Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Chembiochem ; 24(19): e202300141, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37088717

ABSTRACT

Focal adhesion kinase (FAK) is an attractive drug target due to its overexpression in cancer. FAK functions as a non-receptor tyrosine kinase and scaffolding protein, coordinating several downstream signaling effectors and cellular processes. While drug discovery efforts have largely focused on targeting FAK kinase activity, FAK inhibitors have failed to show efficacy as single agents in clinical trials. Here, using structure-guided design, we report the development of a selective FAK inhibitor (BSJ-04-175) and degrader (BSJ-04-146) to evaluate the consequences and advantages of abolishing all FAK activity in cancer models. BSJ-04-146 achieves rapid and potent FAK degradation with high proteome-wide specificity in cancer cells and induces durable degradation in mice. Compared to kinase inhibition, targeted degradation of FAK exhibits pronounced improved activity on downstream signaling and cancer cell viability and migration. Together, BSJ-04-175 and BSJ-04-146 are valuable chemical tools to dissect the specific consequences of targeting FAK through small-molecule inhibition or degradation.


Subject(s)
Neoplasms , Proteolysis Targeting Chimera , Mice , Animals , Focal Adhesion Protein-Tyrosine Kinases/chemistry , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Neoplasms/drug therapy , Signal Transduction , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry
2.
Nat Chem Biol ; 17(9): 954-963, 2021 09.
Article in English | MEDLINE | ID: mdl-33972797

ABSTRACT

The peptidyl-prolyl isomerase, Pin1, is exploited in cancer to activate oncogenes and inactivate tumor suppressors. However, despite considerable efforts, Pin1 has remained an elusive drug target. Here, we screened an electrophilic fragment library to identify covalent inhibitors targeting Pin1's active site Cys113, leading to the development of Sulfopin, a nanomolar Pin1 inhibitor. Sulfopin is highly selective, as validated by two independent chemoproteomics methods, achieves potent cellular and in vivo target engagement and phenocopies Pin1 genetic knockout. Pin1 inhibition had only a modest effect on cancer cell line viability. Nevertheless, Sulfopin induced downregulation of c-Myc target genes, reduced tumor progression and conferred survival benefit in murine and zebrafish models of MYCN-driven neuroblastoma, and in a murine model of pancreatic cancer. Our results demonstrate that Sulfopin is a chemical probe suitable for assessment of Pin1-dependent pharmacology in cells and in vivo, and that Pin1 warrants further investigation as a potential cancer drug target.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , NIMA-Interacting Peptidylprolyl Isomerase/antagonists & inhibitors , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Mice , Mice, Inbred C57BL , Molecular Structure , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Proto-Oncogene Proteins c-myc/metabolism , Structure-Activity Relationship , Tumor Cells, Cultured
3.
Nat Chem Biol ; 16(9): 979-987, 2020 09.
Article in English | MEDLINE | ID: mdl-32483379

ABSTRACT

Peptidyl-prolyl cis/trans isomerase NIMA-interacting 1 (Pin1) is commonly overexpressed in human cancers, including pancreatic ductal adenocarcinoma (PDAC). While Pin1 is dispensable for viability in mice, it is required for activated Ras to induce tumorigenesis, suggesting a role for Pin1 inhibitors in Ras-driven tumors, such as PDAC. We report the development of rationally designed peptide inhibitors that covalently target Cys113, a highly conserved cysteine located in the Pin1 active site. The inhibitors were iteratively optimized for potency, selectivity and cell permeability to give BJP-06-005-3, a versatile tool compound with which to probe Pin1 biology and interrogate its role in cancer. In parallel to inhibitor development, we employed genetic and chemical-genetic strategies to assess the consequences of Pin1 loss in human PDAC cell lines. We demonstrate that Pin1 cooperates with mutant KRAS to promote transformation in PDAC, and that Pin1 inhibition impairs cell viability over time in PDAC cell lines.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , NIMA-Interacting Peptidylprolyl Isomerase/antagonists & inhibitors , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , Animals , Antineoplastic Agents/chemistry , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cell Survival/drug effects , Cell Transformation, Neoplastic/genetics , Crystallography, X-Ray , Cysteine/metabolism , Drug Design , Enzyme Inhibitors/metabolism , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Mice , NIH 3T3 Cells , NIMA-Interacting Peptidylprolyl Isomerase/chemistry , NIMA-Interacting Peptidylprolyl Isomerase/genetics , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Protein Conformation , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism
4.
Mol Cell ; 53(5): 700-9, 2014 Mar 06.
Article in English | MEDLINE | ID: mdl-24606918

ABSTRACT

Abnormal metabolism and sustained proliferation are hallmarks of cancer. Pyruvate kinase M2 (PKM2) is a metabolic enzyme that plays important roles in both processes. Recently, PKM2 was shown to have protein kinase activity phosphorylating histone H3 and promoting cancer cell proliferation. However, the mechanism and extent of this protein kinase in cancer cells remain unclear. Here, we report that binding of succinyl-5-aminoimidazole-4-carboxamide-1-ribose-5'-phosphate (SAICAR), a metabolite abundant in proliferating cells, induces PKM2's protein kinase activity in vitro and in cells. Protein microarray experiments revealed that more than 100 human proteins, mostly protein kinases, are phosphorylated by PKM2-SAICAR. In particular, PKM2-SAICAR phosphorylates and activates Erk1/2, which in turn sensitizes PKM2 for SAICAR binding through phosphorylation. Additionally, PKM2-SAICAR was necessary to induce sustained Erk1/2 activation and mitogen-induced cell proliferation. Thus, the ligand-induced protein kinase activity from PKM2 is a mechanism that directly couples cell proliferation with intracellular metabolic status.


Subject(s)
Aminoimidazole Carboxamide/analogs & derivatives , Carrier Proteins/metabolism , Gene Expression Regulation, Neoplastic , Membrane Proteins/metabolism , Protein Kinase Inhibitors/chemistry , Ribonucleotides/chemistry , Signal Transduction , Thyroid Hormones/metabolism , Adenosine Diphosphate/chemistry , Aminoimidazole Carboxamide/chemistry , Animals , Cell Line, Tumor , Cell Nucleus/metabolism , Cell Proliferation , HeLa Cells , Humans , Isoenzymes/metabolism , Ligands , Mitogen-Activated Protein Kinase 3/metabolism , Phosphorylation , Protein Array Analysis , Protein Binding , Recombinant Proteins/metabolism , Xenopus laevis , Thyroid Hormone-Binding Proteins
5.
Nat Chem Biol ; 14(2): 163-170, 2018 02.
Article in English | MEDLINE | ID: mdl-29251720

ABSTRACT

Cyclin-dependent kinase 9 (CDK9), an important regulator of transcriptional elongation, is a promising target for cancer therapy, particularly for cancers driven by transcriptional dysregulation. We characterized NVP-2, a selective ATP-competitive CDK9 inhibitor, and THAL-SNS-032, a selective CDK9 degrader consisting of a CDK-binding SNS-032 ligand linked to a thalidomide derivative that binds the E3 ubiquitin ligase Cereblon (CRBN). To our surprise, THAL-SNS-032 induced rapid degradation of CDK9 without affecting the levels of other SNS-032 targets. Moreover, the transcriptional changes elicited by THAL-SNS-032 were more like those caused by NVP-2 than those induced by SNS-032. Notably, compound washout did not significantly reduce levels of THAL-SNS-032-induced apoptosis, suggesting that CDK9 degradation had prolonged cytotoxic effects compared with CDK9 inhibition. Thus, our findings suggest that thalidomide conjugation represents a promising strategy for converting multi-targeted inhibitors into selective degraders and reveal that kinase degradation can induce distinct pharmacological effects compared with inhibition.


Subject(s)
Cyclin-Dependent Kinase 9/antagonists & inhibitors , Cyclin-Dependent Kinase 9/chemistry , Peptide Hydrolases/chemistry , Protein Kinase Inhibitors/pharmacology , Adaptor Proteins, Signal Transducing , Apoptosis , Cell Line, Tumor , Cell Proliferation , Crystallography, X-Ray , Humans , Inhibitory Concentration 50 , Ligands , Oxazoles/pharmacology , Phosphorylation , Protein Binding , Protein Conformation , Proteomics , Thalidomide/pharmacology , Thiazoles/pharmacology , Ubiquitin-Protein Ligases
6.
J Am Chem Soc ; 141(1): 191-203, 2019 01 09.
Article in English | MEDLINE | ID: mdl-30518210

ABSTRACT

Despite recent clinical successes for irreversible drugs, potential toxicities mediated by unpredictable modification of off-target cysteines represents a major hurdle for expansion of covalent drug programs. Understanding the proteome-wide binding profile of covalent inhibitors can significantly accelerate their development; however, current mass spectrometry strategies typically do not provide a direct, amino acid level readout of covalent activity for complex, selective inhibitors. Here we report the development of CITe-Id, a novel chemoproteomic approach that employs covalent pharmacologic inhibitors as enrichment reagents in combination with an optimized proteomic platform to directly quantify dose-dependent binding at cysteine-thiols across the proteome. CITe-Id analysis of our irreversible CDK inhibitor THZ1 identified dose-dependent covalent modification of several unexpected kinases, including a previously unannotated cysteine (C840) on the understudied kinase PKN3. These data streamlined our development of JZ128 as a new selective covalent inhibitor of PKN3. Using JZ128 as a probe compound, we identified novel potential PKN3 substrates, thus offering an initial molecular view of PKN3 cellular activity. CITe-Id provides a powerful complement to current chemoproteomic platforms to characterize the selectivity of covalent inhibitors, identify new, pharmacologically addressable cysteine-thiols, and inform structure-based drug design programs.


Subject(s)
Protein Kinase Inhibitors/pharmacology , Proteomics , Amino Acid Sequence , Catalytic Domain , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/chemistry , Dose-Response Relationship, Drug , HeLa Cells , Humans , Models, Molecular , Protein Kinase C/antagonists & inhibitors , Protein Kinase C/chemistry , Cyclin-Dependent Kinase-Activating Kinase
7.
Bioorg Med Chem Lett ; 29(15): 1985-1993, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31175010

ABSTRACT

The TAIRE family of kinases are an understudied branch of the CDK kinase family, that have been implicated in a number of cancers. This manuscript describes the design, synthesis and SAR of covalent CDK14 inhibitors, culminating in identification of FMF-04-159-2, a potent, covalent CDK14 inhibitor with a TAIRE kinase biased selectivity profile.


Subject(s)
Cyclin-Dependent Kinases/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Pyrazoles/chemistry , Cyclin-Dependent Kinases/pharmacology , Humans , Protein Kinase Inhibitors/pharmacology , Structure-Activity Relationship
8.
Bioorg Med Chem Lett ; 27(18): 4405-4408, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28818446

ABSTRACT

Aurora kinases play an essential role in mitosis and cell cycle regulation. In recent years Aurora kinases have proved popular cancer targets and many inhibitors have been developed. The majority of these clinical candidates are multi-targeted, rendering them inappropriate as tools for studying Aurora kinase mediated signaling. Here we report discovery of a highly selective inhibitor of Aurora kinases A, B and C, with potent cellular activity and minimal off-target activity (PLK4). The X-ray co-crystal structure of Aurora A in complex with compound 2 is reported, and provides insights into the structural determinants of ligand binding and selectivity.


Subject(s)
Antineoplastic Agents/pharmacology , Aurora Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Aurora Kinases/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship
9.
Bioorg Med Chem ; 24(16): 3501-12, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27288180

ABSTRACT

A new series of 4-anilinoquinazolines with C-6 ureido and thioureido side chains and various substituents at the C-4 anilino moiety was designed, synthesized and evaluated as wild type (WT) and mutant EGFR inhibitors. Most of the compounds inhibited EGFR kinase wild type (EGFR WT) with IC50 values in the low nanomolar range (<0.495-9.05nM) and displayed more potent cytotoxic effect in BaF/3 expressing EGFR WT than reference compound gefitinib. The anti-proliferative effect of all synthesized compounds against gefitinib insensitive double mutant cell lines Ba/F3 expressing Del19/T790M and Ba/F3 expressing L858R/T790M were assayed. Compounds 4d, 6f, 7e showed significant inhibition (IC50=1.76-2.38µM) in these mutant lines and significant Her2 enzyme inhibition (IC50=19.2-40.6nM) compared to lapatinib (60.1nM). The Binding mode of compounds 6d, 6f, 7a, 7b and 8b were demonstrated. Furthermore, growth inhibition against gefitinib insensitive cell lines PC9-GR4 (Del19/T790M) were tested, compounds 6f and 7e showed about eight and three folds respectively greater potency than gefitinib. Our structure-activity relationships (SAR) studies suggested that presence of ethyl piperidino urea/thiourea at 6-position and bulky group of (3-chloro-4-(3-fluorobenzyloxy)phenyl)amino at 4-position of quinazoline may serve as promising scaffold for developing inhibitors against wild type and mutant EGFR.


Subject(s)
ErbB Receptors/antagonists & inhibitors , Quinazolines/pharmacology , Cell Line , Drug Design , Humans , In Vitro Techniques , Inhibitory Concentration 50 , Mutation
10.
Cell Chem Biol ; 27(1): 57-65.e9, 2020 01 16.
Article in English | MEDLINE | ID: mdl-31735695

ABSTRACT

The G1/S cell cycle checkpoint is frequently dysregulated in cancer, leaving cancer cells reliant on a functional G2/M checkpoint to prevent excessive DNA damage. Wee1 regulates the G2/M checkpoint by phosphorylating CDK1 at Tyr15 to prevent mitotic entry. Previous drug development efforts targeting Wee1 resulted in the clinical-grade inhibitor, AZD1775. However, AZD1775 is burdened by dose-limiting adverse events, and has off-target PLK1 activity. In an attempt to overcome these limitations, we developed Wee1 degraders by conjugating AZD1775 to the cereblon (CRBN)-binding ligand, pomalidomide. The resulting lead compound, ZNL-02-096, degrades Wee1 while sparing PLK1, induces G2/M accumulation at 10-fold lower doses than AZD1775, and synergizes with Olaparib in ovarian cancer cells. We demonstrate that ZNL-02-096 has CRBN-dependent pharmacology that is distinct from AZD1775, which justifies further evaluation of selective Wee1 degraders.


Subject(s)
Cell Cycle Proteins/metabolism , Drug Development , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/metabolism , Proteolysis/drug effects , Pyrazoles/pharmacology , Pyrimidinones/pharmacology , Thalidomide/analogs & derivatives , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , DNA Damage , Female , Humans , Molecular Structure , Phthalazines/chemistry , Phthalazines/pharmacology , Piperazines/chemistry , Piperazines/pharmacology , Protein Kinase Inhibitors/chemistry , Pyrazoles/chemistry , Pyrimidinones/chemistry , Thalidomide/chemistry , Thalidomide/pharmacology
11.
Cell Chem Biol ; 26(6): 804-817.e12, 2019 06 20.
Article in English | MEDLINE | ID: mdl-30930164

ABSTRACT

Cyclin-dependent kinase 14 (CDK14) and other TAIRE family kinases (CDKs 15-18) are proteins that lack functional annotation but are frequent off-targets of clinical kinase inhibitors. In this study we develop and characterize FMF-04-159-2, a tool compound that specifically targets CDK14 covalently and possesses a TAIRE kinase-biased selectivity profile. This tool compound and its reversible analog were used to characterize the cellular consequences of covalent CDK14 inhibition, including an unbiased investigation using phospho-proteomics. To reduce confounding off-target activity, washout conditions were used to deconvolute CDK14-specific effects. This investigation suggested that CDK14 plays a supporting role in cell-cycle regulation, particularly mitotic progression, and identified putative CDK14 substrates. Together, these results represent an important step forward in understanding the cellular consequences of inhibiting CDK14 kinase activity.


Subject(s)
Amides/pharmacology , Cyclin-Dependent Kinases/antagonists & inhibitors , Drug Discovery , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Amides/chemical synthesis , Amides/chemistry , Cyclin-Dependent Kinases/metabolism , HCT116 Cells , Humans , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Proteomics , Substrate Specificity
12.
Nat Commun ; 9(1): 3069, 2018 08 09.
Article in English | MEDLINE | ID: mdl-30093655

ABSTRACT

Arsenic trioxide (ATO) and all-trans retinoic acid (ATRA) combination safely cures fatal acute promyelocytic leukemia, but their mechanisms of action and efficacy are not fully understood. ATRA inhibits leukemia, breast, and liver cancer by targeting isomerase Pin1, a master regulator of oncogenic signaling networks. Here we show that ATO targets Pin1 and cooperates with ATRA to exert potent anticancer activity. ATO inhibits and degrades Pin1, and suppresses its oncogenic function by noncovalent binding to Pin1's active site. ATRA increases cellular ATO uptake through upregulating aquaporin-9. ATO and ATRA, at clinically safe doses, cooperatively ablate Pin1 to block numerous cancer-driving pathways and inhibit the growth of triple-negative breast cancer cells and tumor-initiating cells in cell and animal models including patient-derived orthotopic xenografts, like Pin1 knockout, which is substantiated by comprehensive protein and microRNA analyses. Thus, synergistic targeting of Pin1 by ATO and ATRA offers an attractive approach to combating breast and other cancers.


Subject(s)
Arsenic Trioxide/pharmacology , Gene Expression Regulation, Neoplastic , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , Neoplasms/metabolism , Tretinoin/metabolism , Animals , Antineoplastic Agents/pharmacology , Cell Proliferation , Female , Fibroblasts/metabolism , Gene Expression Profiling , Humans , Leukemia, Promyelocytic, Acute/metabolism , Magnetic Resonance Spectroscopy , Mice , Mice, Inbred BALB C , Mice, Knockout , Neoplasm Transplantation , Neoplasms/drug therapy , Neoplasms/genetics , Proteomics , Signal Transduction
13.
Cell Chem Biol ; 25(1): 88-99.e6, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29129717

ABSTRACT

Heterobifunctional molecules that recruit E3 ubiquitin ligases, such as cereblon, for targeted protein degradation represent an emerging pharmacological strategy. A major unanswered question is how generally applicable this strategy is to all protein targets. In this study, we designed a multi-kinase degrader by conjugating a highly promiscuous kinase inhibitor with a cereblon-binding ligand, and used quantitative proteomics to discover 28 kinases, including BTK, PTK2, PTK2B, FLT3, AURKA, AURKB, TEC, ULK1, ITK, and nine members of the CDK family, as degradable. This set of kinases is only a fraction of the intracellular targets bound by the degrader, demonstrating that successful degradation requires more than target engagement. The results guided us to develop selective degraders for FLT3 and BTK, with potentials to improve disease treatment. Together, this study demonstrates an efficient approach to triage a gene family of interest to identify readily degradable targets for further studies and pre-clinical developments.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Proteomics , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase/genetics , Agammaglobulinaemia Tyrosine Kinase/metabolism , Humans , Protein Kinase Inhibitors/chemistry , Proteolysis , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL