Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
Add more filters

Publication year range
1.
Ann Neurol ; 93(5): 1012-1022, 2023 05.
Article in English | MEDLINE | ID: mdl-36695634

ABSTRACT

OBJECTIVE: Identification of genetic risk factors for Parkinson disease (PD) has to date been primarily limited to the study of single nucleotide variants, which only represent a small fraction of the genetic variation in the human genome. Consequently, causal variants for most PD risk are not known. Here we focused on structural variants (SVs), which represent a major source of genetic variation in the human genome. We aimed to discover SVs associated with PD risk by performing the first large-scale characterization of SVs in PD. METHODS: We leveraged a recently developed computational pipeline to detect and genotype SVs from 7,772 Illumina short-read whole genome sequencing samples. Using this set of SV variants, we performed a genome-wide association study using 2,585 cases and 2,779 controls and identified SVs associated with PD risk. Furthermore, to validate the presence of these variants, we generated a subset of matched whole-genome long-read sequencing data. RESULTS: We genotyped and tested 3,154 common SVs, representing over 412 million nucleotides of previously uncatalogued genetic variation. Using long-read sequencing data, we validated the presence of three novel deletion SVs that are associated with risk of PD from our initial association analysis, including a 2 kb intronic deletion within the gene LRRN4. INTERPRETATION: We identified three SVs associated with genetic risk of PD. This study represents the most comprehensive assessment of the contribution of SVs to the genetic risk of PD to date. ANN NEUROL 2023;93:1012-1022.


Subject(s)
Genome-Wide Association Study , Parkinson Disease , Humans , Parkinson Disease/genetics , Genome, Human , Whole Genome Sequencing , Genotype
2.
Brain ; 146(7): 2723-2729, 2023 07 03.
Article in English | MEDLINE | ID: mdl-36797998

ABSTRACT

CAG repeat expansions in exon 1 of the AR gene on the X chromosome cause spinal and bulbar muscular atrophy, a male-specific progressive neuromuscular disorder associated with a variety of extra-neurological symptoms. The disease has a reported male prevalence of approximately 1:30 000 or less, but the AR repeat expansion frequency is unknown. We established a pipeline, which combines the use of the ExpansionHunter tool and visual validation, to detect AR CAG expansion on whole-genome sequencing data, benchmarked it to fragment PCR sizing, and applied it to 74 277 unrelated individuals from four large cohorts. Our pipeline showed sensitivity of 100% [95% confidence interval (CI) 90.8-100%], specificity of 99% (95% CI 94.2-99.7%), and a positive predictive value of 97.4% (95% CI 84.4-99.6%). We found the mutation frequency to be 1:3182 (95% CI 1:2309-1:4386, n = 117 734) X chromosomes-10 times more frequent than the reported disease prevalence. Modelling using the novel mutation frequency led to estimate disease prevalence of 1:6887 males, more than four times more frequent than the reported disease prevalence. This discrepancy is possibly due to underdiagnosis of this neuromuscular condition, reduced penetrance, and/or pleomorphic clinical manifestations.


Subject(s)
Muscular Atrophy, Spinal , Receptors, Androgen , Humans , Male , Receptors, Androgen/genetics , Muscular Atrophy, Spinal/genetics , Muscular Atrophy , Polymerase Chain Reaction , Trinucleotide Repeat Expansion/genetics
3.
Brain ; 146(11): 4622-4632, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37348876

ABSTRACT

Parkinson's disease has a large heritable component and genome-wide association studies have identified over 90 variants with disease-associated common variants, providing deeper insights into the disease biology. However, there have not been large-scale rare variant analyses for Parkinson's disease. To address this gap, we investigated the rare genetic component of Parkinson's disease at minor allele frequencies <1%, using whole genome and whole exome sequencing data from 7184 Parkinson's disease cases, 6701 proxy cases and 51 650 healthy controls from the Accelerating Medicines Partnership Parkinson's disease (AMP-PD) initiative, the National Institutes of Health, the UK Biobank and Genentech. We performed burden tests meta-analyses on small indels and single nucleotide protein-altering variants, prioritized based on their predicted functional impact. Our work identified several genes reaching exome-wide significance. Two of these genes, GBA1 and LRRK2, have variants that have been previously implicated as risk factors for Parkinson's disease, with some variants in LRRK2 resulting in monogenic forms of the disease. We identify potential novel risk associations for variants in B3GNT3, AUNIP, ADH5, TUBA1B, OR1G1, CAPN10 and TREML1 but were unable to replicate the observed associations across independent datasets. Of these, B3GNT3 and TREML1 could provide new evidence for the role of neuroinflammation in Parkinson's disease. To date, this is the largest analysis of rare genetic variants in Parkinson's disease.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Risk Factors , Gene Frequency , Receptors, Immunologic
4.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Article in English | MEDLINE | ID: mdl-34312226

ABSTRACT

Mechanisms controlling myelination during central nervous system (CNS) maturation play a pivotal role in the development and refinement of CNS circuits. The transcription factor THAP1 is essential for timing the inception of myelination during CNS maturation through a cell-autonomous role in the oligodendrocyte lineage. Here, we demonstrate that THAP1 modulates the extracellular matrix (ECM) composition by regulating glycosaminoglycan (GAG) catabolism within oligodendrocyte progenitor cells (OPCs). Thap1-/- OPCs accumulate and secrete excess GAGs, inhibiting their maturation through an autoinhibitory mechanism. THAP1 controls GAG metabolism by binding to and regulating the GusB gene encoding ß-glucuronidase, a GAG-catabolic lysosomal enzyme. Applying GAG-degrading enzymes or overexpressing ß-glucuronidase rescues Thap1-/- OL maturation deficits in vitro and in vivo. Our studies establish lysosomal GAG catabolism within OPCs as a critical mechanism regulating oligodendrocyte development.


Subject(s)
DNA-Binding Proteins/metabolism , Extracellular Matrix/metabolism , Lysosomes/metabolism , Animals , DNA-Binding Proteins/genetics , Gene Expression Regulation , Mice , Mice, Knockout
5.
Mov Disord ; 38(12): 2249-2257, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37926948

ABSTRACT

BACKGROUND: Parkin RBR E3 ubiquitin-protein ligase (PRKN) mutations are the most common cause of young onset and autosomal recessive Parkinson's disease (PD). PRKN is located in FRA6E, which is one of the common fragile sites in the human genome, making this region prone to structural variants. However, complex structural variants such as inversions of PRKN are seldom reported, suggesting that there are potentially unrevealed complex pathogenic PRKN structural variants. OBJECTIVES: To identify complex structural variants in PRKN using long-read sequencing. METHODS: We investigated the genetic cause of monozygotic twins presenting with a young onset dystonia-parkinsonism using targeted sequencing, whole exome sequencing, multiple ligation probe amplification, and long-read sequencing. We assessed the presence and frequency of complex inversions overlapping PRKN using whole-genome sequencing data of Accelerating Medicines Partnership Parkinson's disease (AMP-PD) and United Kingdom (UK)-Biobank datasets. RESULTS: Multiple ligation probe amplification identified a heterozygous exon three deletion in PRKN and long-read sequencing identified a large novel inversion spanning over 7 Mb, including a large part of the coding DNA sequence of PRKN. We could diagnose the affected subjects as compound heterozygous carriers of PRKN. We analyzed whole genome sequencing data of 43,538 participants of the UK-Biobank and 4941 participants of the AMP-PD datasets. Nine inversions in the UK-Biobank and two in AMP PD were identified and were considered potentially damaging and likely to affect PRKN expression. CONCLUSIONS: This is the first report describing a large 7 Mb inversion involving breakpoints outside of PRKN. This study highlights the importance of using long-read sequencing for structural variant analysis in unresolved young-onset PD cases. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Subject(s)
Parkinson Disease , Parkinsonian Disorders , Humans , Heterozygote , Mutation/genetics , Parkinson Disease/genetics , Parkinsonian Disorders/genetics , Ubiquitin-Protein Ligases/genetics
6.
Brain ; 145(8): 2671-2676, 2022 08 27.
Article in English | MEDLINE | ID: mdl-35521889

ABSTRACT

Intermediate CAG (polyQ) expansions in the gene ataxin-2 (ATXN2) are now recognized as a risk factor for amyotrophic lateral sclerosis. The threshold for increased risk is not yet firmly established, with reports ranging from 27 to 31 repeats. We investigated the presence of ATXN2 polyQ expansions in 9268 DNA samples collected from people with amyotrophic lateral sclerosis, amyotrophic lateral sclerosis with frontotemporal dementia, frontotemporal dementia alone, Lewy body dementia and age matched controls. This analysis confirmed ATXN2 intermediate polyQ expansions of ≥31 as a risk factor for amyotrophic lateral sclerosis with an odds ratio of 6.31. Expansions were an even greater risk for amyotrophic lateral sclerosis with frontotemporal dementia (odds ratio 27.59) and a somewhat lesser risk for frontotemporal dementia alone (odds ratio 3.14). There was no increased risk for Lewy body dementia. In a subset of 1362 patients with amyotrophic lateral sclerosis with complete clinical data, we could not confirm previous reports of earlier onset of amyotrophic lateral sclerosis or shorter survival in 25 patients with expansions. These new data confirm ≥31 polyQ repeats in ATXN2 increase the risk for amyotrophic lateral sclerosis, and also for the first time show an even greater risk for amyotrophic lateral sclerosis with frontotemporal dementia. The lack of a more aggressive phenotype in amyotrophic lateral sclerosis patients with expansions has implications for ongoing gene-silencing trials for amyotrophic lateral sclerosis.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Lewy Body Disease , Ataxin-2 , Humans , Phenotype
7.
Mov Disord ; 36(5): 1250-1258, 2021 05.
Article in English | MEDLINE | ID: mdl-33497488

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is a genetically complex neurodegenerative disease with ~20 genes known to contain mutations that cause PD or atypical parkinsonism. Large-scale next-generation sequencing projects have revolutionized genomics research. Applying these data to PD, many genes have been reported to contain putative disease-causing mutations. In most instances, however, the results remain quite limited and rather preliminary. Our aim was to assist researchers on their search for PD-risk genes and variant candidates with an easily accessible and open summary-level genomic data browser for the PD research community. METHODS: Sequencing and imputed genotype data were obtained from multiple sources and harmonized and aggregated. RESULTS: In total we included a total of 102,127 participants, including 28,453 PD cases, 1650 proxy cases, and 72,024 controls. CONCLUSIONS: We present here the Parkinson's Disease Sequencing Browser: a Shiny-based web application that presents comprehensive summary-level frequency data from multiple large-scale genotyping and sequencing projects https://pdgenetics.shinyapps.io/VariantBrowser/. Published © 2021 This article is a U.S. Government work and is in the public domain in the USA. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Parkinsonian Disorders , DNA , Humans , Mutation/genetics , Parkinson Disease/genetics
8.
Mov Disord ; 36(2): 449-459, 2021 02.
Article in English | MEDLINE | ID: mdl-33107653

ABSTRACT

BACKGROUND: Multiple system atrophy (MSA) is a rare neurodegenerative disease characterized by intracellular accumulations of α-synuclein and nerve cell loss in striatonigral and olivopontocerebellar structures. Epidemiological and clinical studies have reported potential involvement of autoimmune mechanisms in MSA pathogenesis. However, genetic etiology of this interaction remains unknown. We aimed to investigate genetic overlap between MSA and 7 autoimmune diseases and to identify shared genetic loci. METHODS: Genome-wide association study summary statistics of MSA and 7 autoimmune diseases were combined in cross-trait conjunctional false discovery rate analysis to explore overlapping genetic background. Expression of selected candidate genes was compared in transgenic MSA mice and wild-type mice. Genetic variability of candidate genes was further investigated using independent whole-exome genotyping data from large cohorts of MSA and autoimmune disease patients and healthy controls. RESULTS: We observed substantial polygenic overlap between MSA and inflammatory bowel disease and identified 3 shared genetic loci with leading variants upstream of the DENND1B and RSP04 genes, and in intron of the C7 gene. Further, the C7 gene showed significantly dysregulated expression in the degenerating midbrain of transgenic MSA mice compared with wild-type mice and had elevated burden of protein-coding variants in independent MSA and inflammatory bowel disease cohorts. CONCLUSION: Our study provides evidence of shared genetic etiology between MSA and inflammatory bowel disease with an important role of the C7 gene in both phenotypes, with the implication of immune and gut dysfunction in MSA pathophysiology. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Inflammatory Bowel Diseases , Multiple System Atrophy , Animals , Genome-Wide Association Study , Humans , Inflammatory Bowel Diseases/genetics , Mice , Mice, Transgenic , Multiple System Atrophy/genetics , alpha-Synuclein/genetics
9.
FASEB J ; 34(9): 12239-12254, 2020 09.
Article in English | MEDLINE | ID: mdl-33000527

ABSTRACT

α-Synuclein (α-syn)-induced neurotoxicity has been generally accepted as a key step in the pathogenesis of Parkinson's disease (PD). Microtubule-associated protein tau, which is considered second only to α-syn, has been repeatedly linked with PD in association studies. However, the underlying interaction between these two PD-related proteins in vivo remains unclear. To investigate how the expression of tau affects α-syn-induced neurodegeneration in vivo, we generated triple transgenic mice that overexpressed α-syn A53T mutation in the midbrain dopaminergic neurons (mDANs) with different expression levels of tau. Here, we found that tau had no significant effect on the A53T α-syn-mediated mDANs degeneration. However, tau knockout could modestly promote the formation of α-syn aggregates, accelerate the severe and progressive degeneration of parvalbumin-positive (PV+) neurons in substantia nigra pars reticulata (SNR), accompanied with anxiety-like behavior in aged PD-related α-syn A53T mice. The mechanisms may be associated with A53T α-syn-mediated specifically successive impairment of N-methyl-d-aspartate receptor subunit 2B (NR2B), postsynaptic density-95 (PSD-95) and microtubule-associated protein 1A (MAP1A) in PV+ neurons. Our study indicates that MAP1A may play a beneficial role in preserving the survival of PV+ neurons, and that inhibition of the impairment of NR2B/PSD-95/MAP1A pathway, may be a novel and preferential option to ameliorate α-syn-induced neurodegeneration.


Subject(s)
Mutation , Nerve Degeneration , Parkinson Disease/etiology , Parvalbumins/analysis , Substantia Nigra/pathology , alpha-Synuclein/genetics , tau Proteins/physiology , Animals , Disks Large Homolog 4 Protein/physiology , Homeodomain Proteins/physiology , Mice , Mice, Inbred C57BL , Microtubule-Associated Proteins/physiology , Parkinson Disease/pathology , Peptide Fragments/physiology , Protein Aggregates , Receptors, N-Methyl-D-Aspartate/physiology , Transcription Factors/physiology , alpha-Synuclein/physiology , tau Proteins/chemistry , tau Proteins/genetics
10.
Neurobiol Dis ; 129: 67-78, 2019 09.
Article in English | MEDLINE | ID: mdl-31102768

ABSTRACT

Several previous studies have linked the Parkinson's disease (PD) gene LRRK2 to the biology of microglia cells. However, the precise ways in which LRRK2 affects microglial function have not been fully resolved. Here, we used the RNA-Sequencing to obtain transcriptomic profiles of LRRK2 wild-type (WT) and knock-out (KO) microglia cells treated with α-synuclein pre-formed fibrils (PFFs) or lipopolysaccharide (LPS) as a general inflammatory insult. We observed that, although α-synuclein PFFs and LPS mediate overlapping gene expression profiles in microglia, there are also distinct responses to each stimulus. α-Synuclein PFFs trigger alterations of oxidative stress-related pathways with the mitochondrial dismutase Sod2 as a strongly differentially regulated gene. We validated SOD2 at mRNA and protein levels. Furthermore, we found that LRRK2 KO microglia cells reported attenuated induction of mitochondrial SOD2 in response to α-synuclein PFFs, indicating a potential contribution of LRRK2 to oxidative stress-related pathways. We validate several genes in vivo using single-cell RNA-Seq from acutely isolated microglia after striatal injection of LPS into the mouse brain. Overall, these results suggest that microglial LRRK2 may contribute to the pathogenesis of PD via altered oxidative stress signaling.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Microglia/metabolism , Oxidative Stress/physiology , Parkinson Disease/metabolism , alpha-Synuclein/toxicity , Animals , Gene Expression Profiling , Humans , Inflammation/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/drug effects , Oxidative Stress/drug effects , Parkinson Disease/genetics , Signal Transduction/drug effects , Signal Transduction/physiology
11.
Am J Hum Genet ; 98(3): 500-513, 2016 Mar 03.
Article in English | MEDLINE | ID: mdl-26942284

ABSTRACT

Autosomal-recessive early-onset parkinsonism is clinically and genetically heterogeneous. The genetic causes of approximately 50% of autosomal-recessive early-onset forms of Parkinson disease (PD) remain to be elucidated. Homozygozity mapping and exome sequencing in 62 isolated individuals with early-onset parkinsonism and confirmed consanguinity followed by data mining in the exomes of 1,348 PD-affected individuals identified, in three isolated subjects, homozygous or compound heterozygous truncating mutations in vacuolar protein sorting 13C (VPS13C). VPS13C mutations are associated with a distinct form of early-onset parkinsonism characterized by rapid and severe disease progression and early cognitive decline; the pathological features were striking and reminiscent of diffuse Lewy body disease. In cell models, VPS13C partly localized to the outer membrane of mitochondria. Silencing of VPS13C was associated with lower mitochondrial membrane potential, mitochondrial fragmentation, increased respiration rates, exacerbated PINK1/Parkin-dependent mitophagy, and transcriptional upregulation of PARK2 in response to mitochondrial damage. This work suggests that loss of function of VPS13C is a cause of autosomal-recessive early-onset parkinsonism with a distinctive phenotype of rapid and severe progression.


Subject(s)
Mitophagy/genetics , Parkinsonian Disorders/genetics , Protein Kinases/genetics , Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Adult , Aged , Animals , COS Cells , Case-Control Studies , Consanguinity , Female , Gene Silencing , Genetic Heterogeneity , HEK293 Cells , Heterozygote , Homozygote , Humans , Male , Middle Aged , Parkinsonian Disorders/diagnosis , Pedigree , Phenotype , Protein Kinases/metabolism , Proteins/metabolism , Reproducibility of Results , Turkey , Ubiquitin-Protein Ligases/metabolism
12.
Ann Diagn Pathol ; 42: 59-63, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31310900

ABSTRACT

Although several lines of evidence existed suggesting that Mortalin was linked with survival in malignant tumors; it has been barely described regarding the prognostic involvement of its expression in hepatocellular carcinoma (HCC). Herein, to understand the prognostic meaning of Mortalin expression, Immunohistochemistry was undertaken to observe the immunohistochemical characteristics of Mortalin on HCC tissue microarray consisting of 90 cases of HCC and its paired normal control dots, followed by detailed statistical analysis with the accompanying clinicopathological variables available, including gender, age, tumor size, differentiation, cirrhosis, vascular invasion, clinical stage, T classification and intrahepatic metastases. Meanwhile, Kaplan-Meier survival curve was plotted to analyze the prognostic difference for patients with high and low expression of Mortalin. It was exhibited that Mortalin was over-expressed in HCC tissues relative to paired normal control and elevated Mortalin significantly correlated with vascular invasion, clinical stage and intrahepatic metastasis. Kaplan-Meier survival analysis revealed that Mortalin was remarkably associated with overall survival and disease-free survival. Multivariate Cox regression analysis showed that expression of Mortalin was an independent prognostic factor in HCC. Collectively, the data we provided here support the prognostic prediction value of Mortalin in HCC.


Subject(s)
Biomarkers, Tumor/analysis , Carcinoma, Hepatocellular/pathology , HSP70 Heat-Shock Proteins/biosynthesis , Liver Neoplasms/pathology , Mitochondrial Proteins/biosynthesis , Adult , Aged , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/mortality , Disease-Free Survival , Female , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/mortality , Male , Middle Aged , Prognosis
13.
Hum Mol Genet ; 25(16): 3515-3523, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27378696

ABSTRACT

Multiple missense mutations in Leucine-rich repeat kinase 2 (LRRK2) have been linked to Parkinson's disease (PD), the most common degenerative movement disorder. LRRK2 is expressed by both neurons and microglia, the residential immune cells in the brain. Increasing evidence supports a role of LRRK2 in modulating microglial activity, of which Lrrk2-null rodent microglia display less inflammatory response to endotoxin lipopolysaccharide (LPS). The underlying molecular mechanism, however, remains elusive. Chemokine (C-X3-C) receptor 1 (CX3CR1), predominantly expressed by microglia, suppresses microglial inflammation while promotes migration. Using whole-genome microarray screening, we found that Cx3cr1 mRNA levels were substantially higher in microglia derived from Lrrk2 knockout (Lrrk2-/-) mice. The total and cell surface levels of CX3CR1 proteins were also remarkably increased. In correlation with the enhanced CX3CR1 expression, Lrrk2-null microglia migrated faster and travelled longer distance toward the source of fractalkine (CX3CL1), an endogenous ligand of CX3CR1. To investigate the impact of CX3CR1 elevation in vivo, we compared LPS-induced inflammation in the striatum of Lrrk2-/- knockout mice with Cx3cr1 heterozygous and homozygous knockout background. We found that a complete loss of Cx3cr1 restored the responsiveness of Lrrk2-/- microglia to LPS stimulation. In conclusion, our findings reveal a previously unknown regulatory role for LRRK2 in CX3CR1 signalling and suggest that an increase of CX3CR1 activity contributes to the attenuated inflammatory responses in Lrrk2-null microglia.


Subject(s)
Inflammation/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Parkinson Disease/genetics , Receptors, Chemokine/genetics , Animals , CX3C Chemokine Receptor 1 , Corpus Striatum/metabolism , Corpus Striatum/pathology , Humans , Inflammation/chemically induced , Inflammation/pathology , Lipopolysaccharides/administration & dosage , Macrophage Activation/drug effects , Mice, Knockout , Microglia/metabolism , Microglia/pathology , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Parkinson Disease/pathology , Receptors, Chemokine/biosynthesis , Signal Transduction/genetics
14.
EMBO J ; 33(20): 2314-31, 2014 Oct 16.
Article in English | MEDLINE | ID: mdl-25201882

ABSTRACT

Leucine-rich repeat kinase 2 (LRRK2) has been associated with Parkinson's disease (PD) and other disorders. However, its normal physiological functions and pathogenic properties remain elusive. Here we show that LRRK2 regulates the anterograde ER-Golgi transport through anchoring Sec16A at the endoplasmic reticulum exit sites (ERES). LRRK2 interacted and co-localized with Sec16A, a key protein in the formation of ERES. Lrrk2 depletion caused a dispersion of Sec16A from ERES and impaired ER export. In neurons, LRRK2 and Sec16A showed extensive co-localization at the dendritic ERES (dERES) that locally regulate the transport of proteins to the dendritic spines. A loss of Lrrk2 affected the association of Sec16A with dERES and impaired the activity-dependent targeting of glutamate receptors onto the cell/synapse surface. Furthermore, the PD-related LRRK2 R1441C missense mutation in the GTPase domain interfered with the interaction of LRRK2 with Sec16A and also affected ER-Golgi transport, while LRRK2 kinase activity was not required for these functions. Therefore, our findings reveal a new physiological function of LRRK2 in ER-Golgi transport, suggesting ERES dysfunction may contribute to the pathogenesis of PD.


Subject(s)
Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Parkinson Disease/enzymology , Protein Serine-Threonine Kinases/metabolism , Vesicular Transport Proteins/metabolism , Animals , COP-Coated Vesicles/metabolism , Cell Line , Cells, Cultured , Dendritic Spines/metabolism , Gene Expression Regulation , Genes, Reporter , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Mice , Models, Biological , Mutation, Missense , Protein Interaction Mapping , Protein Serine-Threonine Kinases/genetics , Protein Transport , Recombinant Fusion Proteins , Vesicular Transport Proteins/genetics
15.
J Neuroinflammation ; 15(1): 297, 2018 Oct 27.
Article in English | MEDLINE | ID: mdl-30368241

ABSTRACT

BACKGROUND: Evidence indicates a cross-regulation between two kinases, leucine-rich repeat kinase 2 (LRRK2) and protein kinase A (PKA). In neurons, LRRK2 negatively regulates PKA activity in spiny projecting neurons during synaptogenesis and in response to dopamine D1 receptor activation acting as an A-anchoring kinase protein (AKAP). In microglia cells, we showed that LRRK2 kinase activity negatively regulates PKA, impacting NF-κB p50 signaling and the inflammatory response. Here, we explore the molecular mechanism underlying the functional interaction between LRRK2 and PKA in microglia. METHODS: To understand which step of PKA signaling is modulated by LRRK2, we used a combination of in vitro and ex vivo systems with hyperactive or inactive LRRK2 as well as different readouts of PKA signaling. RESULTS: We confirmed that LRRK2 kinase activity acts as a negative regulator of PKA activation state in microglia. Specifically, we found that LRRK2 controls PKA by affecting phosphodiesterase 4 (PDE4) activity, modulating cAMP degradation, content, and its dependent signaling. Moreover, we showed that LRRK2 carrying the G2019S pathological mutation downregulates PKA activation causing a reduction of PKA-mediated NF-κB inhibitory signaling, which results, in turn, in increased inflammation in LRRK2 G2019S primary microglia upon α-synuclein pre-formed fibrils priming. CONCLUSIONS: Overall, our findings indicate that LRRK2 kinase activity is a key regulator of PKA signaling and suggest PDE4 as a putative LRRK2 effector in microglia. In addition, our observations suggest that LRRK2 G2019S may favor the transition of microglia toward an overactive state, which could widely contribute to the progression of the pathology in LRRK2-related PD.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Gene Expression Regulation, Enzymologic/physiology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Analysis of Variance , Animals , Brain/cytology , Brain/metabolism , Cell Line, Transformed , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/genetics , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Enzyme Inhibitors/pharmacology , Gene Expression Regulation, Enzymologic/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Immunoprecipitation , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mice , Mutation/genetics , NF-kappa B/metabolism , Neuroglia/drug effects , Neuroglia/metabolism , RNA, Messenger , Transfection
16.
Mov Disord ; 33(6): 982-991, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29570843

ABSTRACT

BACKGROUND: Dementia with Lewy bodies is characterized by transient clinical features, including fluctuating cognition and visual hallucinations, implicating dysfunction of cerebral hub regions, such as the pulvinar nuclei of the thalamus. However, the pulvinar is typically only mildly affected by Lewy body pathology in dementia with Lewy bodies, suggesting additional factors may account for its proposed dysfunction. METHODS: We conducted a comprehensive analysis of postmortem pulvinar tissue using whole-transcriptome RNA sequencing, protein expression analysis, and histological evaluation. RESULTS: We identified 321 transcripts as significantly different between dementia with Lewy bodies cases and neurologically normal controls, with gene ontology pathway analysis suggesting the enrichment of transcripts related to synapses and positive regulation of immune functioning. At the protein level, proteins related to synaptic efficiency were decreased, and general synaptic markers remained intact. Analysis of glial subpopulations revealed astrogliosis without activated microglia, which was associated with synaptic changes but not neurodegenerative pathology. DISCUSSION: These results indicate that the pulvinar, a region with relatively low Lewy body pathological burden, manifests changes at the molecular level that differ from previous reports in a more severely affected region. We speculate that these alterations result from neurodegenerative changes in regions connected to the pulvinar and likely contribute to a variety of cognitive changes resulting from decreased cortical synchrony in dementia with Lewy bodies. © 2018 International Parkinson and Movement Disorder Society.


Subject(s)
Gene Expression/physiology , Lewy Body Disease/pathology , Lewy Body Disease/physiopathology , Pulvinar/metabolism , Pulvinar/pathology , Acetyltransferases/genetics , Acetyltransferases/metabolism , Chitinase-3-Like Protein 1/genetics , Chitinase-3-Like Protein 1/metabolism , Cohort Studies , Diagnosis , Dynamins/genetics , Dynamins/metabolism , Female , Gene Ontology , Glial Fibrillary Acidic Protein/genetics , Glial Fibrillary Acidic Protein/metabolism , Glutamate Decarboxylase/genetics , Glutamate Decarboxylase/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Hallucinations/etiology , Humans , Male , N-Ethylmaleimide-Sensitive Proteins/genetics , N-Ethylmaleimide-Sensitive Proteins/metabolism , RNA, Messenger/metabolism , Synaptophysin/genetics , Synaptophysin/metabolism , Syntaxin 1/genetics , Syntaxin 1/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
17.
Hum Mol Genet ; 24(18): 5299-312, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26123485

ABSTRACT

Preferential dysfunction/degeneration of midbrain substantia nigra pars compacta (SNpc) dopaminergic (DA) neurons contributes to the main movement symptoms manifested in Parkinson's disease (PD). Although the Leucine-rich repeat kinase 2 (LRRK2) G2019S missense mutation (LRRK2 G2019S) is the most common causative genetic factor linked to PD, the effects of LRRK2 G2019S on the function and survival of SNpc DA neurons are poorly understood. Using a binary gene expression system, we generated transgenic mice expressing either wild-type human LRRK2 (WT mice) or the LRRK2 G2019S mutation (G2019S mice) selectively in the midbrain DA neurons. Here we show that overexpression of LRRK2 G2019S did not induce overt motor abnormalities or substantial SNpc DA neuron loss. However, the LRRK2 G2019S mutation impaired dopamine homeostasis and release in aged mice. This reduction in dopamine content/release coincided with the degeneration of DA axon terminals and decreased expression of DA neuron-enriched genes tyrosine hydroxylase (TH), vesicular monoamine transporter 2, dopamine transporter and aldehyde dehydrogenase 1. These factors are responsible for dopamine synthesis, transport and degradation, and their expression is regulated by transcription factor paired-like homeodomain 3 (PITX3). Levels of Pitx3 mRNA and protein were similarly decreased in the SNpc DA neurons of aged G2019S mice. Together, these findings suggest that PITX3-dependent transcription regulation could be one of the many potential mechanisms by which LRRK2 G2019S acts in SNpc DA neurons, resulting in downregulation of its downstream target genes critical for dopamine homeostasis and release.


Subject(s)
Dopamine/metabolism , Dopaminergic Neurons/metabolism , Gene Expression Regulation , Mutation, Missense , Parkinson Disease/genetics , Parkinson Disease/metabolism , Protein Serine-Threonine Kinases/genetics , Age Factors , Animals , Behavior, Animal , Disease Models, Animal , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Mesencephalon/metabolism , Mesencephalon/pathology , Mice , Mice, Transgenic , Motor Activity , Nerve Degeneration/genetics , Parkinson Disease/pathology , Substantia Nigra/metabolism , Substantia Nigra/pathology , Transcription Factors/genetics , Transcription Factors/metabolism
19.
Proc Natl Acad Sci U S A ; 111(7): 2626-31, 2014 Feb 18.
Article in English | MEDLINE | ID: mdl-24510904

ABSTRACT

Mutations in leucine-rich repeat kinase 2 (LRRK2) cause inherited Parkinson disease (PD), and common variants around LRRK2 are a risk factor for sporadic PD. Using protein-protein interaction arrays, we identified BCL2-associated athanogene 5, Rab7L1 (RAB7, member RAS oncogene family-like 1), and Cyclin-G-associated kinase as binding partners of LRRK2. The latter two genes are candidate genes for risk for sporadic PD identified by genome-wide association studies. These proteins form a complex that promotes clearance of Golgi-derived vesicles through the autophagy-lysosome system both in vitro and in vivo. We propose that three different genes for PD have a common biological function. More generally, data integration from multiple unbiased screens can provide insight into human disease mechanisms.


Subject(s)
Genetic Loci/genetics , Genetic Predisposition to Disease/genetics , Multiprotein Complexes/metabolism , Parkinson Disease/enzymology , Protein Interaction Mapping/methods , Protein Serine-Threonine Kinases/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Analysis of Variance , Blotting, Western , Brain/metabolism , Cell Fractionation , DNA Primers/genetics , Genome-Wide Association Study/methods , Golgi Apparatus/ultrastructure , HEK293 Cells , Humans , Immunoprecipitation , Intracellular Signaling Peptides and Proteins/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Mass Spectrometry , Microscopy, Confocal , Multiprotein Complexes/genetics , Plasmids/genetics , Protein Serine-Threonine Kinases/genetics , Transport Vesicles/metabolism , rab GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins
20.
Neurodegener Dis ; 17(4-5): 208-212, 2017.
Article in English | MEDLINE | ID: mdl-28558379

ABSTRACT

BACKGROUND: Autosomal recessive cerebellar ataxias (ARCA) are a complex group of neurodegenerative disorders with high clinical and genetic heterogeneity. In most cases, the cerebellar ataxia is not pure, and complicating clinical features such as pyramidal signs or extraneurological features are found. OBJECTIVE: To identify the genetic origin of the cerebellar ataxia for 3 consanguineous North African families presenting with ARCA. METHODS: Genome-wide high-density SNP genotyping and whole-exome sequencing were performed followed by Sanger sequencing for mutation confirmation. RESULTS: Two variants were identified in SLC25A46. Mutations in this gene have been previously associated with Charcot-Marie-Tooth type 2 and optic atrophy. While the previously reported variant p.Arg340Cys seems to be consistently associated with the same clinical features such as childhood onset, optic atrophy, gait and speech difficulties, and wasting of the lower limbs, the patient with the novel mutation p.Trp160Ser did not present with optic atrophy and his ocular abnormalities were limited to nystagmus and saccadic pursuit. CONCLUSION: In this study, we report a novel variant (p.Trp160Ser) in SLC25A46 and we broaden the phenotypic spectrum associated with mutations in SLC25A46.


Subject(s)
Cerebellar Ataxia/genetics , Mitochondrial Proteins/genetics , Mutation/genetics , Phosphate Transport Proteins/genetics , Adult , Cerebellar Ataxia/diagnostic imaging , Consanguinity , DNA Mutational Analysis , Family Health , Female , Humans , Magnetic Resonance Imaging , Male , North America
SELECTION OF CITATIONS
SEARCH DETAIL