ABSTRACT
Mercury (Hg) is a potentially toxic element that can be transported globally through the atmosphere, once deposited in the environment, has strong bioaccumulation and extreme toxicity in food webs, especially in wetland ecosystems. Anthropogenic Hg emissions have enhanced Hg deposition by 3-5 times since the industrial revolution, and the mining and smelting of Hg ore are important emission sources. However, the dynamics in Hg deposition around the largest Hg mine in China before the industrial revolution and their driving forces remain poorly explored. Here we reconstruct the atmospheric Hg depositional fluxes (named here Hg influx (Hginflux)) during the Holocene using a 450-cm alpine wetland sediment core taken from the Jiulongchi wetland, which is only 65 km to the Wanshan Mercury Mine. Our record shows an abrupt rapid increase in Hg concentration since 2500 cal yr BP, suggesting that Hg mining in southwest China may have started before the establishment of the Qin dynasty. Two major Hginflux peaks were found during the periods 10,000-6000 and 6000 - 3800 cal yr BP, with an increase in Hg deposition by a factor of 4-8. These two peaks are also found in other terrestrial archives from several sites across the Northern Hemisphere. We speculate that critical millennial-scale climate changes, i.e., the Holocene Climatic Optimum (HCO) and the Mid-Holocene Transition (MHT), were the potential triggers of these two Hginflux peaks. This study highlights the importance of climatic variability and local Hg mining in controlling atmospheric Hg deposition during the Holocene.
Subject(s)
Mercury , Mercury/analysis , Ecosystem , Wetlands , Anthropogenic Effects , Environmental Monitoring , ChinaABSTRACT
Peatlands are characterized by their large carbon storage capacity and play an essential role in the global carbon cycle. However, the future of the carbon stored in peatland ecosystems under a changing climate remains unclear. In this study, based on the eddy covariance technique, we investigated the net ecosystem CO2 exchange (NEE) and its controlling factors of the Hongyuan peatland, which is a part of the Ruoergai peatland on the eastern Qinghai-Tibet Plateau (QTP). Our results show that the Hongyuan alpine peatland was a CO2 sink with an annual NEE of -226.61 and -185.35 g C m-2 in 2014 and 2015, respectively. While, the non-growing season NEE was 53.35 and 75.08 g C m-2 in 2014 and 2015, suggesting that non-growing seasons carbon emissions should not be neglected. Clear diurnal variation in NEE was observed during the observation period, with the maximum CO2 uptake appearing at 12:30 (Beijing time, UTC+8). The Q10 value of the non-growing season in 2014 and 2015 was significantly higher than that in the growing season, which suggested that the CO2 flux in the non-growing season was more sensitive to warming than that in the growing season. We investigated the multi-scale temporal variations in NEE during the growing season using wavelet analysis. On daily timescales, photosynthetically active radiation was the primary driver of NEE. Seasonal variation in NEE was mainly driven by soil temperature. The amount of precipitation was more responsible for annual variation of NEE. The increasing number of precipitation event was associated with increasing annual carbon uptake. This study highlights the need for continuous eddy covariance measurements and time series analysis approaches to deepen our understanding of the temporal variability in NEE and multi-scale correlation between NEE and environmental factors.