Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Plant J ; 109(5): 1213-1228, 2022 03.
Article in English | MEDLINE | ID: mdl-34897855

ABSTRACT

In monoecious melon (Cucumis melo), sex is determined by the differential expression of sex determination genes (SDGs) and adoption of sex-specific transcriptional programs. Histone modifications such as H3K27me3 have been previously shown to be a hallmark associated to unisexual flower development in melon; yet, no genetic approaches have been conducted for elucidating the roles of H3K27me3 writers, readers, and erasers in this process. Here we show that melon homologs to Arabidopsis LHP1, CmLHP1A and B, redundantly control several aspects of plant development, including sex expression. Cmlhp1ab double mutants displayed an overall loss and redistribution of H3K27me3, leading to a deregulation of genes involved in hormone responses, plant architecture, and flower development. Consequently, double mutants display pleiotropic phenotypes and, interestingly, a general increase of the male:female ratio. We associated this phenomenon with a general deregulation of some hormonal response genes and a local activation of male-promoting SDGs and MADS-box transcription factors. Altogether, these results reveal a novel function for CmLHP1 proteins in maintenance of monoecy and provide novel insights into the polycomb-mediated epigenomic regulation of sex lability in plants.


Subject(s)
Arabidopsis , Cucumis melo , Cucurbitaceae , Arabidopsis/genetics , Cucumis melo/genetics , Cucumis melo/metabolism , Cucurbitaceae/genetics , Gene Expression Regulation, Plant/genetics , Histones/metabolism , Plant Development , Plant Proteins/genetics , Plant Proteins/metabolism
2.
Int J Mol Sci ; 24(13)2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37446368

ABSTRACT

Melon is a recalcitrant plant for stable genetic transformation. Various protocols have been tried to improve melon transformation efficiency; however, it remains significantly low compared to other plants such as tomato. In this study, the primary focus was on the optimization of key parameters during the inoculation and co-culture steps of the genetic transformation protocol. Our results showed that immersing the explants in the inoculation medium for 20 min significantly enhanced transformation efficiency. During the co-culture step, the use of filer paper, 10 mM 2-(N-morpholino)-ethanesulfonic acid (MES), and a temperature of 24 °C significantly enhanced the melon transformation efficiency. Furthermore, the impact of different ethylene inhibitors and absorbers on the transformation efficiency of various melon varieties was explored. Our findings revealed that the use of these compounds led to a significant improvement in the transformation efficiency of the tested melon varieties. Subsequently, using our improved protocol and reporter-gene construct, diploid transgenic melons successfully generated. The efficiency of plant genetic transformation ranged from 3.73 to 4.83%. Expanding the scope of our investigation, the optimized protocol was applied to generate stable gene-edited melon lines using the Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated cytosine base editor and obtained melon lines with editions (C-to-T and C-to-G) in the eukaryotic translation initiation factor 4E, CmeIF4E gene. In conclusion, the optimized melon transformation protocol, along with the utilization of the CRISPR/Cas9-mediated cytosine base editor, provides a reliable framework for functional gene engineering in melon. These advancements hold significant promise for furthering genetic research and facilitating crop improvement in this economically important plant species.


Subject(s)
Cucumis melo , Cucurbitaceae , Gene Editing/methods , CRISPR-Cas Systems/genetics , Cucumis melo/genetics , Cucurbitaceae/genetics , Plants/genetics
3.
J Exp Bot ; 73(12): 4008-4021, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35394500

ABSTRACT

In plants, introgression of genetic resistance is a proven strategy for developing new resistant lines. While host proteins involved in genome replication and cell to cell movement are widely studied, other cell mechanisms responsible for virus infection remain under investigated. Endosomal sorting complexes required for transport (ESCRT) play a key role in membrane trafficking in plants and are involved in the replication of several plant RNA viruses. In this work, we describe the role of the ESCRT protein CmVPS4 as a new susceptibility factor to the Potyvirus Watermelon mosaic virus (WMV) in melon. Using a worldwide collection of melons, we identified three different alleles carrying non-synonymous substitutions in CmVps4. Two of these alleles were shown to be associated with WMV resistance. Using a complementation approach, we demonstrated that resistance is due to a single non-synonymous substitution in the allele CmVps4P30R. This work opens up new avenues of research on a new family of host factors required for virus infection and new targets for resistance.


Subject(s)
Cucurbitaceae , Plant Viruses , Potyvirus , Cucurbitaceae/genetics , Endosomal Sorting Complexes Required for Transport/genetics , Plant Diseases/genetics , Protein Transport
5.
Plant J ; 80(6): 993-1004, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25283874

ABSTRACT

Aphis gossypii is a polyphagous sucking aphid and a vector for many viruses. In Cucumis melo, a dominant locus, Vat, confers a high level of resistance to Aphis gossypii infestation and to viruses transmitted by this vector. To investigate the mechanism underlying this double resistance, we first genetically dissected the Vat locus. We delimited the double resistance to a single gene that encodes for a coiled-coil-nucleotide-binding-site-leucine-rich repeat (CC-NBS-LRR) protein type. To validate the genetic data, transgenic lines expressing the Vat gene were generated and assessed for the double resistance. In this analysis, Vat-transgenic plants were resistant to A. gossypii infestation as well as A. gossypii-mediated virus transmission. When the plants were infected mechanically, virus infection occurred on both transgenic and non-transgenic control plants. These results confirmed that the cloned CC-NBS-LRR gene mediates both resistance to aphid infestation and virus infection using A. gossypii as a vector. This resistance also invokes a separate recognition and response phases in which the recognition phase involves the interaction of an elicitor molecule from the aphid and Vat from the plant. The response phase is not specific and blocks both aphid infestation and virus infection. Sequence analysis of Vat alleles suggests a major role of an unusual conserved LRR repeat in the recognition of A. gossypii.


Subject(s)
Aphids/physiology , Cucumis melo/immunology , Plant Diseases/immunology , Proteins/metabolism , Alleles , Amino Acid Sequence , Animals , Aphids/virology , Binding Sites , Cucumis melo/genetics , Cucumis melo/virology , Disease Resistance , Genetic Loci , Host-Pathogen Interactions , Leucine-Rich Repeat Proteins , Molecular Sequence Data , Nucleotides/metabolism , Plant Diseases/virology , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Proteins/genetics
6.
Nature ; 461(7267): 1135-8, 2009 Oct 22.
Article in English | MEDLINE | ID: mdl-19847267

ABSTRACT

Sex determination in plants leads to the development of unisexual flowers from an originally bisexual floral meristem. This mechanism results in the enhancement of outcrossing and promotes genetic variability, the consequences of which are advantageous to the evolution of a species. In melon, sexual forms are controlled by identity of the alleles at the andromonoecious (a) and gynoecious (g) loci. We previously showed that the a gene encodes an ethylene biosynthesis enzyme, CmACS-7, that represses stamen development in female flowers. Here we show that the transition from male to female flowers in gynoecious lines results from epigenetic changes in the promoter of a transcription factor, CmWIP1. This natural and heritable epigenetic change resulted from the insertion of a transposon, which is required for initiation and maintenance of the spreading of DNA methylation to the CmWIP1 promoter. Expression of CmWIP1 leads to carpel abortion, resulting in the development of unisexual male flowers. Moreover, we show that CmWIP1 indirectly represses the expression of the andromonoecious gene, CmACS-7, to allow stamen development. Together our data indicate a model in which CmACS-7 and CmWIP1 interact to control the development of male, female and hermaphrodite flowers in melon.


Subject(s)
Cucurbitaceae/genetics , DNA Transposable Elements/genetics , Epigenesis, Genetic/genetics , Sex Determination Processes , Alleles , Cucurbitaceae/enzymology , Cucurbitaceae/physiology , DNA Methylation , Ethylenes/biosynthesis , Flowers/physiology , Genes, Plant/genetics , Genes, Plant/physiology , Lyases/metabolism , Molecular Sequence Data , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic , Transcription Factors/genetics
7.
Hortic Res ; 11(1): uhad256, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38269294

ABSTRACT

Podosphaera xanthii is the main causal agent of powdery mildew (PM) on Cucurbitaceae. In Cucumis melo, the Pm-w resistance gene, which confers resistance to P. xanthii, is located on chromosome 5 in a cluster of nucleotide-binding leucine-rich repeat receptors (NLRs). We used positional cloning and transgenesis, to isolate the Pm-wWMR 29 gene encoding a coiled-coil NLR (CC-NLR). Pm-wWMR 29 conferred high level of resistance to race 1 of PM and intermediate level of resistance to race 3 of PM. Pm-wWMR 29 turned out to be a homolog of the Aphis gossypii resistance gene Vat-1PI 161375. We confirmed that Pm-wWMR 29 did not confer resistance to aphids, while Vat-1PI 161375 did not confer resistance to PM. We showed that both homologs were included in a highly diversified cluster of NLRs, the Vat cluster. Specific Vat-1PI 161375 and Pm-wWMR 29 markers were present in 10% to 13% of 678 accessions representative of wild and cultivated melon types worldwide. Phylogenic reconstruction of 34 protein homologs of Vat-1PI 161375 and Pm-wWMR 29 identified in 24 melon accessions revealed an ancestor with four R65aa-a specific motif in the LRR domain, evolved towards aphid and virus resistance, while an ancestor with five R65aa evolved towards PM resistance. The complexity of the cluster comprising the Vat/Pm-w genes and its diversity in melon suggest that Vat homologs may contribute to the recognition of a broad range of yet to be identified pests and pathogens.

8.
Nat Commun ; 15(1): 4877, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849342

ABSTRACT

In flowering plants, the predominant sexual morph is hermaphroditism, and the emergence of unisexuality is poorly understood. Using Cucumis melo (melon) as a model system, we explore the mechanisms driving sexual forms. We identify a spontaneous mutant exhibiting a transition from bisexual to unisexual male flower, and identify the causal mutation as a Harbinger transposon impairing the expression of Ethylene Insensitive 2 (CmEIN2) gene. Genetics and transcriptomic analysis reveal a dual role of CmEIN2 in both sex determination and fruit shape formation. Upon expression of CmACS11, EIN2 is recruited to repress the expression of the carpel inhibitor, CmWIP1. Subsequently, EIN2 is recruited to mediate stamina inhibition. Following the sex determination phase, EIN2 promotes fruit shape elongation. Genome-wide analysis reveals that Harbinger transposon mobilization is triggered by environmental cues, and integrates preferentially in active chromatin, particularly within promoter regions. Characterization of a large collection of melon germplasm points to active transpositions in the wild, compared to cultivated accessions. Our study underscores the association between chromatin dynamics and the temporal aspects of mobile genetic element insertions, providing valuable insights into plant adaptation and crop genome evolution.


Subject(s)
DNA Transposable Elements , Ethylenes , Flowers , Gene Expression Regulation, Plant , Plant Proteins , DNA Transposable Elements/genetics , Ethylenes/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Flowers/genetics , Flowers/growth & development , Signal Transduction/genetics , Cucumis melo/genetics , Cucumis melo/metabolism , Fruit/genetics , Fruit/growth & development , Mutation
9.
Nat Plants ; 9(10): 1675-1687, 2023 10.
Article in English | MEDLINE | ID: mdl-37653338

ABSTRACT

Sex determination evolved to control the development of unisexual flowers. In agriculture, it conditions how plants are cultivated and bred. We investigated how female flowers develop in monoecious cucurbits. We discovered in melon, Cucumis melo, a mechanism in which ethylene produced in the carpel is perceived in the stamen primordia through spatially differentially expressed ethylene receptors. Subsequently, the CmEIN3/CmEIL1 ethylene signalling module, in stamen primordia, activates the expression of CmHB40, a transcription factor that downregulates genes required for stamen development and upregulates genes associated with organ senescence. Investigation of melon genetic biodiversity revealed a haplotype, originating in Africa, altered in EIN3/EIL1 binding to CmHB40 promoter and associated with bisexual flower development. In contrast to other bisexual mutants in cucurbits, CmHB40 mutations do not alter fruit shape. By disentangling fruit shape and sex-determination pathways, our work opens up new avenues in plant breeding.


Subject(s)
Cucurbitaceae , Plant Proteins , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Breeding , Ethylenes/metabolism , Cucurbitaceae/genetics , Flowers , Gene Expression Regulation, Plant
10.
Curr Biol ; 32(11): 2390-2401.e4, 2022 06 06.
Article in English | MEDLINE | ID: mdl-35525245

ABSTRACT

Shapes of vegetables and fruits are the result of adaptive evolution and human selection. Modules controlling organ shape have been identified. However, little is known about signals coordinating organ development and shape. Here, we describe the characterization of a melon mutation rf1, leading to round fruit. Histological analysis of rf1 flower and fruits revealed fruit shape is determined at flower stage 8, after sex determination and before flower fertilization. Using positional cloning, we identified the causal gene as the monoecy sex determination gene CmACS7, and survey of melon germplasms showed strong association between fruit shape and sexual types. We show that CmACS7-mediated ethylene production in carpel primordia enhances cell expansion and represses cell division, leading to elongated fruit. Cell size is known to rise as a result of endoreduplication. At stage 8 and anthesis, we found no variation in ploidy levels between female and hermaphrodite flowers, ruling out endoreduplication as a factor in fruit shape determination. To pinpoint the gene networks controlling elongated versus round fruit phenotype, we analyzed the transcriptomes of laser capture microdissected carpels of wild-type and rf1 mutant. These high-resolution spatiotemporal gene expression dynamics revealed the implication of two regulatory modules. The first module implicates E2F-DP transcription factors, controlling cell elongation versus cell division. The second module implicates OVATE- and TRM5-related proteins, controlling cell division patterns. Our finding highlights the dual role of ethylene in the inhibition of the stamina development and the elongation of ovary and fruit in cucurbits.


Subject(s)
Cucurbitaceae , Fruit , Cucurbitaceae/genetics , Cucurbitaceae/metabolism , Ethylenes/metabolism , Flowers , Gene Expression Regulation, Plant , Phenotype , Plant Proteins/genetics , Plant Proteins/metabolism
11.
Plants (Basel) ; 11(3)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35161327

ABSTRACT

The French National Research Institute for Agriculture, Food and the Environment (INRAE) conserves and distributes five vegetable collections as seeds: the aubergine* (in this article the word aubergine refers to eggplant), pepper, tomato, melon and lettuce collections, together with their wild or cultivated relatives, are conserved in Avignon, France. Accessions from the collections have geographically diverse origins, are generally well-described and fixed for traits of agronomic or scientific interest and have available passport data. In addition to currently conserving over 10,000 accessions (between 900 and 3000 accessions per crop), the centre maintains scientific collections such as core collections and bi- or multi-parental populations, which have also been genotyped with SNP markers. Each collection has its own merits and highlights, which are discussed in this review: the aubergine collection is a rich source of crop wild relatives of Solanum; the pepper, melon and lettuce collections have been screened for resistance to plant pathogens, including viruses, fungi, oomycetes and insects; and the tomato collection has been at the heart of genome-wide association studies for fruit quality traits and environmental stress tolerance.

12.
Science ; 378(6619): 543-549, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36378960

ABSTRACT

Male and female unisexual flowers evolved from hermaphroditic ancestors, and control of flower sex is useful for plant breeding. We isolated a female-to-male sex transition mutant in melon and identified the causal gene as the carpel identity gene <i>CRABS CLAW (CRC)</i>. We show that the master regulator of sex determination in cucurbits, the transcription factor <i>WIP1</i> whose expression orchestrates male flower development, recruits the corepressor TOPLESS to the <i>CRC</i> promoter to suppress its expression through histone deacetylation. Impairing TOPLESS-WIP1 physical interaction leads to <i>CRC</i> expression, carpel determination, and consequently the expression of the stamina inhibitor, the aminocyclopropane-1-carboxylic acid synthase 7 (<i>CmACS7</i>), leading to female flower development. Our findings suggest that sex genes evolved to interfere with flower meristematic function, leading to unisexual flower development.


Subject(s)
Cucurbitaceae , Gene Expression Regulation, Plant , Plant Proteins , Sex Determination Processes , Flowers/genetics , Flowers/growth & development , Meristem/metabolism , Plant Breeding , Plant Proteins/genetics , Plant Proteins/metabolism , Cucurbitaceae/genetics , Cucurbitaceae/growth & development
13.
iScience ; 25(1): 103696, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35059606

ABSTRACT

Cucumis melo displays a large diversity of horticultural groups with cantaloupe melon the most cultivated type. Using a combination of single-molecule sequencing, 10X Genomics link-reads, high-density optical and genetic maps, and chromosome conformation capture (Hi-C), we assembled a chromosome scale C. melo var. cantalupensis Charentais mono genome. Integration of RNA-seq, MeDip-seq, ChIP-seq, and Hi-C data revealed a widespread compartmentalization of the melon genome, segregating constitutive heterochromatin and euchromatin. Genome-wide comparative and evolutionary analysis between melon botanical groups identified Charentais mono genome increasingly more divergent from Harukei-3 (reticulatus), Payzawat (inodorus), and HS (ssp. agrestis) genomes. To assess the paleohistory of the Cucurbitaceae, we reconstructed the ancestral Cucurbitaceae karyotype and compared it to sequenced cucurbit genomes. In contrast to other species that experienced massive chromosome shuffling, melon has retained the ancestral genome structure. We provide comprehensive genomic resources and new insights in the diversity of melon horticultural groups and evolution of cucurbits.

14.
BMC Plant Biol ; 11: 111, 2011 Jul 28.
Article in English | MEDLINE | ID: mdl-21797998

ABSTRACT

BACKGROUND: A number of molecular marker linkage maps have been developed for melon (Cucumis melo L.) over the last two decades. However, these maps were constructed using different marker sets, thus, making comparative analysis among maps difficult. In order to solve this problem, a consensus genetic map in melon was constructed using primarily highly transferable anchor markers that have broad potential use for mapping, synteny, and comparative quantitative trait loci (QTL) analysis, increasing breeding effectiveness and efficiency via marker-assisted selection (MAS). RESULTS: Under the framework of the International Cucurbit Genomics Initiative (ICuGI, http://www.icugi.org), an integrated genetic map has been constructed by merging data from eight independent mapping experiments using a genetically diverse array of parental lines. The consensus map spans 1150 cM across the 12 melon linkage groups and is composed of 1592 markers (640 SSRs, 330 SNPs, 252 AFLPs, 239 RFLPs, 89 RAPDs, 15 IMAs, 16 indels and 11 morphological traits) with a mean marker density of 0.72 cM/marker. One hundred and ninety-six of these markers (157 SSRs, 32 SNPs, 6 indels and 1 RAPD) were newly developed, mapped or provided by industry representatives as released markers, including 27 SNPs and 5 indels from genes involved in the organic acid metabolism and transport, and 58 EST-SSRs. Additionally, 85 of 822 SSR markers contributed by Syngenta Seeds were included in the integrated map. In addition, 370 QTL controlling 62 traits from 18 previously reported mapping experiments using genetically diverse parental genotypes were also integrated into the consensus map. Some QTL associated with economically important traits detected in separate studies mapped to similar genomic positions. For example, independently identified QTL controlling fruit shape were mapped on similar genomic positions, suggesting that such QTL are possibly responsible for the phenotypic variability observed for this trait in a broad array of melon germplasm. CONCLUSIONS: Even though relatively unsaturated genetic maps in a diverse set of melon market types have been published, the integrated saturated map presented herein should be considered the initial reference map for melon. Most of the mapped markers contained in the reference map are polymorphic in diverse collection of germplasm, and thus are potentially transferrable to a broad array of genetic experimentation (e.g., integration of physical and genetic maps, colinearity analysis, map-based gene cloning, epistasis dissection, and marker-assisted selection).


Subject(s)
Chromosome Mapping , Crops, Agricultural/genetics , Cucumis melo/genetics , Quantitative Trait Loci , Chromosomes, Plant , Genetic Linkage , Genetic Markers , Genome, Plant , Polymorphism, Genetic , Sequence Analysis, DNA
15.
Plants (Basel) ; 10(10)2021 Oct 09.
Article in English | MEDLINE | ID: mdl-34685948

ABSTRACT

Replication cycles from most simple-stranded positive RNA viruses infecting plants involve endomembrane deformations. Recent published data revealed several interactions between viral proteins and plant proteins associated with vesicle formation and movement. These plant proteins belong to the COPI/II, SNARE, clathrin and ESCRT endomembrane trafficking mechanisms. In a few cases, variations of these plant proteins leading to virus resistance have been identified. In this review, we summarize all known interactions between these plant cell mechanisms and viruses and highlight strategies allowing fast identification of variant alleles for membrane-associated proteins.

16.
Trends Plant Sci ; 26(3): 260-271, 2021 03.
Article in English | MEDLINE | ID: mdl-33246889

ABSTRACT

Nectar is the most important reward offered by flowering plants to pollinators for pollination services. Since pollinator decline has emerged as a major threat for agriculture, and the food demand is growing globally, studying the nectar gland is of utmost importance. Although the genetic mechanisms that control the development of angiosperm flowers have been quite well understood for many years, the development and maturation of the nectar gland and the secretion of nectar in synchrony with the maturation of the sexual organs appears to be one of the flower's best-kept secrets. Here we review key findings controlling these processes. We also raise key questions that need to be addressed to develop crop ecological functions that take into consideration pollinators' needs.


Subject(s)
Plant Nectar , Pollination , Flowers/genetics , Pollination/genetics , Reproduction
17.
Theor Appl Genet ; 121(1): 9-20, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20180095

ABSTRACT

Aphis gossypii and Bemisia tabaci are severe hemipteran pests of melon crops and breeding for resistance to both insects is required to reduce pesticide use. Resistance was evaluated for its effect on behaviour and biotic potential of both hemipterans in a population of recombinant inbred lines (RILs) derived from the cross Védrantais x PI 161375. Insect variability was considered using two A. gossypii clones and two B. tabaci populations. Two additive QTLs affected the whiteflies. Four additive QTLs and two couples of epistatic QTLs affected the aphids. Amongst them, a major QTL affects both behaviour and biotic potential of A. gossypii and therefore a same R gene induces both antixenosis and antibiosis. This major QTL colocalizes with the Vat gene belonging to the NBS-LRR gene family. No loci affected both aphids and whiteflies contrary to what was observed for the Mi1.2 gene, a NBS-LRR gene in tomato. Original populations with different allelic compositions at QTLs affecting A. gossypii were built by one inter-crossing of RILs used for the mapping process. The genetic background was shown homogeneous between these populations what allowed validating QTLs and investigating the effect of allelic combinations at QTLs. Effects of QTLs were stronger than expected and some QTLs had a wider spectrum than expected. This strategy of validation appeared rapid and low cost.


Subject(s)
Aphids/pathogenicity , Chromosome Mapping , Cucurbitaceae , Hemiptera/pathogenicity , Quantitative Trait Loci , Animals , Crops, Agricultural/genetics , Crops, Agricultural/parasitology , Cucurbitaceae/genetics , Cucurbitaceae/parasitology , Female , Genetic Markers , Host-Parasite Interactions , Immunity, Innate/genetics , Solanum lycopersicum/genetics , Pest Control, Biological , Plant Diseases/parasitology
19.
Sci Rep ; 9(1): 15443, 2019 10 28.
Article in English | MEDLINE | ID: mdl-31659221

ABSTRACT

In angiosperms, sex determination leads to development of unisexual flowers. In Cucumis melo, development of unisexual male flowers results from the expression of the sex determination gene, CmWIP1, in carpel primordia. To bring new insight on the molecular mechanisms through which CmWIP1 leads to carpel abortion in male flowers, we used the yeast two-hybrid approach to look for CmWIP1-interacting proteins. We found that CmWIP1 physically interacts with an S2 bZIP transcription factor, CmbZIP48. We further determined the region mediating the interaction and showed that it involves the N-terminal part of CmWIP1. Using laser capture microdissection coupled with quantitative real-time gene expression analysis, we demonstrated that CmWIP1 and CmbZIP48 share a similar spatiotemporal expression pattern, providing the plant organ context for the CmWIP1-CmbZIP48 protein interaction. Using sex transition mutants, we demonstrated that the expression of the male promoting gene CmWIP1 correlates with the expression of CmbZIP48. Altogether, our data support a model in which the coexpression and the physical interaction of CmWIP1 and CmbZIP48 trigger carpel primordia abortion, leading to the development of unisexual male flowers.


Subject(s)
Cucumis melo , Flowers , Gene Expression Regulation, Plant , Plant Proteins , Transcription Factors , Cucumis melo/genetics , Cucumis melo/metabolism , Flowers/genetics , Flowers/metabolism , Plant Proteins/biosynthesis , Plant Proteins/genetics , Transcription Factors/biosynthesis , Transcription Factors/genetics
20.
Nat Genet ; 51(11): 1607-1615, 2019 11.
Article in English | MEDLINE | ID: mdl-31676864

ABSTRACT

Melon is an economically important fruit crop that has been cultivated for thousands of years; however, the genetic basis and history of its domestication still remain largely unknown. Here we report a comprehensive map of the genomic variation in melon derived from the resequencing of 1,175 accessions, which represent the global diversity of the species. Our results suggest that three independent domestication events occurred in melon, two in India and one in Africa. We detected two independent sets of domestication sweeps, resulting in diverse characteristics of the two subspecies melo and agrestis during melon breeding. Genome-wide association studies for 16 agronomic traits identified 208 loci significantly associated with fruit mass, quality and morphological characters. This study sheds light on the domestication history of melon and provides a valuable resource for genomics-assisted breeding of this important crop.


Subject(s)
Chromosome Mapping , Cucurbitaceae/genetics , Domestication , Genome, Plant , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Cucurbitaceae/classification , Cucurbitaceae/growth & development , Genome-Wide Association Study , Genomics , Phenotype , Plant Breeding
SELECTION OF CITATIONS
SEARCH DETAIL