Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sci Rep ; 14(1): 17699, 2024 07 31.
Article in English | MEDLINE | ID: mdl-39085295

ABSTRACT

Aneuploidy is frequently observed in cancers and has been linked to poor patient outcome. Analysis of aneuploidy in DNA-sequencing (DNA-seq) data necessitates untangling the effects of the Copy Number Aberration (CNA) occurrence rates and the selection coefficients that act upon the resulting karyotypes. We introduce a parameter inference algorithm that takes advantage of both bulk and single-cell DNA-seq cohorts. The method is based on Approximate Bayesian Computation (ABC) and utilizes CINner, our recently introduced simulation algorithm of chromosomal instability in cancer. We examine three groups of statistics to summarize the data in the ABC routine: (A) Copy Number-based measures, (B) phylogeny tip statistics, and (C) phylogeny balance indices. Using these statistics, our method can recover both the CNA probabilities and selection parameters from ground truth data, and performs well even for data cohorts of relatively small sizes. We find that only statistics in groups A and C are well-suited for identifying CNA probabilities, and only group A carries the signals for estimating selection parameters. Moreover, the low number of CNA events at large scale compared to cell counts in single-cell samples means that statistics in group B cannot be estimated accurately using phylogeny reconstruction algorithms at the chromosome level. As data from both bulk and single-cell DNA-sequencing techniques becomes increasingly available, our inference framework promises to facilitate the analysis of distinct cancer types, differentiation between selection and neutral drift, and prediction of cancer clonal dynamics.


Subject(s)
Algorithms , Neoplasms , Sequence Analysis, DNA , Humans , Neoplasms/genetics , Sequence Analysis, DNA/methods , Bayes Theorem , DNA Copy Number Variations , Aneuploidy , Chromosomal Instability/genetics , Single-Cell Analysis/methods
2.
bioRxiv ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38617259

ABSTRACT

Cancer development is characterized by chromosomal instability, manifesting in frequent occurrences of different genomic alteration mechanisms ranging in extent and impact. Mathematical modeling can help evaluate the role of each mutational process during tumor progression, however existing frameworks can only capture certain aspects of chromosomal instability (CIN). We present CINner, a mathematical framework for modeling genomic diversity and selection during tumor evolution. The main advantage of CINner is its flexibility to incorporate many genomic events that directly impact cellular fitness, from driver gene mutations to copy number alterations (CNAs), including focal amplifications and deletions, missegregations and whole-genome duplication (WGD). We apply CINner to find chromosome-arm selection parameters that drive tumorigenesis in the absence of WGD in chromosomally stable cancer types. We found that the selection parameters predict WGD prevalence among different chromosomally unstable tumors, hinting that the selective advantage of WGD cells hinges on their tolerance for aneuploidy and escape from nullisomy. Direct application of CINner to model the WGD proportion and fraction of genome altered (FGA) further uncovers the increase in CNA probabilities associated with WGD in each cancer type. CINner can also be utilized to study chromosomally stable cancer types, by applying a selection model based on driver gene mutations and focal amplifications or deletions. Finally, we used CINner to analyze the impact of CNA probabilities, chromosome selection parameters, tumor growth dynamics and population size on cancer fitness and heterogeneity. We expect that CINner will provide a powerful modeling tool for the oncology community to quantify the impact of newly uncovered genomic alteration mechanisms on shaping tumor progression and adaptation.

SELECTION OF CITATIONS
SEARCH DETAIL