ABSTRACT
INTRODUCTION: The 6-minute walk test (6MWT) is frequently used as an outcome measure for clinical trials in neuromuscular disease. Because this submaximal endurance test is not feasible for nonambulatory patients, the motor-assisted 6-minute cycling test (A6MCT) was developed. METHODS: Nineteen children with neuromuscular disorders and children with OXPHOS-dysfunction performed the a6MCT and the 6MWT to explore feasibility and construct validity. Test-retest reproducibility was evaluated within 3 weeks. RESULTS: The assisted 6-minute cycling test was feasible in 90% and 78% of the patients with a neuromuscular disorder and OXPHOS-dysfunction, respectively. The A6MCT for legs correlated with the 6MWT in both patient groups. The assisted 6-minute cycling showed good reproducibility for both legs and arms. CONCLUSIONS: This exploratory study indicates that the assisted 6-minute cycling test is a promising outcome measure for patients with a neuromuscular disorder and patients with OXPHOS-dysfunction. Muscle Nerve, 2015. Muscle Nerve 54: 232-238, 2016.
Subject(s)
Mitochondrial Diseases/rehabilitation , Neuromuscular Diseases/physiopathology , Neuromuscular Diseases/rehabilitation , Walking/physiology , Adolescent , Child , Exercise Test , Female , Humans , Male , Mitochondrial Diseases/complications , Netherlands , Psychometrics , Reproducibility of ResultsABSTRACT
OBJECTIVE: There is an urgent need for reliable and universally applicable outcome measures for children with mitochondrial diseases. In this study, we aimed to adapt the currently available Newcastle Paediatric Mitochondrial Disease Scale (NPMDS) to the International Paediatric Mitochondrial Disease Scale (IPMDS) during a Delphi-based process with input from international collaborators, patients and caretakers, as well as a pilot reliability study in eight patients. Subsequently, we aimed to test the feasibility, construct validity and reliability of the IPMDS in a multicentre study. METHODS: A clinically, biochemically and genetically heterogeneous group of 17 patients (age 1.6-16 years) from five different expert centres from four different continents were evaluated in this study. RESULTS: The feasibility of the IPMDS was good, as indicated by a low number of missing items (4 %) and the positive evaluation of patients, parents and users. Principal component analysis of our small sample identified three factors, which explained 57.9 % of the variance. Good construct validity was found using hypothesis testing. The overall interrater reliability was good [median intraclass correlation coefficient for agreement between raters (ICCagreement) 0.85; range 0.23-0.99). CONCLUSION: In conclusion, we suggest using the IPMDS for assessing natural history in children with mitochondrial diseases. These data should be used to further explore construct validity of the IPMDS and to set age limits. In parallel, responsiveness and the minimal clinically important difference should be studied to facilitate sample size calculations in future clinical trials.
Subject(s)
Mitochondrial Diseases/diagnosis , Adolescent , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Male , Mitochondria/pathology , Mitochondrial Diseases/pathology , Principal Component Analysis/methods , Reproducibility of ResultsABSTRACT
Feasible, sensitive and clinically relevant outcome measures are of extreme importance when designing clinical trials. For paediatric mitochondrial disease, no robust end point has been described to date. The aim of this study was to select the domains of daily physical activity, which can be measured by 3D accelerometry, that could serve as sensitive end points in future clinical trials in children with mitochondrial disorders.In this exploratory observational study, 17 patients with mitochondrial disease and 16 age- and sex-matched controls wore 3D accelerometers at the upper leg, upper arm, lower arm and chest during one weekend. Using the raw data obtained by the accelerometers, we calculated the following outcome measures: (1) average amount of counts per hour the sensors were worn; (2) the maximal intensity; (3) the largest area under the curve during 30 min and (4) categorized activities lying, standing or being dynamically active. Measuring physical activity during the whole weekend was practically feasible in all participants. We found good face validity by visually correlating the validation videos and activity diaries to the accelerometer data-graphs. Patients with mitochondrial disorders had significantly lower peak intensity and were resting more, compared to their age- and sex-matched peers.Finally, we suggest domains of physical activity that could be included when measuring daily physical activity in children with mitochondrial disorders, preferably using more user-friendly devices. These include peak activity parameters for the arms (all patients) and legs (ambulatory patients). We recommend using or developing devices that measure these domains of physical activity in future clinical studies.