Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
J Med Virol ; 95(2): e28489, 2023 02.
Article in English | MEDLINE | ID: mdl-36832544

ABSTRACT

Social distancing, mask-wearing, and travel restrictions during the COVID-19 pandemic have significantly impacted the spread of influenza viruses. The objectives of this study were to analyze the pattern of influenza virus circulation with respect to that of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Bulgaria during the 2021-2022 season and to perform a phylogenetic/molecular analysis of the hemagglutinin (HA) and neuraminidase (NA) sequences of representative influenza strains. Influenza infection was confirmed using real-time reverse transcription polymerase chain reaction in 93 (4.2%) of the 2193 patients with acute respiratory illness tested wherein all detected viruses were subtyped as A(H3N2). SARS-CoV-2 was identified in 377 (24.3%) of the 1552 patients tested. Significant differences in the incidence of influenza viruses and SARS-CoV-2 were found between individual age groups, outpatients/inpatients, and in the seasonal distribution of cases. Two cases of coinfections were identified. In hospitalized patients, the Ct values of influenza viruses at admission were lower in adults aged ≥65 years (indicating higher viral load) than in children aged 0-14 years (p < 0.05). In SARS-CoV-2-positive inpatients, this association was not statistically significant. HA genes of all A(H3N2) viruses analyzed belonged to subclade 3C.2a1b.2a. The sequenced viruses carried 11 substitutions in HA and 5 in NA, in comparison to the vaccine virus A/Cambodia/e0826360/2020, including several substitutions in the HA antigenic sites B and C. This study revealed extensive changes in the typical epidemiology of influenza infection, including a dramatic reduction in the number of cases, diminished genetic diversity of circulating viruses, changes in age, and seasonal distribution of cases.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Adult , Child , Humans , Influenza A Virus, H3N2 Subtype/genetics , SARS-CoV-2/genetics , Seasons , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Bulgaria/epidemiology , Phylogeny , Prevalence , Pandemics , COVID-19/epidemiology , RNA, Viral/genetics , Sequence Analysis, DNA , Hemagglutinins , Neuraminidase/genetics
2.
J Med Virol ; 94(12): 6060-6064, 2022 12.
Article in English | MEDLINE | ID: mdl-35902787

ABSTRACT

The evolution of the emerging SARS-CoV-2 variants carrying mutations in the spike protein raises concerns about the possibility of accelerated transmission in the ever-evolving COVID-19 pandemic worldwide. AY.4.2, a sublineage of the Delta variant, was considered a variant under investigation (VUI) and also gained the nickname "Delta Plus," due to its extra mutations, Y145H and A222V. In this study, using genomic epidemiology, we provide the first insights into the introduction of AY.4.2 in Bulgaria and the AY.4.2.1 sublineage that found larger dissemination only in Bulgaria and the United Kingdom.


Subject(s)
COVID-19 , SARS-CoV-2 , Bulgaria/epidemiology , COVID-19/epidemiology , Genomics , Humans , Mutation , Pandemics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
4.
Microorganisms ; 11(8)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37630601

ABSTRACT

The first recombinant SARS-CoV-2 variants were identified in 2022, causing public health concerns. The importance of recombinant variants has increased especially since the WHO designated the recombinant variant XBB and its lineages as subvariants that require monitoring on 20 November 2022. In this study, we provide the first insights into the new SARS-CoV-2 variant named XAN, a recombinant composed of Omicron sub-lineages BA.2 and BA.5. To our knowledge, this is the first report on the recombinant SARS-CoV-2 XAN variant identified in Bulgaria.

5.
Viruses ; 15(9)2023 09 15.
Article in English | MEDLINE | ID: mdl-37766330

ABSTRACT

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has brought about significant challenges worldwide. In this study, we present a comprehensive analysis of the genomic epidemiology and lineage dynamics of SARS-CoV-2 in Bulgaria over a three-year period. Through extensive genomic sequencing and data analysis, we investigated the evolution of the virus, the emergence of variants of concern (VOCs), and their impact on the country's pandemic trajectory. We also assessed the relationship between viral diversity and COVID-19 morbidity and mortality in Bulgaria. Our findings shed light on the temporal and spatial distribution of SARS-CoV-2 lineages and provide crucial insights into the dynamics of the pandemic in the country. The interplay between international travel and viral transmission plays a significant role in the emergence and dissemination of different SARS-CoV-2 variants. The observed proportions of exportation to various continents provide insights into the potential pathways through which these lineages spread globally. Understanding the genomic epidemiology of SARS-CoV-2 in Bulgaria is essential for formulating targeted public health strategies, enhancing vaccination efforts, and effectively managing future outbreaks.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Pandemics , Bulgaria/epidemiology , COVID-19/epidemiology , Genomics
SELECTION OF CITATIONS
SEARCH DETAIL