Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Journal subject
Affiliation country
Publication year range
1.
Sensors (Basel) ; 22(9)2022 Apr 23.
Article in English | MEDLINE | ID: mdl-35590936

ABSTRACT

Real-time representation of the current performance of structures is an important task for perceiving potential danger in in-service bridges. Methods driven by the multisource sensing data of structural health monitoring systems are an effective way to achieve this goal. Due to the explicit zero-point of signals, the live load-induced response has an inherent advantage for quantitatively representing the performance of bridges. Taking a long-span cable-stayed railway-highway combined bridge as the case study, this paper presents a representation method of in-service performance. First, the non-stationary sections of train-induced response are automatically extracted by wavelet transform and window with threshold. Then, the data of the feature parameter of each non-stationary section are automatically divided into four cases of train load according to the calculational theory of bridge vibration under train effect and clustering analysis. Finally, the performance indexes for structural deformation and dynamics are determined separately, based on hierarchical clustering and statistical modeling. Fusing the real variability of massive data from monitoring and the knowledge of mechanics of theoretical calculations, accurate and robust indexes of bridge deflection distribution and forced vibration frequency are obtained in real time. The whole process verifies the feasibility of the representation of bridge in-service performance from massive multisource sensing data. The presented method, framework, and analysis results can be used as a reference for the design, operation, and maintenance works of long-span railway bridges.

2.
ScientificWorldJournal ; 2015: 250562, 2015.
Article in English | MEDLINE | ID: mdl-26451387

ABSTRACT

Nanjing Dashengguan Bridge, which serves as the shared corridor crossing Yangtze River for both Beijing-Shanghai high-speed railway and Shanghai-Wuhan-Chengdu railway, is the first 6-track high-speed railway bridge with the longest span throughout the world. In order to ensure safety and detect the performance deterioration during the long-time service of the bridge, a Structural Health Monitoring (SHM) system has been implemented on this bridge by the application of modern techniques in sensing, testing, computing, and network communication. The SHM system includes various sensors as well as corresponding data acquisition and transmission equipment for automatic data collection. Furthermore, an evaluation system of structural safety has been developed for the real-time condition assessment of this bridge. The mathematical correlation models describing the overall structural behavior of the bridge can be obtained with the support of the health monitoring system, which includes cross-correlation models for accelerations, correlation models between temperature and static strains of steel truss arch, and correlation models between temperature and longitudinal displacements of piers. Some evaluation results using the mean value control chart based on mathematical correlation models are presented in this paper to show the effectiveness of this SHM system in detecting the bridge's abnormal behaviors under the varying environmental conditions such as high-speed trains and environmental temperature.


Subject(s)
Architecture , Electronics/instrumentation , Models, Statistical , Pattern Recognition, Automated , Structure Collapse/prevention & control , China , Construction Industry , Construction Materials , Humans , Safety
SELECTION OF CITATIONS
SEARCH DETAIL