ABSTRACT
The ratio of the elastic e(+)p to e(-)p scattering cross sections has been measured precisely, allowing the determination of the two-photon exchange contribution to these processes. This neglected contribution is believed to be the cause of the discrepancy between the Rosenbluth and polarization transfer methods of measuring the proton electromagnetic form factors. The experiment was performed at the VEPP-3 storage ring at beam energies of 1.6 and 1.0 GeV and at lepton scattering angles between 15° and 105°. The data obtained show evidence of a significant two-photon exchange effect. The results are compared with several theoretical predictions.
ABSTRACT
A new accurate measurement of the tensor analyzing powers T20, T21, and T22 in deuteron photodisintegration has been performed. Wide-aperture nonmagnetic detectors allowed broad kinematic coverage in a single set up: E(gamma)=25 to 600 MeV, and theta(p)(cm)=24 degrees to 48 degrees and 70 degrees to 102 degrees . The new data provide a significant improvement over the few existing measurements. The angular dependency of the tensor asymmetries in deuteron photodisintegration is extracted for the first time.
ABSTRACT
We calculated the contribution of internal nucleon electric dipole moments to the Schiff moment of (199) Hg. The contribution of the proton electric dipole moment was obtained via core polarization effects that were treated in the framework of random phase approximation with effective residual forces. We derived a new upper bound |d(p)|<5.4 x 10(-24)e cm of the proton electric dipole moment.
ABSTRACT
The tensor analyzing power components T20 and T21 have been measured in elastic electron-deuteron scattering at the 2 GeV electron storage ring VEPP-3, Novosibirsk, in a four-momentum transfer range from 8.4 to 21.6 fm(-2). A new polarized internal gas target with an intense cryogenic atomic beam source was used. The new data determine the deuteron form factors G(C) and G(Q) in an important range of momentum transfer where the first node of the deuteron monopole charge form factor is located. The new results are compared with previous data and with some theoretical predictions.