin oligodendrocyte glycoprotein peptide protected mice from experimental autoimmune encephalomyelitis, a T-cell-dependent autoimmune model. Together, the data show that FITC-stimulated B cells polarize immune responses towards Tr1/Th2 and acquire immuno-modulatory properties.


Subject(s)
B-Lymphocytes, Regulatory/metabolism , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , Animals , B-Lymphocyte Subsets/immunology , B-Lymphocytes/immunology , B-Lymphocytes, Regulatory/immunology , CD4-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Cytokines/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Female , Fluorescein/metabolism , Fluorescein/pharmacology , Fluorescein-5-isothiocyanate/chemistry , Fluorescein-5-isothiocyanate/metabolism , Fluorescein-5-isothiocyanate/pharmacology , Interleukin-10/immunology , Interleukin-10/metabolism , Interleukins/immunology , Interleukins/metabolism , Lymphocyte Activation/immunology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Myelin-Oligodendrocyte Glycoprotein/immunology , T-Lymphocytes, Regulatory/immunology , Transforming Growth Factor beta/metabolism
11.
Anal Biochem ; 607: 113865, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32738209

ABSTRACT

The standard assay for characterization of interaction of heme with proteins is absorbance spectroscopy. However, this approach demands relatively large quantities of proteins and it is difficult to perform in high-throughput manner. Here, we describe an immunosorbent assay based on the covalent in situ conjugation of heme to a pre-coated carrier. Advantage of this assay is that it allows both identification of heme-binding proteins and quantification of their binding avidity, using only minimal amounts of protein (1-10 µg). Importantly, the same approach can be used for covalent linkage of other natural or synthetic compounds and analyzing their interactions with proteins.


Subject(s)
Heme/chemistry , Hemoglobins/analysis , Immunoglobulin G/chemistry , Biosensing Techniques , High-Throughput Screening Assays , Humans , Limit of Detection , Protein Binding , Spectrophotometry , Surface Properties
12.
J Allergy Clin Immunol ; 144(2): 524-535.e8, 2019 08.
Article in English | MEDLINE | ID: mdl-30529242

ABSTRACT

BACKGROUND: Therapeutic normal IgG or intravenous immunoglobulin (IVIG) exerts anti-inflammatory effects through several mutually nonexclusive mechanisms. Recent data in mouse models of autoimmune disease suggest that IVIG induces IL-4 in basophils by enhancing IL-33 in SIGN-related 1-positive innate cells. However, translational insight on these data is lacking. OBJECTIVE: We sought to investigate the effect of IVIG on human basophil functions. METHODS: Isolated circulating basophils from healthy donors were cultured in the presence of IL-3, IL-33, GM-CSF, thymic stromal lymphopoietin, or IL-25. The effect of IVIG and F(ab')2 and Fc IVIG fragments was examined based on expression of various surface molecules, phosphorylation of spleen tyrosine kinase, induction of cytokines, and histamine release. Basophil phenotypes were also analyzed from IVIG-treated patients with myopathy. Approaches, such as depletion of anti-IgE reactivity from IVIG, blocking antibodies, or inhibitors, were used to investigate the mechanisms. RESULTS: We report that IVIG directly induces activation of IL-3-primed human basophils, but IL-33 and other cytokines were dispensable for this effect. Activation of basophils by IVIG led to enhanced expression of CD69 and secretion of IL-4, IL-6, and IL-8. IVIG-treated patients with myopathy displayed enhanced expression of CD69 on basophils. The spleen tyrosine kinase pathway is implicated in these functions of IVIG and were mediated by F(ab')2 fragments. Mechanistically, IVIG induced IL-4 in human basophils by interacting with basophil surface-bound IgE but independent of FcγRII, type II Fc receptors, C-type lectin receptors, and sialic acid-binding immunoglobulin-like lectins. CONCLUSION: These results uncovered a pathway of promoting the TH2 response by IVIG through direct interaction of IgG with human basophils.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Basophils/immunology , Immunoglobulin Fc Fragments/pharmacology , Immunoglobulins, Intravenous/pharmacology , Animals , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , Basophils/drug effects , Cells, Cultured , Disease Models, Animal , Histamine Release , Humans , Immunoglobulin E/metabolism , Interleukin-3/metabolism , Lectins, C-Type/metabolism , Mice , Syk Kinase/metabolism , Up-Regulation
13.
Trends Biochem Sci ; 39(5): 221-6, 2014 May.
Article in English | MEDLINE | ID: mdl-24685657

ABSTRACT

Antigen-binding specificity of immunoglobulins is important for their function in immune defense. However, immune repertoires contain a considerable fraction of immunoglobulins with promiscuous binding behavior, the physicochemical basis of which is not well understood. Evolution of immunoglobulin specificity occurs through iterative processes of mutation and selection, referred to as affinity maturation. Recent studies reveal that some somatic mutations could compromise the thermodynamic stability of the variable regions of immunoglobulins. By integrating this observation with the wealth of data on the evolution of novel enzyme activities, we propose that antibody specificity is linked to the thermodynamic stability of the antigen-binding regions, which provides a quantitative distinction between highly specific and promiscuous antibodies.


Subject(s)
Immunoglobulins/chemistry , Immunoglobulins/immunology , Animals , Antibody Specificity , Humans , Immunoglobulin Variable Region/chemistry , Immunoglobulin Variable Region/immunology , Protein Stability , Thermodynamics
14.
Cell Immunol ; 325: 64-68, 2018 03.
Article in English | MEDLINE | ID: mdl-29395036

ABSTRACT

The development of antibodies against therapeutic factor VIII (FVIII) represents the major complication of replacement therapy in patients with severe hemophilia A. Amongst the environmental risk factors that influence the anti-FVIII immune response, the presence of active bleeding or hemarthrosis has been evoked. Endothelium damage is typically associated with the release of oxidative compounds. Here, we addressed whether oxidation contributes to FVIII immunogenicity. The control with N-acetyl cysteine of the oxidative status in FVIII-deficient mice, a model of severe hemophilia A, reduced the immune response to exogenous FVIII. Ex vivo exposure of therapeutic FVIII to HOCl induced a mild oxidation of the molecule as evidenced by the loss of free amines and resulted in increased FVIII immunogenicity in vivo when compared to native FVIII. The increased immunogenicity of oxidized FVIII was not reverted by treatment of mice with N-acetyl cysteine, and did not implicate an increased maturation of professional antigen-presenting cells. Our data document that oxidation influences the immunogenicity of therapeutic FVIII.


Subject(s)
Factor VIII/immunology , Hemophilia A/immunology , Hemophilia A/metabolism , Acetylcysteine/pharmacology , Animals , Antibodies/immunology , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Disease Models, Animal , Factor VIII/metabolism , Factor VIII/pharmacology , Hemophilia A/drug therapy , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxidation-Reduction , Oxidative Stress/immunology
15.
Blood ; 138(13): 1092-1094, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34591096

Subject(s)
Erythrocytes , Heme
16.
J Biol Chem ; 290(42): 25343-55, 2015 Oct 16.
Article in English | MEDLINE | ID: mdl-26245903

ABSTRACT

Lupus nephritis (LN) is a complication of the autoimmune disease systemic lupus erythematosus. Because the complement system plays a critical role in orchestrating inflammatory and immune responses as well as in the clearance of immune complexes, autoreactivity to complement components may have considerable pathological consequences. Autoantibodies against the central complement component C3 have been reported in systemic lupus erythematosus, but their molecular mechanism and functional relevance are not well understood. The objective of this study was to evaluate the frequency and the functional properties of the anti-C3 autoantibodies. Anti-C3 autoantibodies were measured in plasma of 39 LN patients, and identification of their epitopes on the C3 molecule was performed. By using surface plasmon resonance, we analyzed the influence of patient-derived IgG antibodies on the interaction of C3b with Factor B, Factor H, and complement receptor 1. The capacity of these antibodies to dysregulate the C3 convertase on the surface of endothelial cell was measured by flow cytometry. Here we report that the frequency of anti-C3 autoantibodies in LN is ∼30%. They inhibited interactions of the negative complement regulators Factor H and complement receptor 1 with C3b. An enhanced C3 deposition was also observed on human endothelial cells in the presence of C3 autoantibodies. In addition, anti-C3 autoantibody levels correlated with disease activity. In conclusion, the anti-C3 autoantibodies in LN may contribute to the autoimmune pathology by their capacity to overactivate the complement system.


Subject(s)
Autoantibodies/immunology , Complement C3/immunology , Lupus Nephritis/immunology , Adult , Aged , Cohort Studies , Female , Humans , Male , Middle Aged , Young Adult
17.
J Biol Chem ; 290(8): 5203-5213, 2015 Feb 20.
Article in English | MEDLINE | ID: mdl-25564611

ABSTRACT

The healthy immune repertoire contains a fraction of antibodies that bind to various biologically relevant cofactors, including heme. Interaction of heme with some antibodies results in induction of new antigen binding specificities and acquisition of binding polyreactivity. In vivo, extracellular heme is released as a result of hemolysis or tissue damage; hence the post-translational acquisition of novel antigen specificities might play an important role in the diversification of the immunoglobulin repertoire and host defense. Here, we demonstrate that seronegative immune repertoires contain antibodies that gain reactivity to HIV-1 gp120 upon exposure to heme. Furthermore, a panel of human recombinant antibodies was cloned from different B cell subpopulations, and the prevalence of antibodies with cofactor-induced specificity for gp120 was determined. Our data reveal that upon exposure to heme, ∼24% of antibodies acquired binding specificity for divergent strains of HIV-1 gp120. Sequence analyses reveal that heme-sensitive antibodies do not differ in their repertoire of variable region genes and in most of the molecular features of their antigen-binding sites from antibodies that do not change their antigen binding specificity. However, antibodies with cofactor-induced gp120 specificity possess significantly lower numbers of somatic mutations in their variable region genes. This study contributes to the understanding of the significance of cofactor-binding antibodies in immunoglobulin repertoires and of the influence that the tissue microenvironment might have in shaping adaptive immune responses.


Subject(s)
B-Lymphocytes/immunology , HIV Antibodies , HIV Envelope Protein gp120/immunology , HIV-1/immunology , Immunoglobulin Variable Region , Adaptive Immunity/genetics , HIV Antibodies/genetics , HIV Antibodies/immunology , Humans , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/immunology
18.
Biochem Biophys Res Commun ; 472(1): 281-6, 2016 Mar 25.
Article in English | MEDLINE | ID: mdl-26926563

ABSTRACT

Polyreactive antibodies represent a considerable fraction of the immune repertoires. Some antibodies acquire polyreactivity post-translationally after interaction with various redox-active substances, including heme. Recently we have demonstrated that heme binding to a naturally polyreactive antibody (SPE7) results in a considerable broadening of the repertoire of recognized antigens. A question remains whether the presence of certain level of natural polyreactivity of antibodies is a prerequisite for heme-induced further extension of antigen binding potential. Here we used a second monoclonal antibody (Hg32) with unknown specificity and absence of intrinsic polyreactivity as a model to study the potential of heme to induce polyreactivity of antibodies. We demonstrated that exposure to heme greatly extends the antigen binding potential of Hg32, suggesting that the intrinsic binding promiscuity is not a prerequisite for the induction of polyreactivity by heme. In addition we compared the kinetics and thermodynamics of the interaction of heme-exposed antibodies with a panel of unrelated antigens. These analyses revealed that the two heme-sensitive antibodies adopt different mechanisms of binding to the same set of antigens. This study contributes to understanding the phenomenon of induced antibody polyreactivity. The data may also be of importance for understanding of physiological and pathological roles of polyreactive antibodies.


Subject(s)
Antibodies, Monoclonal/immunology , Antibody Specificity/immunology , Heme/immunology , Adaptive Immunity , Animals , Antibodies, Monoclonal/metabolism , Antibodies, Monoclonal, Murine-Derived/immunology , Antibodies, Monoclonal, Murine-Derived/metabolism , Antibody Diversity , Antigen-Antibody Reactions , Immobilized Proteins/immunology , Immobilized Proteins/metabolism , Immunoglobulin E/immunology , Immunoglobulin E/metabolism , Kinetics , Mice , Protein Processing, Post-Translational , Rats , Surface Plasmon Resonance , Thermodynamics
19.
Blood ; 123(1): 121-5, 2014 Jan 02.
Article in English | MEDLINE | ID: mdl-24014239

ABSTRACT

Vascular endothelial cells (ECs) link hemostasis, thrombosis, and complement. ECs synthesize both the clotting initiator von Willebrand factor (VWF) and the complement regulator factor H (FH). VWF is stored in EC Weibel-Palade bodies (WPBs), but the intracellular location of FH is not well defined. We found that FH colocalizes with VWF in WPBs of human umbilical vein ECs. Moreover, FH bound to VWF with an apparent nanomolar affinity and the complex was present in normal plasma. The binding of VWF to FH enhanced FH cofactor activity toward factor I-mediated downregulation of complement activation. Besides, this interaction inhibited ADAMTS13-mediated proteolysis of VWF and promoted platelet aggregation. Here, we describe a novel interaction between complement and hemostasis. The simultaneous secretion of VWF and FH by activated ECs may promote adhesion of platelets to endothelial injury sites to assure wound healing, simultaneously dampening the proinflammatory effect of complement to limit bystander tissue damage.


Subject(s)
Complement Factor H/chemistry , Thrombosis , von Willebrand Factor/chemistry , ADAM Proteins/metabolism , ADAMTS13 Protein , Complement Activation , Complement Factor H/metabolism , Endothelium, Vascular/cytology , Enzyme-Linked Immunosorbent Assay , Hemostasis , Heterozygote , Human Umbilical Vein Endothelial Cells/cytology , Humans , Immunoprecipitation , Inflammation , Protein Binding , Protein Interaction Mapping , Surface Plasmon Resonance , Weibel-Palade Bodies/metabolism , von Willebrand Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL