Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
Add more filters

Publication year range
1.
Genet Epidemiol ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472646

ABSTRACT

A polygenic risk score (PRS) combines the associations of multiple genetic variants that could be due to direct causal effects, indirect genetic effects, or other sources of familial confounding. We have developed new approaches to assess evidence for and against causation by using family data for pairs of relatives (Inference about Causation from Examination of FAmiliaL CONfounding [ICE FALCON]) or measures of family history (Inference about Causation from Examining Changes in Regression coefficients and Innovative STatistical AnaLyses [ICE CRISTAL]). Inference is made from the changes in regression coefficients of relatives' PRSs or PRS and family history before and after adjusting for each other. We applied these approaches to two breast cancer PRSs and multiple studies and found that (a) for breast cancer diagnosed at a young age, for example, <50 years, there was no evidence that the PRSs were causal, while (b) for breast cancer diagnosed at later ages, there was consistent evidence for causation explaining increasing amounts of the PRS-disease association. The genetic variants in the PRS might be in linkage disequilibrium with truly causal variants and not causal themselves. These PRSs cause minimal heritability of breast cancer at younger ages. There is also evidence for nongenetic factors shared by first-degree relatives that explain breast cancer familial aggregation. Familial associations are not necessarily due to genes, and genetic associations are not necessarily causal.

2.
Genet Epidemiol ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38504141

ABSTRACT

Young breast and bowel cancers (e.g., those diagnosed before age 40 or 50 years) have far greater morbidity and mortality in terms of years of life lost, and are increasing in incidence, but have been less studied. For breast and bowel cancers, the familial relative risks, and therefore the familial variances in age-specific log(incidence), are much greater at younger ages, but little of these familial variances has been explained. Studies of families and twins can address questions not easily answered by studies of unrelated individuals alone. We describe existing and emerging family and twin data that can provide special opportunities for discovery. We present designs and statistical analyses, including novel ideas such as the VALID (Variance in Age-specific Log Incidence Decomposition) model for causes of variation in risk, the DEPTH (DEPendency of association on the number of Top Hits) and other approaches to analyse genome-wide association study data, and the within-pair, ICE FALCON (Inference about Causation from Examining FAmiliaL CONfounding) and ICE CRISTAL (Inference about Causation from Examining Changes in Regression coefficients and Innovative STatistical AnaLysis) approaches to causation and familial confounding. Example applications to breast and colorectal cancer are presented. Motivated by the availability of the resources of the Breast and Colon Cancer Family Registries, we also present some ideas for future studies that could be applied to, and compared with, cancers diagnosed at older ages and address the challenges posed by young breast and bowel cancers.

3.
Am J Hum Genet ; 109(10): 1777-1788, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36206742

ABSTRACT

Rare pathogenic variants in known breast cancer-susceptibility genes and known common susceptibility variants do not fully explain the familial aggregation of breast cancer. To investigate plausible genetic models for the residual familial aggregation, we studied 17,425 families ascertained through population-based probands, 86% of whom were screened for pathogenic variants in BRCA1, BRCA2, PALB2, CHEK2, ATM, and TP53 via gene-panel sequencing. We conducted complex segregation analyses and fitted genetic models in which breast cancer incidence depended on the effects of known susceptibility genes and other unidentified major genes and a normally distributed polygenic component. The proportion of familial variance explained by the six genes was 46% at age 20-29 years and decreased steadily with age thereafter. After allowing for these genes, the best fitting model for the residual familial variance included a recessive risk component with a combined genotype frequency of 1.7% (95% CI: 0.3%-5.4%) and a penetrance to age 80 years of 69% (95% CI: 38%-95%) for homozygotes, which may reflect the combined effects of multiple variants acting in a recessive manner, and a polygenic variance of 1.27 (95% CI: 0.94%-1.65), which did not vary with age. The proportion of the residual familial variance explained by the recessive risk component was 40% at age 20-29 years and decreased with age thereafter. The model predicted age-specific familial relative risks consistent with those observed by large epidemiological studies. The findings have implications for strategies to identify new breast cancer-susceptibility genes and improve disease-risk prediction, especially at a young age.


Subject(s)
Breast Neoplasms , Genetic Predisposition to Disease , Adult , Aged, 80 and over , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Case-Control Studies , Female , Humans , Multifactorial Inheritance/genetics , Penetrance , Young Adult
4.
Breast Cancer Res ; 25(1): 127, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37880807

ABSTRACT

BACKGROUND: Mammogram risk scores based on texture and density defined by different brightness thresholds are associated with breast cancer risk differently and could reveal distinct information about breast cancer risk. We aimed to investigate causal relationships between these intercorrelated mammogram risk scores to determine their relevance to breast cancer aetiology. METHODS: We used digitised mammograms for 371 monozygotic twin pairs, aged 40-70 years without a prior diagnosis of breast cancer at the time of mammography, from the Australian Mammographic Density Twins and Sisters Study. We generated normalised, age-adjusted, and standardised risk scores based on textures using the Cirrus algorithm and on three spatially independent dense areas defined by increasing brightness threshold: light areas, bright areas, and brightest areas. Causal inference was made using the Inference about Causation from Examination of FAmilial CONfounding (ICE FALCON) method. RESULTS: The mammogram risk scores were correlated within twin pairs and with each other (r = 0.22-0.81; all P < 0.005). We estimated that 28-92% of the associations between the risk scores could be attributed to causal relationships between the scores, with the rest attributed to familial confounders shared by the scores. There was consistent evidence for positive causal effects: of Cirrus, light areas, and bright areas on the brightest areas (accounting for 34%, 55%, and 85% of the associations, respectively); and of light areas and bright areas on Cirrus (accounting for 37% and 28%, respectively). CONCLUSIONS: In a mammogram, the lighter (less dense) areas have a causal effect on the brightest (highly dense) areas, including through a causal pathway via textural features. These causal relationships help us gain insight into the relative aetiological importance of different mammographic features in breast cancer. For example our findings are consistent with the brightest areas being more aetiologically important than lighter areas for screen-detected breast cancer; conversely, light areas being more aetiologically important for interval breast cancer. Additionally, specific textural features capture aetiologically independent breast cancer risk information from dense areas. These findings highlight the utility of ICE FALCON and family data in decomposing the associations between intercorrelated disease biomarkers into distinct biological pathways.


Subject(s)
Breast Neoplasms , Female , Humans , Australia/epidemiology , Breast/diagnostic imaging , Breast Density , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/epidemiology , Breast Neoplasms/etiology , Mammography/methods , Risk Factors , Adult , Middle Aged , Aged
5.
Prostate ; 83(10): 962-969, 2023 07.
Article in English | MEDLINE | ID: mdl-37062910

ABSTRACT

BACKGROUND: Accurate prostate cancer risk assessment will enable identification of men who are at increased risk of the disease. Using the UK Biobank population-based cohort, we developed and validated a simple model comprising age, family history, and a polygenic risk score (PRS) to predict 5-year risk of prostate cancer. METHODS: Eligible participants were unaffected Caucasian men aged 40-69 years at their baseline assessment who had genotyping data available and had completed 6 or more weeks of follow-up. Family history was the number of affected first-degree relatives: 0, 1, or 2+. We used 264 single-nucleotide polymorphisms (SNPs) of a previously developed 269-SNP PRS and population standardized the PRS to have a mean of 1. Age was categorized into 10-year groups: 40-49, 50-59, and 60-69. In a 70% training data set, we used Cox regression with age as the time axis to model family history, PRS, and age group. The model estimates were used with prostate cancer incidences to derive 5-year risks of prostate cancer. Using 5 years of follow-up in a 30% testing data set, the model was tested in terms of its association per quintile of risk, discrimination, and calibration. RESULTS: Of the 198 334 eligible participants, 8996 (4.5%) were diagnosed with incident prostate cancer during follow-up and had a mean age of 67.9 (SD = 5.8) years at diagnosis. The best-fitting model included the PRS, family history, 10-year age group, interactions between age and PRS, and age and family history. In the 30% testing data set with follow-up limited to 5 years, the hazard ratio per SD of 5-year risk was 3.058 (95% confidence interval [CI], 2.720-3.438) and the Harrell's C-index was 0.811 (95% CI, 0.800-0.821). Overall, there were 1088 observed and 1159.1 expected prostate cancers, a standardized incidence ratio of 0.939 (95% CI, 0.885-0.996). CONCLUSIONS: Men at increased risk of prostate cancer could benefit from informed discussions around the risks and benefits of available options for screening for prostate cancer. Although the model was developed in Caucasian men, it can be used with ethnicity-specific polygenic risk and incidence rates for other populations.


Subject(s)
Prostatic Neoplasms , Male , Humans , Aged , Child , Risk Assessment , Risk Factors , Prostatic Neoplasms/epidemiology , Prostatic Neoplasms/genetics , Proportional Hazards Models , Incidence , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease
6.
Breast Cancer Res Treat ; 198(2): 335-347, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36749458

ABSTRACT

PURPOSE: We compared a simple breast cancer risk prediction model, BRISK (which includes mammographic density, polygenic risk and clinical factors), against a similar model with more risk factors (simplified Rosner) and against two commonly used clinical models (Gail and IBIS). METHODS: Using nested case-control data from the Nurses' Health Study, we compared the models' association, discrimination and calibration. Classification performance was compared between Gail and BRISK for 5-year risks and between IBIS and BRISK for remaining lifetime risk. RESULTS: The odds ratio per standard deviation was 1.43 (95% CI 1.32, 1.55) for BRISK 5-year risk, 1.07 (95% CI 0.99, 1.14) for Gail 5-year risk, 1.72 (95% CI 1.59, 1.87) for simplified Rosner 10-year risk, 1.51 (95% CI 1.41, 1.62) for BRISK remaining lifetime risk and 1.26 (95% CI 1.16, 1.36) for IBIS remaining lifetime risk. The area under the receiver operating characteristic curve (AUC) was improved for BRISK over Gail for 5-year risk (AUC = 0.636 versus 0.511, P < 0.0001) and for BRISK over IBIS for remaining lifetime risk (AUC = 0.647 versus 0.571, P < 0.0001). BRISK was well calibrated for the estimation of both 5-year risk (expected/observed [E/O] = 1.03; 95% CI 0.73, 1.46) and remaining lifetime risk (E/O = 1.01; 95% CI 0.86, 1.17). The Gail 5-year risk (E/O = 0.85; 95% CI 0.58, 1.24) and IBIS remaining lifetime risk (E/O = 0.73; 95% CI 0.60, 0.87) were not well calibrated, with both under-estimating risk. BRISK improves classification of risk compared to Gail 5-year risk (NRI = 0.31; standard error [SE] = 0.031) and IBIS remaining lifetime risk (NRI = 0.287; SE = 0.035). CONCLUSION: BRISK performs better than two commonly used clinical risk models and no worse compared to a similar model with more risk factors.


Subject(s)
Breast Density , Breast Neoplasms , Humans , Female , Risk Assessment , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Risk Factors , ROC Curve , Models, Statistical
7.
Int J Cancer ; 148(9): 2193-2202, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33197272

ABSTRACT

Mammograms contain information that predicts breast cancer risk. We developed two novel mammogram-based breast cancer risk measures based on image brightness (Cirrocumulus) and texture (Cirrus). Their risk prediction when fitted together, and with an established measure of conventional mammographic density (Cumulus), is not known. We used three studies consisting of: 168 interval cases and 498 matched controls; 422 screen-detected cases and 1197 matched controls; and 354 younger-diagnosis cases and 944 controls frequency-matched for age at mammogram. We conducted conditional and unconditional logistic regression analyses of individually- and frequency-matched studies, respectively. We estimated measure-specific risk gradients as the change in odds per standard deviation of controls after adjusting for age and body mass index (OPERA) and calculated the area under the receiver operating characteristic curve (AUC). For interval, screen-detected and younger-diagnosis cancer risks, the best fitting models (OPERAs [95% confidence intervals]) involved: Cumulus (1.81 [1.41-2.31]) and Cirrus (1.72 [1.38-2.14]); Cirrus (1.49 [1.32-1.67]) and Cirrocumulus (1.16 [1.03 to 1.31]); and Cirrus (1.70 [1.48 to 1.94]) and Cirrocumulus (1.46 [1.27-1.68]), respectively. The AUCs were: 0.73 [0.68-0.77], 0.63 [0.60-0.66], and 0.72 [0.69-0.75], respectively. Combined, our new mammogram-based measures have twice the risk gradient for screen-detected and younger-diagnosis breast cancer (P ≤ 10-12 ), have at least the same discriminatory power as the current polygenic risk score, and are more correlated with causal factors than conventional mammographic density. Discovering more information about breast cancer risk from mammograms could help enable risk-based personalised breast screening.


Subject(s)
Mammography/methods , Case-Control Studies , Female , Humans , Middle Aged , Risk Factors
8.
Epidemiol Infect ; 149: e162, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34210368

ABSTRACT

Clinical and genetic risk factors for severe coronavirus disease 2019 (COVID-19) are often considered independently and without knowledge of the magnitudes of their effects on risk. Using severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) positive participants from the UK Biobank, we developed and validated a clinical and genetic model to predict risk of severe COVID-19. We used multivariable logistic regression on a 70% training dataset and used the remaining 30% for validation. We also validated a previously published prototype model. In the validation dataset, our new model was associated with severe COVID-19 (odds ratio per quintile of risk = 1.77, 95% confidence interval (CI) 1.64-1.90) and had acceptable discrimination (area under the receiver operating characteristic curve = 0.732, 95% CI 0.708-0.756). We assessed calibration using logistic regression of the log odds of the risk score, and the new model showed no evidence of over- or under-estimation of risk (α = -0.08; 95% CI -0.21-0.05) and no evidence or over-or under-dispersion of risk (ß = 0.90, 95% CI 0.80-1.00). Accurate prediction of individual risk is possible and will be important in regions where vaccines are not widely available or where people refuse or are disqualified from vaccination, especially given uncertainty about the extent of infection transmission among vaccinated people and the emergence of SARS-CoV-2 variants of concern.


Subject(s)
COVID-19 , Models, Genetic , Risk Assessment/methods , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19/genetics , COVID-19/physiopathology , Comorbidity , Female , Humans , Male , Models, Statistical , Polymorphism, Single Nucleotide/genetics , ROC Curve , Reproducibility of Results , SARS-CoV-2 , Severity of Illness Index
9.
Twin Res Hum Genet ; 24(2): 123-129, 2021 04.
Article in English | MEDLINE | ID: mdl-33849672

ABSTRACT

Adult socioeconomic status (SES) has been consistently associated with body mass index (BMI), but it is unclear whether it is linked to BMI independently of childhood SES or other potentially confounding factors. Twin studies can address this issue by implicitly controlling for childhood SES and unmeasured confounders. This co-twin control study used cross-sectional data from Twins Research Australia's Health and Lifestyle Questionnaire (N = 1918 twin pairs). We investigated whether adult SES, as measured by both the Index of Relative Socioeconomic Disadvantage (IRSD) and the Australian Socioeconomic Index 2006 (AUSEI06), was associated with BMI after controlling for factors shared by twins within a pair. The primary analysis was a linear mixed-effects model that estimated effects both within and between pairs. Between pairs, a 10-unit increase in AUSEI06 was associated with a 0.29 kg/m2 decrease in BMI (95% CI [-.42, -.17], p < .001), and a 1-decile increase in IRSD was associated with a 0.26 kg/m2 decrease in BMI (95% CI [-.35, -.17], p < .001). No association was observed within pairs. In conclusion, higher adult SES was associated with lower BMI between pairs, but no association was observed within pairs. Thus, the link between adult SES and BMI may be due to confounding factors common to twins within a pair.


Subject(s)
Social Class , Twins , Adult , Australia/epidemiology , Body Mass Index , Cross-Sectional Studies , Humans
10.
Int J Cancer ; 147(2): 375-382, 2020 07 15.
Article in English | MEDLINE | ID: mdl-31609476

ABSTRACT

Interval breast cancers (those diagnosed between recommended mammography screens) generally have poorer outcomes and are more common among women with dense breasts. We aimed to develop a risk model for interval breast cancer. We conducted a nested case-control study within the Melbourne Collaborative Cohort Study involving 168 interval breast cancer patients and 498 matched control subjects. We measured breast density using the CUMULUS software. We recorded first-degree family history by questionnaire, measured body mass index (BMI) and calculated age-adjusted breast tissue aging, a novel measure of exposure to estrogen and progesterone based on the Pike model. We fitted conditional logistic regression to estimate odds ratio (OR) or odds ratio per adjusted standard deviation (OPERA) and calculated the area under the receiver operating characteristic curve (AUC). The stronger risk associations were for unadjusted percent breast density (OPERA = 1.99; AUC = 0.66), more so after adjusting for age and BMI (OPERA = 2.26; AUC = 0.70), and for family history (OR = 2.70; AUC = 0.56). When the latter two factors and their multiplicative interactions with age-adjusted breast tissue aging (p = 0.01 and 0.02, respectively) were fitted, the AUC was 0.73 (95% CI 0.69-0.77), equivalent to a ninefold interquartile risk ratio. In summary, compared with using dense breasts alone, risk discrimination for interval breast cancers could be doubled by instead using breast density, BMI, family history and hormonal exposure. This would also give women with dense breasts, and their physicians, more information about the major consequence of having dense breasts-an increased risk of developing an interval breast cancer.


Subject(s)
Breast Neoplasms/diagnostic imaging , Estrogens/metabolism , Mammography/methods , Medical History Taking/methods , Progesterone/metabolism , Adult , Aged , Australia , Body Mass Index , Breast Density , Breast Neoplasms/metabolism , Case-Control Studies , Female , Humans , Logistic Models , Middle Aged , ROC Curve , Surveys and Questionnaires
11.
Lancet Oncol ; 20(4): 504-517, 2019 04.
Article in English | MEDLINE | ID: mdl-30799262

ABSTRACT

BACKGROUND: Independent validation is essential to justify use of models of breast cancer risk prediction and inform decisions about prevention options and screening. Few independent validations had been done using cohorts for common breast cancer risk prediction models, and those that have been done had small sample sizes and short follow-up periods, and used earlier versions of the prediction tools. We aimed to validate the relative performance of four commonly used models of breast cancer risk and assess the effect of limited data input on each one's performance. METHODS: In this validation study, we used the Breast Cancer Prospective Family Study Cohort (ProF-SC), which includes 18 856 women from Australia, Canada, and the USA who did not have breast cancer at recruitment, between March 17, 1992, and June 29, 2011. We selected women from the cohort who were 20-70 years old and had no previous history of bilateral prophylactic mastectomy or ovarian cancer, at least 2 months of follow-up data, and information available about family history of breast cancer. We used this selected cohort to calculate 10-year risk scores and compare four models of breast cancer risk prediction: the Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm model (BOADICEA), BRCAPRO, the Breast Cancer Risk Assessment Tool (BCRAT), and the International Breast Cancer Intervention Study model (IBIS). We compared model calibration based on the ratio of the expected number of breast cancer cases to the observed number of breast cancer cases in the cohort, and on the basis of their discriminatory ability to separate those who will and will not have breast cancer diagnosed within 10 years as measured with the concordance statistic (C-statistic). We did subgroup analyses to compare the performance of the models at 10 years in BRCA1 or BRCA2 mutation carriers (ie, BRCA-positive women), tested non-carriers and untested participants (ie, BRCA-negative women), and participants younger than 50 years at recruitment. We also assessed the effect that limited data input (eg, restriction of the amount of family history and non-genetic information included) had on the models' performance. FINDINGS: After median follow-up of 11·1 years (IQR 6·0-14·4), 619 (4%) of 15 732 women selected from the ProF-SC cohort study were prospectively diagnosed with breast cancer after recruitment, of whom 519 (84%) had histologically confirmed disease. BOADICEA and IBIS were well calibrated in the overall validation cohort, whereas BRCAPRO and BCRAT underpredicted risk (ratio of expected cases to observed cases 1·05 [95% CI 0·97-1·14] for BOADICEA, 1·03 [0·96-1·12] for IBIS, 0·59 [0·55-0·64] for BRCAPRO, and 0·79 [0·73-0·85] for BRCAT). The estimated C-statistics for the complete validation cohort were 0·70 (95% CI 0·68-0·72) for BOADICEA, 0·71 (0·69-0·73) for IBIS, 0·68 (0·65-0·70) for BRCAPRO, and 0·60 (0·58-0·62) for BCRAT. In subgroup analyses by BRCA mutation status, the ratio of expected to observed cases for BRCA-negative women was 1·02 (95% CI 0·93-1·12) for BOADICEA, 1·00 (0·92-1·10) for IBIS, 0·53 (0·49-0·58) for BRCAPRO, and 0·97 (0·89-1·06) for BCRAT. For BRCA-positive participants, BOADICEA and IBIS were well calibrated, but BRCAPRO underpredicted risk (ratio of expected to observed cases 1·17 [95% CI 0·99-1·38] for BOADICEA, 1·14 [0·96-1·35] for IBIS, and 0·80 [0·68-0·95] for BRCAPRO). We noted similar patterns of calibration for women younger than 50 years at recruitment. Finally, BOADICEA and IBIS predictive scores were not appreciably affected by limiting input data to family history for first-degree and second-degree relatives. INTERPRETATION: Our results suggest that models that include multigenerational family history, such as BOADICEA and IBIS, have better ability to predict breast cancer risk, even for women at average or below-average risk of breast cancer. Although BOADICEA and IBIS performed similarly, further improvements in the accuracy of predictions could be possible with hybrid models that incorporate the polygenic risk component of BOADICEA and the non-family-history risk factors included in IBIS. FUNDING: US National Institutes of Health, National Cancer Institute, Breast Cancer Research Foundation, Australian National Health and Medical Research Council, Victorian Health Promotion Foundation, Victorian Breast Cancer Research Consortium, Cancer Australia, National Breast Cancer Foundation, Queensland Cancer Fund, Cancer Councils of New South Wales, Victoria, Tasmania, and South Australia, and Cancer Foundation of Western Australia.


Subject(s)
Breast Neoplasms/epidemiology , Models, Statistical , Adult , Aged , Breast Neoplasms/diagnosis , Calibration , Female , Follow-Up Studies , Humans , Middle Aged , Predictive Value of Tests , Prospective Studies , Risk Assessment , Risk Factors , Young Adult
12.
Breast Cancer Res ; 21(1): 128, 2019 11 28.
Article in English | MEDLINE | ID: mdl-31779655

ABSTRACT

BACKGROUND: Alcohol consumption and cigarette smoking are associated with an increased risk of breast cancer (BC), but it is unclear whether these associations vary by a woman's familial BC risk. METHODS: Using the Prospective Family Study Cohort, we evaluated associations between alcohol consumption, cigarette smoking, and BC risk. We used multivariable Cox proportional hazard models to estimate hazard ratios (HR) and 95% confidence intervals (CI). We examined whether associations were modified by familial risk profile (FRP), defined as the 1-year incidence of BC predicted by Breast Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA), a pedigree-based algorithm. RESULTS: We observed 1009 incident BC cases in 17,435 women during a median follow-up of 10.4 years. We found no overall association of smoking or alcohol consumption with BC risk (current smokers compared with never smokers HR 1.02, 95% CI 0.85-1.23; consuming ≥ 7 drinks/week compared with non-regular drinkers HR 1.10, 95% CI 0.92-1.32), but we did observe differences in associations based on FRP and by estrogen receptor (ER) status. Women with lower FRP had an increased risk of ER-positive BC associated with consuming ≥ 7 drinks/week (compared to non-regular drinkers), whereas there was no association for women with higher FRP. For example, women at the 10th percentile of FRP (5-year BOADICEA = 0.15%) had an estimated HR of 1.46 (95% CI 1.07-1.99), whereas there was no association for women at the 90th percentile (5-year BOADICEA = 4.2%) (HR 1.07, 95% CI 0.80-1.44). While the associations with smoking were not modified by FRP, we observed a positive multiplicative interaction by FRP (pinteraction = 0.01) for smoking status in women who also consumed alcohol, but not in women who were non-regular drinkers. CONCLUSIONS: Moderate alcohol intake was associated with increased BC risk, particularly for women with ER-positive BC, but only for those at lower predicted familial BC risk (5-year BOADICEA < 1.25). For women with a high FRP (5-year BOADICEA ≥ 6.5%) who also consumed alcohol, being a current smoker was associated with increased BC risk.


Subject(s)
Alcohol Drinking/adverse effects , Breast Neoplasms/epidemiology , Breast Neoplasms/etiology , Cigarette Smoking/adverse effects , Adolescent , Adult , Aged , Disease Susceptibility , Female , Humans , Middle Aged , Proportional Hazards Models , Prospective Studies , Public Health Surveillance , Risk Assessment , Risk Factors , Surveys and Questionnaires , Young Adult
13.
Breast Cancer Res ; 21(1): 52, 2019 04 18.
Article in English | MEDLINE | ID: mdl-30999962

ABSTRACT

BACKGROUND: The use of aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) has been associated with reduced breast cancer risk, but it is not known if this association extends to women at familial or genetic risk. We examined the association between regular NSAID use and breast cancer risk using a large cohort of women selected for breast cancer family history, including 1054 BRCA1 or BRCA2 mutation carriers. METHODS: We analyzed a prospective cohort (N = 5606) and a larger combined, retrospective and prospective, cohort (N = 8233) of women who were aged 18 to 79 years, enrolled before June 30, 2011, with follow-up questionnaire data on medication history. The prospective cohort was further restricted to women without breast cancer when medication history was asked by questionnaire. Women were recruited from seven study centers in the United States, Canada, and Australia. Associations were estimated using multivariable Cox proportional hazards regression models adjusted for demographics, lifestyle factors, family history, and other medication use. Women were classified as regular or non-regular users of aspirin, COX-2 inhibitors, ibuprofen and other NSAIDs, and acetaminophen (control) based on self-report at follow-up of ever using the medication for at least twice a week for ≥1 month prior to breast cancer diagnosis. The main outcome was incident invasive breast cancer, based on self- or relative-report (81% confirmed pathologically). RESULTS: From fully adjusted analyses, regular aspirin use was associated with a 39% and 37% reduced risk of breast cancer in the prospective (HR = 0.61; 95% CI = 0.33-1.14) and combined cohorts (HR = 0.63; 95% CI = 0.57-0.71), respectively. Regular use of COX-2 inhibitors was associated with a 61% and 71% reduced risk of breast cancer (prospective HR = 0.39; 95% CI = 0.15-0.97; combined HR = 0.29; 95% CI = 0.23-0.38). Other NSAIDs and acetaminophen were not associated with breast cancer risk in either cohort. Associations were not modified by familial risk, and consistent patterns were found by BRCA1 and BRCA2 carrier status, estrogen receptor status, and attained age. CONCLUSION: Regular use of aspirin and COX-2 inhibitors might reduce breast cancer risk for women at familial or genetic risk.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Aspirin/adverse effects , Breast Neoplasms/epidemiology , Breast Neoplasms/etiology , Disease Susceptibility , Adolescent , Adult , Aged , BRCA1 Protein/genetics , Breast Neoplasms/metabolism , Cohort Studies , Female , Genetic Predisposition to Disease , Genotype , Humans , Middle Aged , Mutation , Proportional Hazards Models , Public Health Surveillance , Risk Assessment , Risk Factors , Young Adult
14.
Int J Cancer ; 145(12): 3207-3217, 2019 12 15.
Article in English | MEDLINE | ID: mdl-30771221

ABSTRACT

Our aim was to estimate how long-term mortality following breast cancer diagnosis depends on age at diagnosis, tumor estrogen receptor (ER) status, and the time already survived. We used the population-based Australian Breast Cancer Family Study which followed-up 1,196 women enrolled during 1992-1999 when aged <60 years at diagnosis with a first primary invasive breast cancer, over-sampled for younger ages at diagnosis, for whom tumor pathology features and ER status were measured. There were 375 deaths (median follow-up = 15.7; range = 0.8-21.4, years). We estimated the mortality hazard as a function of time since diagnosis using a flexible parametric survival analysis with ER status a time-dependent covariate. For women with ER-negative tumors compared with those with ER-positive tumors, 5-year mortality was initially higher (p < 0.001), similar if they survived to 5 years (p = 0.4), and lower if they survived to 10 years (p = 0.02). The estimated mortality hazard for ER-negative disease peaked at ~3 years post-diagnosis, thereafter declined with time, and at 7 years post-diagnosis became lower than that for ER-positive disease. This pattern was more pronounced for women diagnosed at younger ages. Mortality was also associated with lymph node count (hazard ratio (HR) per 10 nodes = 2.52 [95% CI:2.11-3.01]) and tumor grade (HR per grade = 1.62 [95% CI:1.34-1.96]). The risk of death following a breast cancer diagnosis differs substantially and qualitatively with diagnosis age, ER status and time survived. For women who survive >7 years, those with ER-negative disease will on average live longer, and more so if younger at diagnosis.


Subject(s)
Breast Neoplasms/mortality , Breast Neoplasms/pathology , Receptors, Estrogen/metabolism , Adult , Australia , Breast/metabolism , Breast/pathology , Breast Neoplasms/metabolism , Case-Control Studies , Female , Humans , Lymph Nodes/pathology , Middle Aged , Neoplasm Grading , Prognosis , Proportional Hazards Models , Survival Analysis
15.
Int J Cancer ; 145(2): 370-379, 2019 07 15.
Article in English | MEDLINE | ID: mdl-30725480

ABSTRACT

Benign breast disease (BBD) is an established breast cancer (BC) risk factor, but it is unclear whether the magnitude of the association applies to women at familial or genetic risk. This information is needed to improve BC risk assessment in clinical settings. Using the Prospective Family Study Cohort, we used Cox proportional hazards models to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for the association of BBD with BC risk. We also examined whether the association with BBD differed by underlying familial risk profile (FRP), calculated using absolute risk estimates from the Breast Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA) model. During 176,756 person-years of follow-up (median: 10.9 years, maximum: 23.7) of 17,154 women unaffected with BC at baseline, we observed 968 incident cases of BC. A total of 4,704 (27%) women reported a history of BBD diagnosis at baseline. A history of BBD was associated with a greater risk of BC: HR = 1.31 (95% CI: 1.14-1.50), and did not differ by underlying FRP, with HRs of 1.35 (95% CI: 1.11-1.65), 1.26 (95% CI: 1.00-1.60), and 1.40 (95% CI: 1.01-1.93), for categories of full-lifetime BOADICEA score <20%, 20 to <35%, ≥35%, respectively. There was no difference in the association for women with BRCA1 mutations (HR: 1.64; 95% CI: 1.04-2.58), women with BRCA2 mutations (HR: 1.34; 95% CI: 0.78-2.3) or for women without a known BRCA1 or BRCA2 mutation (HR: 1.31; 95% CI: 1.13-1.53) (pinteraction = 0.95). Women with a history of BBD have an increased risk of BC that is independent of, and multiplies, their underlying familial and genetic risk.


Subject(s)
Breast Diseases/epidemiology , Breast Neoplasms/epidemiology , Adult , Aged , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Diseases/complications , Breast Diseases/genetics , Breast Neoplasms/etiology , Breast Neoplasms/genetics , Female , Humans , Incidence , Middle Aged , Mutation , Pedigree , Prospective Studies , Young Adult
16.
Int J Obes (Lond) ; 43(2): 243-252, 2019 02.
Article in English | MEDLINE | ID: mdl-29777239

ABSTRACT

BACKGROUND: Several studies have reported DNA methylation in blood to be associated with body mass index (BMI), but few have investigated causal aspects of the association. We used a twin family design to assess this association at two life points and applied a novel analytical approach to appraise the evidence for causality. METHODS: The methylation profile of DNA from peripheral blood was measured for 479 Australian women from 130 twin families. Linear regression was used to estimate the associations of DNA methylation at ~410,000 cytosine-guanine dinucleotides (CpGs), and of the average DNA methylation at ~20,000 genes, with current BMI, BMI at age 18-21 years, and the change between the two (BMI change). A novel regression-based methodology for twins, Inference about Causation through Examination of Familial Confounding (ICE FALCON), was used to assess causation. RESULTS: At a 5% false discovery rate, nine, six and 12 CpGs at 24 loci were associated with current BMI, BMI at age 18-21 years and BMI change, respectively. The average DNA methylation of the BHLHE40 and SOCS3 loci was associated with current BMI, and of the PHGDH locus with BMI change. From the ICE FALCON analyses with BMI as the predictor and DNA methylation as the outcome, a woman's DNA methylation level was associated with her co-twin's BMI, and the association disappeared after conditioning on her own BMI, consistent with BMI causing DNA methylation. To the contrary, using DNA methylation as the predictor and BMI as the outcome, a woman's BMI was not associated with her co-twin's DNA methylation level, consistent with DNA methylation not causing BMI. CONCLUSION: For middle-aged women, peripheral blood DNA methylation at several genomic locations is associated with current BMI, BMI at age 18-21 years and BMI change. Our study suggests that BMI has a causal effect on peripheral blood DNA methylation.


Subject(s)
Body Mass Index , DNA Methylation/genetics , Twins, Dizygotic , Twins, Monozygotic , Adolescent , Adult , Australia , Cross-Sectional Studies , Epigenomics , Genome-Wide Association Study , Humans , Middle Aged , Twins, Dizygotic/genetics , Twins, Dizygotic/statistics & numerical data , Twins, Monozygotic/genetics , Twins, Monozygotic/statistics & numerical data , Young Adult
17.
Twin Res Hum Genet ; 22(5): 312-320, 2019 10.
Article in English | MEDLINE | ID: mdl-31694735

ABSTRACT

Low socioeconomic status (SES) has been established as a risk factor for poor mental health; however, the relationship between SES and mental health problems can be confounded by genetic and environmental factors in standard regression analyses and observational studies of unrelated individuals. In this study, we used a within-pair twin design to control for unmeasured genetic and environmental confounders in investigating the association between SES and psychological distress. We also employed within-between pair regression analysis to assess whether the association was consistent with causality. SES was measured using the Index of Relative Socio-economic Disadvantage (IRSD), income and the Australian Socioeconomic Index 2006 (AUSEI06); psychological distress was measured using the Kessler 6 Psychological Distress Scale (K6). Data were obtained from Twins Research Australia's Health and Lifestyle Questionnaire (2014-2017), providing a maximum sample size of 1395 pairs. Twins with higher AUSEI06 scores had significantly lower K6 scores than their co-twins after controlling for shared genetic and environmental traits (ßW [within-pair regression coefficient] = -0.012 units, p = .006). Twins with higher income had significantly lower K6 scores than their co-twins after controlling for familial confounders (ßW = -0.182 units, p = .002). There was no evidence of an association between the IRSD and K6 scores within pairs (ßW, p = .6). Using a twin design to eliminate the effect of potential confounders, these findings further support the association between low SES and poor mental health, reinforcing the need to address social determinants of poor mental health, in addition to interventions targeted to individuals.


Subject(s)
Income , Psychological Distress , Social Class , Stress, Psychological/genetics , Surveys and Questionnaires , Twins/genetics , Aged , Australia , Female , Humans , Male , Middle Aged , Risk Factors
18.
Breast Cancer Res ; 20(1): 152, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30545395

ABSTRACT

BACKGROUND: Case-control studies show that mammographic density is a better risk factor when defined at higher than conventional pixel-brightness thresholds. We asked if this applied to interval and/or screen-detected cancers. METHOD: We conducted a nested case-control study within the prospective Melbourne Collaborative Cohort Study including 168 women with interval and 422 with screen-detected breast cancers, and 498 and 1197 matched controls, respectively. We measured absolute and percent mammographic density using the Cumulus software at the conventional threshold (Cumulus) and two increasingly higher thresholds (Altocumulus and Cirrocumulus, respectively). Measures were transformed and adjusted for age and body mass index (BMI). Using conditional logistic regression and adjusting for BMI by age at mammogram, we estimated risk discrimination by the odds ratio per adjusted standard deviation (OPERA), calculated the area under the receiver operating characteristic curve (AUC) and compared nested models using the likelihood ratio criterion and models with the same number of parameters using the difference in Bayesian information criterion (ΔBIC). RESULTS: For interval cancer, there was very strong evidence that the association was best predicted by Cumulus as a percentage (OPERA = 2.33 (95% confidence interval (CI) 1.85-2.92); all ΔBIC > 14), and the association with BMI was independent of age at mammogram. After adjusting for percent Cumulus, no other measure was associated with risk (all P > 0.1). For screen-detected cancer, however, the associations were strongest for the absolute and percent Cirrocumulus measures (all ΔBIC > 6), and after adjusting for Cirrocumulus, no other measure was associated with risk (all P > 0.07). CONCLUSION: The amount of brighter areas is the best mammogram-based measure of screen-detected breast cancer risk, while the percentage of the breast covered by white or bright areas is the best mammogram-based measure of interval breast cancer risk, irrespective of BMI. Therefore, there are different features of mammographic images that give clinically important information about different outcomes.


Subject(s)
Breast Density , Breast Neoplasms/diagnostic imaging , Early Detection of Cancer/methods , Image Processing, Computer-Assisted/methods , Mammography/methods , Aged , Breast/diagnostic imaging , Breast/pathology , Breast Neoplasms/pathology , Case-Control Studies , Female , Humans , Middle Aged , Prognosis , Prospective Studies , Risk Assessment/methods , Risk Factors , Software
19.
Breast Cancer Res ; 20(1): 132, 2018 11 03.
Article in English | MEDLINE | ID: mdl-30390716

ABSTRACT

BACKGROUND: The association between body mass index (BMI) and risk of breast cancer depends on time of life, but it is unknown whether this association depends on a woman's familial risk. METHODS: We conducted a prospective study of a cohort enriched for familial risk consisting of 16,035 women from 6701 families in the Breast Cancer Family Registry and the Kathleen Cunningham Foundation Consortium for Research into Familial Breast Cancer followed for up to 20 years (mean 10.5 years). There were 896 incident breast cancers (mean age at diagnosis 55.7 years). We used Cox regression to model BMI risk associations as a function of menopausal status, age, and underlying familial risk based on pedigree data using the Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA), all measured at baseline. RESULTS: The strength and direction of the BMI risk association depended on baseline menopausal status (P < 0.001); after adjusting for menopausal status, the association did not depend on age at baseline (P = 0.6). In terms of absolute risk, the negative association with BMI for premenopausal women has a much smaller influence than the positive association with BMI for postmenopausal women. Women at higher familial risk have a much larger difference in absolute risk depending on their BMI than women at lower familial risk. CONCLUSIONS: The greater a woman's familial risk, the greater the influence of BMI on her absolute postmenopausal breast cancer risk. Given that age-adjusted BMI is correlated across adulthood, maintaining a healthy weight throughout adult life is particularly important for women with a family history of breast cancer.


Subject(s)
Body Mass Index , Breast Neoplasms/epidemiology , Medical History Taking/statistics & numerical data , Registries/statistics & numerical data , Adult , Age Factors , Aged , Australia/epidemiology , Canada/epidemiology , Female , Follow-Up Studies , Humans , Incidence , Middle Aged , New Zealand/epidemiology , Postmenopause , Premenopause , Prospective Studies , Risk Factors , United States/epidemiology , Young Adult
20.
Radiology ; 286(2): 433-442, 2018 02.
Article in English | MEDLINE | ID: mdl-29040039

ABSTRACT

Purpose To compare three mammographic density measures defined by different pixel intensity thresholds as predictors of breast cancer risk for two different digital mammographic systems. Materials and Methods The Korean Breast Cancer Study included 398 women with invasive breast cancer and 737 control participants matched for age at mammography (±1 year), examination date, mammographic system, and menopausal status. Mammographic density was measured by using the automated Laboratory for Individualized Breast Radiodensity Assessment (LIBRA) software and the semiautomated Cumulus software at the conventional threshold (Cumulus) and at increasingly higher thresholds (Altocumulus and Cirrocumulus, respectively). Measures were Box-Cox-transformed and adjusted for age, body mass index, and menopausal status. Conditional logistic regression was used to estimate risk associations. For calculation of measures of predictive value, the change in odds per standard deviation (OPERA) and the area under the receiver operating characteristic curve (AUC) were used. Results For dense area, with use of the direct conversion system the OPERAs were 1.72 (95% confidence interval [CI]: 1.38, 2.15) for LIBRA, 1.58 (95% CI: 1.27, 1.97) for Cumulus, 2.04 (95% CI: 1.60, 2.59) for Altocumulus, and 3.48 (95% CI: 2.45, 4.47) for Cirrocumulus (P < .001). The corresponding AUCs were 0.70, 0.69, 0.76, and 0.89, respectively. With use of the indirect conversion system, the corresponding OPERAs were 1.50 (95% CI: 1.28, 1.76), 1.36 (95% CI: 1.16, 1.59), 1.40 (95% CI: 1.19, 1.64), and 1.47 (95% CI: 1.25, 1.73) (P < .001) and the AUCs were 0.64, 0.60, 0.61, and 0.63, respectively. Conclusion It is possible that mammographic density defined by higher pixel thresholds could capture more risk-predicting information with use of a direct conversion mammographic system; the mammographically bright, rather than white, regions are etiologically important. © RSNA, 2017.


Subject(s)
Breast Density , Breast Neoplasms/pathology , Area Under Curve , Breast Neoplasms/diagnostic imaging , Case-Control Studies , Early Detection of Cancer , Female , Humans , Mammography/methods , Middle Aged , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL