ABSTRACT
In recent years, financial markets have been hit hard by the Great Financial Crisis of 2008, the acceleration of climate change, and now the COVID-19 pandemic. The result of these events is the acceleration of the implementation of a new model of socioeconomic development of societies referred to as the environmental, social, and governance (ESG) model. It has been particularly evident in the financial investment sector. Analyses of the relative performance of ESG funds is inconclusive due to the lack of a clear definition of responsible investments, and insufficient quality of the available data and ESG ratings. However, most of the studies find a positive correlation between ESG factors and company's financial performance. The analyses showed that these positive results are more pronounced over the longer term and impact the stock prices of those companies. ESG funds offer better downside protection during crises in relation to traditional funds. Despite the lack of legal barriers, the Polish economy has experienced very long delays in implementing the ESG model and the gap is even more pronounced in the financial industry. This is surprising as Poland is a very interesting market for sustainable investment given its current underdevelopment and overall potential related to green transformation. In Poland, only 17 investment funds deeply integrate ESG criteria. Educational and communication barriers have been identified as the main obstacles to the development of the sustainable finance market in Poland. Education of all participants in investment processes is a prerequisite for success.
Subject(s)
Investments , Sustainable Development , Humans , Climate Change , COVID-19/prevention & control , Pandemics , PolandABSTRACT
BACKGROUND: The benefits of trees in urban areas include the following: an increase in ecosystem health, an increase in human health, the mitigation of the effects of heat and drought at microclimate level, the storage and sequestration of carbon, and a reduction in air pollution and noise. These ecosystem services can be provided only by trees that are in good health. The main cause of salt stress in urban environments is the use of de-icing salts on the streets in winter. Salt stress is a complex process that includes changes in plants on the physiological, histological, cellular and molecular levels, leading to limitations in nutrient uptake, disrupting the ionic balance of trees and resulting in the death of roadside trees. In response to salinity, trees have developed a variety of defence mechanisms that allow them to minimize the effects of stress and maintain homeostasis. METHODOLOGY: The reactions of two species Acer species: A. platanoides and A. campestre, which have different sensitivities to the unfavourable conditions of the urban environments (mainly salt stress), were investigated. The research included two experiments: a field experiment with city trees and a controlled pot experiment with young trees treated with increasing doses of salt. In both experiments, the following were performed: an assessment of the health condition of the trees and the content of macroelements as well as the Cl and Na in leaves and a qualitative and quantitative analysis of polyprenols. RESULTS: A. campestre had a more specific strategy than A. platanoides for dealing with Na and Cl, which resulted in undamaged leaves. Under the same conditions, A. platanoides leaves contained more Cl and Na and were severely damaged. The disruption of the ion balance due to salt stress was lower in A. campestre than in A. platanoides. Compared with A. platanoides, A. campestre synthesized more polyprenols in the field experiment. This ability was acquired during the process of acclimation, because it occurred only in the mature trees in the field experiment and not in the young trees in the pot experiment. CONCLUSIONS: The use of two experimental methods (i.e., the field and pot experiments) allowed for a more complete assessment of tree strategies to mitigate salt stress. A. campestre displayed a more specific strategy than A. platanoides. This strategy was based on several elements. A. campestre limited Cl and Na transport to the leaves, which resulted in a lack of damage to those organs. Under the same conditions, A. platanoides individuals contained more Cl and Na in their leaves and were seriously damaged. A. campestre synthesized larger amounts of polyprenols, which probably have the ability to mitigate salt stress. This ability was acquired during the process of acclimation, because it occurred only in the mature trees in the field experiment and was not observed in the young trees in the pot experiment.
ABSTRACT
Changes in environmental pollution by S, Cd, Cu, Pb and Zn in 2006-2014 were evaluated using a bioindication method. This method was based on measurements of pollutants in Scots pine (Pinus sylvestris L.) needles. The measurements were performed in the Chojnowskie Forests, a region recognized as a background area for central Poland. The changes in the contents of sulfur (S) and metals in needles were not comparable with the changes in the global emissions of the pollutants in Poland. On average, the pollution level in the study area decreased by 9.9% for S, 61.4% for Pb, 22.5% for Cd, 11.7% for Zn and 10.4% for Cu. During the same period, global emissions in Poland decreased by 38.1% for S, 8.0% for Pb, 63.2% for Cd, 11.7% for Zn and 14.0% for Cu. Therefore, the differences in the changes in emissions and the needle contents of each element should be examined separately which was not a goal of this study. However, the discrepancy between these results did not prevent the use of bioindication methods. Evaluation of pollutant contents in plants reflected their incorporation in biological processes rather than air or soil pollution levels.
Subject(s)
Environmental Pollution/analysis , Environmental Pollution/prevention & control , Metals, Heavy/analysis , Sulfur Dioxide/analysis , Air Pollutants/analysis , Environment , Environmental Biomarkers , Environmental Monitoring/methods , Humans , Pinus sylvestris/chemistry , Plant Leaves/chemistry , Poland , Soil Pollutants/analysisABSTRACT
Contamination with harmful chemical substances, including organic compounds of the BTEX and PAH groups, constitutes one of the major threats to the functioning of soil habitat. Excessive contents of the above substances can exert adverse effects on soil organisms, reduce biodiversity, and thus deteriorate soil quality. The threat to soil ecosystems within areas particularly exposed to contamination with accumulating chemical compounds was assessed using the Ecological Risk Assessment (ERA) with a multi-stage Triad (triage rapid initial assessment) procedure (taking into account the different lines of evidence). The article presents the results of chemical and ecotoxicological study of soils sampled at sites affected by contamination from petrochemical industry. The study results provided foundations for developing the site specific ERA framework for the area examined.
Subject(s)
Petroleum Pollution/analysis , Plant Development/drug effects , Soil Pollutants/analysis , Soil Pollutants/toxicity , Chromatography, Gas , Ecotoxicology , Mass Spectrometry , Poland , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Principal Component Analysis , Risk Assessment , Volatile Organic Compounds/analysis , Volatile Organic Compounds/toxicityABSTRACT
The present and future air contamination by mercury is and will continue to be a serious risk for human health. This publication presents a review of the literature dealing with the issues related to air contamination by mercury and its transformations as well as its natural and anthropogenic emissions. The assessment of mercury emissions into the air poses serious methodological problems. It is particularly difficult to distinguish between natural and anthropogenic emissions and re-emissions from lands and oceans, including past emissions. At present, the largest emission sources include fuel combustion, mainly that of coal, and "artisanal and small-scale gold mining" (ASGM). The distinctly highest emissions can be found in South and South-East Asia, accounting for 45% of the global emissions. The emissions of natural origin and re-emissions are estimated at 45-66% of the global emissions, with the largest part of emissions originating in the oceans. Forecasts on the future emission levels are not unambiguous; however, most forecasts do not provide for reductions in emissions. Ninety-five percent of mercury occurring in the air is Hg0-GEM, and its residence time in the air is estimated at 6 to 18 months. The residence times of its HgII-GOM and that in Hgp-TPM are estimated at hours and days. The highest mercury concentrations in the air can be found in the areas of mercury mines and those of ASGM. Since 1980 when it reached its maximum, the global background mercury concentration in the air has remained at a relatively constant level.
ABSTRACT
The study was focused on assessing the presence of arabinogalactan proteins (AGPs) and pectins within the cell walls as well as prenyl lipids, sodium and chlorine content in leaves of Tilia x euchlora trees. The leaves that were analyzed were collected from trees with and without signs of damage that were all growing in the same salt stress conditions. The reason for undertaking these investigations was the observations over many years that indicated that there are trees that present a healthy appearance and trees that have visible symptoms of decay in the same habitat. Leaf samples were collected from trees growing in the median strip between roadways that have been intensively salted during the winter season for many years. The sodium content was determined using atomic spectrophotometry, chloride using potentiometric titration and poly-isoprenoids using HPLC/UV. AGPs and pectins were determined using immunohistochemistry methods. The immunohistochemical analysis showed that rhamnogalacturonans I (RG-I) and homogalacturonans were differentially distributed in leaves from healthy trees in contrast to leaves from injured trees. In the case of AGPs, the most visible difference was the presence of the JIM16 epitope. Chemical analyses of sodium and chloride showed that in the leaves from injured trees, the level of these ions was higher than in the leaves from healthy trees. Based on chromatographic analysis, four poly-isoprenoid alcohols were identified in the leaves of T. x euchlora. The levels of these lipids were higher in the leaves from healthy trees. The results suggest that the differences that were detected in the apoplast and symplasm may be part of the defensive strategy of T. x euchlora trees to salt stress, which rely on changes in the chemical composition of the cell wall with respect to the pectic and AGP epitopes and an increased synthesis of prenyl lipids.
Subject(s)
Adaptation, Physiological , Cell Wall/drug effects , Lipids/biosynthesis , Sodium Chloride/pharmacology , Stress, Physiological , Terpenes/metabolism , Tilia/drug effects , Alcohols/isolation & purification , Alcohols/metabolism , Cell Wall/chemistry , Cell Wall/metabolism , Lipids/isolation & purification , Mucoproteins/biosynthesis , Mucoproteins/isolation & purification , Pectins/biosynthesis , Pectins/isolation & purification , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Proteins/biosynthesis , Plant Proteins/isolation & purification , Salinity , Soil/chemistry , Terpenes/isolation & purification , Tilia/metabolism , Trees/drug effects , Trees/metabolismABSTRACT
The study investigations were focused on assessing the influence of a 35-year-old municipal waste landfill on environmental mercury pollution. The total Hg content was determined in the soil profile, groundwater, and the plants (Solidago virgaurea and Poaceae sp.) in the landfill area. Environmental pollution near the landfill was relatively low. The topsoil layer, groundwater and the leaves of Solidago virgaurea and Poaceae sp. contained 19-271 µg kg-1, 0.36-3.01 µg l-1, 19-66 µg kg-1 and 8-29 µg kg-1 of Hg, respectively. The total Hg content in the soil decreased with the depth. The results are presented as pollution maps of the landfill area based on the total Hg content in the soil, groundwater and plants. Statistical analysis revealed the lack of correlation between the total Hg content in the soil and plants, but a relationship between the total concentration of Hg in groundwater and soil was shown. The landfill is not a direct source of pollution in the area. The type of land morphology did not influence the pollution level. Construction of bentonite cut-off wall bypassing MSW landfill reduces the risk of mercury release into ground-water environment.
Subject(s)
Environmental Monitoring , Mercury/analysis , Refuse Disposal/methods , Soil Pollutants/analysis , Waste Disposal Facilities , Water Pollutants, Chemical/analysis , Cluster Analysis , Environment , Environmental Pollutants , Geography , Groundwater , Poaceae/metabolism , Poland , Soil , Solidago/metabolism , Spatial AnalysisABSTRACT
The purpose of this study was to assess the application of several bioindication methods for the monitoring of environmental pollution from Pb and Cd. The study area centered on the town of Olkusz, Poland, which is one of the oldest centers for the metallurgical industry in Europe. The assessment of environmental pollution due to metals was performed using four frequently used bioindication methods: moss-bag (Sphagnum fallax), determination of metal accumulation in Pleurozium schreberi, silver birch foliage, and Scots pine needles. The region of Olkusz, and especially the area surrounding the mining and metallurgical Boleslaw complex, was extremely contaminated with Pb and Cd. The results of the investigations are presented as contamination deposition maps. Despite the application of various methods and the resulting diversity of the specific exposure periods for different biomonitors, the spatial distribution of contamination shown on the maps was similar, as confirmed by the statistical analysis of the results.
Subject(s)
Cadmium/metabolism , Environmental Monitoring/methods , Environmental Pollutants/metabolism , Lead/metabolism , Plants/metabolismABSTRACT
Between 1992 and 2004, air contamination with lead (Pb), cadmium (Cd), and zinc (Zn) in Warsaw, Poland, was monitored annually with moss (Sphagnum fallax) bags on a network of 230 sites covering the entire city. During the study the highest contamination was near the Warszawa Steel Mill, northwestern Warsaw. Lead concentrations in moss bags decreased in time, while those of Cd and Zn did not show clear trends. Between 1994 and 2004, Pb, Cd, and Zn were also monitored in the Crimean linden (Tilia Euchlora) foliage along the main city avenue and in a northwestern warsaw park. Lead concentrations decreased more near the avenue than in the park, indicating that the phasing-out of leaded gasoline had a major effect on reduced Pb contamination in Warsaw. At the same time, foliar concentrations of Cd and Zn in both areas decreased much less.