Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Article in English | MEDLINE | ID: mdl-34548400

ABSTRACT

The Plasmodium falciparum proteasome is a potential antimalarial drug target. We have identified a series of amino-amide boronates that are potent and specific inhibitors of the P. falciparum 20S proteasome (Pf20S) ß5 active site and that exhibit fast-acting antimalarial activity. They selectively inhibit the growth of P. falciparum compared with a human cell line and exhibit high potency against field isolates of P. falciparum and Plasmodium vivax They have a low propensity for development of resistance and possess liver stage and transmission-blocking activity. Exemplar compounds, MPI-5 and MPI-13, show potent activity against P. falciparum infections in a SCID mouse model with an oral dosing regimen that is well tolerated. We show that MPI-5 binds more strongly to Pf20S than to human constitutive 20S (Hs20Sc). Comparison of the cryo-electron microscopy (EM) structures of Pf20S and Hs20Sc in complex with MPI-5 and Pf20S in complex with the clinically used anti-cancer agent, bortezomib, reveal differences in binding modes that help to explain the selectivity. Together, this work provides insights into the 20S proteasome in P. falciparum, underpinning the design of potent and selective antimalarial proteasome inhibitors.


Subject(s)
Boron Compounds/pharmacology , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Proteasome Endopeptidase Complex/chemistry , Proteasome Inhibitors/pharmacology , Administration, Oral , Animals , Boron Compounds/administration & dosage , Boron Compounds/chemistry , Catalytic Domain , Humans , Malaria, Falciparum/enzymology , Malaria, Falciparum/parasitology , Mice , Mice, Inbred NOD , Mice, SCID , Models, Molecular , Plasmodium falciparum/enzymology , Proteasome Inhibitors/administration & dosage , Proteasome Inhibitors/chemistry
2.
Antimicrob Agents Chemother ; 66(5): e0206521, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35416709

ABSTRACT

Current best practice for the treatment of malaria relies on short half-life artemisinins that are failing against emerging Kelch 13 mutant parasite strains. Here, we introduce a liposome-like self-assembly of a dimeric artesunate glycerophosphocholine conjugate (dAPC-S) as an amphiphilic prodrug for the short-lived antimalarial drug, dihydroartemisinin (DHA), with enhanced killing of Kelch 13 mutant artemisinin-resistant parasites. Cryo-electron microscopy (cryoEM) images and the dynamic light scattering (DLS) technique show that dAPC-S typically exhibits a multilamellar liposomal structure with a size distribution similar to that of the liposomes generated using thin-film dispersion (dAPC-L). Liquid chromatography-mass spectrometry (LCMS) was used to monitor the release of DHA. Sustainable release of DHA from dAPC-S and dAPC-L assemblies increased the effective dose and thus efficacy against Kelch 13 mutant artemisinin-resistant parasites in an in vitro assay. To better understand the enhanced killing effect, we investigated processes for deactivation of both the assemblies and DHA, including the roles of serum components and trace levels of iron. Analysis of parasite proteostasis pathways revealed that dAPC assemblies exert their activity via the same mechanism as DHA. We conclude that this easily prepared multilamellar liposome-like dAPC-S with long-acting efficacy shows potential for the treatment of severe and artemisinin-resistant malaria.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Malaria , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemisinins/pharmacology , Artemisinins/therapeutic use , Artesunate/pharmacology , Artesunate/therapeutic use , Cryoelectron Microscopy , Drug Resistance/genetics , Humans , Liposomes/chemistry , Malaria/drug therapy , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics
3.
J Cell Sci ; 129(2): 406-16, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26675237

ABSTRACT

Current first-line artemisinin antimalarials are threatened by the emergence of resistant Plasmodium falciparum. Decreased sensitivity is evident in the initial (early ring) stage of intraerythrocytic development, meaning that it is crucial to understand the action of artemisinins at this stage. Here, we examined the roles of iron (Fe) ions and haem in artemisinin activation in early rings using Fe ion chelators and a specific haemoglobinase inhibitor (E64d). Quantitative modelling of the antagonism accounted for its complex dependence on the chemical features of the artemisinins and on the drug exposure time, and showed that almost all artemisinin activity in early rings (>80%) is due to haem-mediated activation. The surprising implication that haemoglobin uptake and digestion is active in early rings is supported by identification of active haemoglobinases (falcipains) at this stage. Genetic down-modulation of the expression of the two main cysteine protease haemoglobinases, falcipains 2 and 3, renders early ring stage parasites resistant to artemisinins. This confirms the important role of haemoglobin-degrading falcipains in artemisinin activation, and shows that changes in the rate of artemisinin activation could mediate high-level artemisinin resistance.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Plasmodium falciparum/drug effects , Cysteine Endopeptidases/metabolism , Cysteine Proteinase Inhibitors/pharmacology , Drug Evaluation, Preclinical , Drug Resistance , Drug Synergism , Hemoglobins , Humans , Lethal Dose 50 , Leucine/analogs & derivatives , Leucine/pharmacology , Malaria, Falciparum/drug therapy , Plasmodium falciparum/enzymology , Proteolysis , Protozoan Proteins/metabolism
4.
PLoS Biol ; 13(4): e1002132, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25901609

ABSTRACT

Successful control of falciparum malaria depends greatly on treatment with artemisinin combination therapies. Thus, reports that resistance to artemisinins (ARTs) has emerged, and that the prevalence of this resistance is increasing, are alarming. ART resistance has recently been linked to mutations in the K13 propeller protein. We undertook a detailed kinetic analysis of the drug responses of K13 wild-type and mutant isolates of Plasmodium falciparum sourced from a region in Cambodia (Pailin). We demonstrate that ART treatment induces growth retardation and an accumulation of ubiquitinated proteins, indicative of a cellular stress response that engages the ubiquitin/proteasome system. We show that resistant parasites exhibit lower levels of ubiquitinated proteins and delayed onset of cell death, indicating an enhanced cell stress response. We found that the stress response can be targeted by inhibiting the proteasome. Accordingly, clinically used proteasome inhibitors strongly synergize ART activity against both sensitive and resistant parasites, including isogenic lines expressing mutant or wild-type K13. Synergy is also observed against Plasmodium berghei in vivo. We developed a detailed model of parasite responses that enables us to infer, for the first time, in vivo parasite clearance profiles from in vitro assessments of ART sensitivity. We provide evidence that the clinical marker of resistance (delayed parasite clearance) is an indirect measure of drug efficacy because of the persistence of unviable parasites with unchanged morphology in the circulation, and we suggest alternative approaches for the direct measurement of viability. Our model predicts that extending current three-day ART treatment courses to four days, or splitting the doses, will efficiently clear resistant parasite infections. This work provides a rationale for improving the detection of ART resistance in the field and for treatment strategies that can be employed in areas with ART resistance.


Subject(s)
Artemisinins/pharmacology , Plasmodium falciparum/physiology , Stress, Physiological , Animals , Dose-Response Relationship, Drug , Drug Resistance , Genome, Protozoan , Mutation , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics
5.
Protein Expr Purif ; 145: 85-93, 2018 05.
Article in English | MEDLINE | ID: mdl-29337198

ABSTRACT

Given the emergence of multi drug resistant Vibrio cholerae strains, there is an urgent need to characterize new anti-cholera targets. One such target is the enzyme dihydrodipicolinate synthase (DHDPS; EC 4.3.3.7), which catalyzes the first committed step in the diaminopimelate pathway. This pathway is responsible for the production of two key metabolites in bacteria and plants, namely meso-2,6-diaminopimelate and L-lysine. Here, we report the cloning, expression and purification of untagged and His-tagged recombinant DHDPS from V. cholerae (Vc-DHDPS) and provide comparative structural and kinetic analyses. Structural studies employing circular dichroism spectroscopy and analytical ultracentrifugation demonstrate that the recombinant enzymes are folded and exist as dimers in solution. Kinetic analyses of untagged and His-tagged Vc-DHDPS show that the enzymes are functional with specific activities of 75.6 U/mg and 112 U/mg, KM (pyruvate) of 0.14 mM and 0.15 mM, KM (L-aspartate-4-semialdehyde) of 0.08 mM and 0.09 mM, and kcat of 34 and 46 s-1, respectively. These results demonstrate there are no significant changes in the structure and function of Vc-DHDPS upon the addition of an N-terminal His tag and, hence, the tagged recombinant product is suitable for future studies, including screening for new inhibitors as potential anti-cholera agents. Additionally, a polyclonal antibody raised against untagged Vc-DHDPS is validated for specifically detecting recombinant and native forms of the enzyme.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression , Histidine/chemistry , Hydro-Lyases/metabolism , Vibrio cholerae/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cloning, Molecular , Escherichia coli/genetics , Hydro-Lyases/chemistry , Hydro-Lyases/genetics , Kinetics , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
6.
J Biol Chem ; 291(24): 12641-12657, 2016 Jun 10.
Article in English | MEDLINE | ID: mdl-27036939

ABSTRACT

CXCR4 is a G protein-coupled receptor with excellent potential as a therapeutic target for a range of clinical conditions, including stem cell mobilization, cancer prognosis and treatment, fibrosis therapy, and HIV infection. We report here the development of a fully human single-domain antibody-like scaffold termed an "i-body," the engineering of which produces an i-body library possessing a long complementarity determining region binding loop, and the isolation and characterization of a panel of i-bodies with activity against human CXCR4. The CXCR4-specific i-bodies show antagonistic activity in a range of in vitro and in vivo assays, including inhibition of HIV infection, cell migration, and leukocyte recruitment but, importantly, not the mobilization of hematopoietic stem cells. Epitope mapping of the three CXCR4 i-bodies AM3-114, AM4-272, and AM3-523 revealed binding deep in the binding pocket of the receptor.


Subject(s)
Receptors, CXCR4/antagonists & inhibitors , Receptors, CXCR4/immunology , Single-Domain Antibodies/immunology , Single-Domain Antibodies/pharmacology , Animals , Antibody Specificity/immunology , Binding Sites/immunology , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/immunology , Cells, Cultured , Crystallography, X-Ray , Epitope Mapping , HEK293 Cells , HIV Infections/immunology , HIV Infections/prevention & control , HL-60 Cells , Humans , Jurkat Cells , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Models, Molecular , Protein Binding/immunology , Protein Domains , Receptors, CXCR4/metabolism , Single-Domain Antibodies/chemistry , Surface Plasmon Resonance
7.
Article in English | MEDLINE | ID: mdl-28993326

ABSTRACT

Artemisinin resistance constitutes a major threat to the continued success of control programs for malaria, particularly in light of developing resistance to partner drugs. Improving our understanding of how artemisinin-based drugs act and how resistance manifests is essential for the optimization of dosing regimens and the development of strategies to prolong the life span of current first-line treatment options. Recent short-drug-pulse in vitro experiments have shown that the parasite killing rate depends not only on drug concentration but also the exposure time, challenging the standard pharmacokinetic-pharmacodynamic (PK-PD) paradigm in which the killing rate depends only on drug concentration. Here, we introduce a dynamic stress model of parasite killing and show through application to 3D7 laboratory strain viability data that the inclusion of a time-dependent parasite stress response dramatically improves the model's explanatory power compared to that of a traditional PK-PD model. Our model demonstrates that the previously reported hypersensitivity of early-ring-stage parasites of the 3D7 strain to dihydroartemisinin compared to other parasite stages is due primarily to a faster development of stress rather than a higher maximum achievable killing rate. We also perform in vivo simulations using the dynamic stress model and demonstrate that the complex temporal features of artemisinin action observed in vitro have a significant impact on predictions for in vivo parasite clearance. Given the important role that PK-PD models play in the design of clinical trials for the evaluation of alternative drug dosing regimens, our novel model will contribute to the further development and improvement of antimalarial therapies.


Subject(s)
Antimalarials/therapeutic use , Artemisinins/therapeutic use , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Stress, Physiological/drug effects , Drug Resistance/physiology , Humans , Models, Biological
8.
J Biol Chem ; 288(43): 31115-26, 2013 Oct 25.
Article in English | MEDLINE | ID: mdl-24019519

ABSTRACT

The misuse of antibiotics during past decades has led to pervasive antibiotic resistance in bacteria. Hence, there is an urgent need for the development of new and alternative approaches to combat bacterial infections. In most bacterial pathogens the expression of virulence is tightly regulated at the transcriptional level. Therefore, targeting pathogens with drugs that interfere with virulence gene expression offers an effective alternative to conventional antimicrobial chemotherapy. Many Gram-negative intestinal pathogens produce AraC-like proteins that control the expression of genes required for infection. In this study we investigated the prototypical AraC-like virulence regulator, RegA, from the mouse attaching and effacing pathogen, Citrobacter rodentium, as a potential drug target. By screening a small molecule chemical library and chemical optimization, we identified two compounds that specifically inhibited the ability of RegA to activate its target promoters and thus reduced expression of a number of proteins required for virulence. Biophysical, biochemical, genetic, and computational analyses indicated that the more potent of these two compounds, which we named regacin, disrupts the DNA binding capacity of RegA by interacting with amino acid residues within a conserved region of the DNA binding domain. Oral administration of regacin to mice, commencing 15 min before or 12 h after oral inoculation with C. rodentium, caused highly significant attenuation of intestinal colonization by the mouse pathogen comparable to that of an isogenic regA-deletion mutant. These findings demonstrate that chemical inhibition of the DNA binding domains of transcriptional regulators is a viable strategy for the development of antimicrobial agents that target bacterial pathogens.


Subject(s)
Anti-Bacterial Agents/pharmacology , AraC Transcription Factor/antagonists & inhibitors , Citrobacter rodentium/metabolism , Citrobacter rodentium/pathogenicity , Enterobacteriaceae Infections/metabolism , Virulence Factors/antagonists & inhibitors , Animals , Anti-Bacterial Agents/chemistry , AraC Transcription Factor/genetics , AraC Transcription Factor/metabolism , Citrobacter rodentium/genetics , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae Infections/genetics , Enterobacteriaceae Infections/pathology , Gene Deletion , Gene Expression Regulation, Bacterial/drug effects , HeLa Cells , Humans , Intestines/microbiology , Intestines/pathology , Mice , Protein Structure, Tertiary , Virulence Factors/genetics , Virulence Factors/metabolism
9.
Proteins ; 82(9): 1869-83, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24677246

ABSTRACT

Agrobacterium tumefaciens is a Gram-negative soil-borne bacterium that causes Crown Gall disease in many economically important crops. The absence of a suitable chemical treatment means there is a need to discover new anti-Crown Gall agents and also characterize bona fide drug targets. One such target is dihydrodipicolinate synthase (DHDPS), a homo-tetrameric enzyme that catalyzes the committed step in the metabolic pathway yielding meso-diaminopimelate and lysine. Interestingly, there are 10 putative DHDPS genes annotated in the A. tumefaciens genome, including three whose structures have recently been determined (PDB IDs: 3B4U, 2HMC, and 2R8W). However, we show using quantitative enzyme kinetic assays that nine of the 10 dapA gene products, including 3B4U, 2HMC, and 2R8W, lack DHDPS function in vitro. A sequence alignment showed that the product of the dapA7 gene contains all of the conserved residues known to be important for DHDPS catalysis and allostery. This gene was cloned and the recombinant product expressed and purified. Our studies show that the purified enzyme (i) possesses DHDPS enzyme activity, (ii) is allosterically inhibited by lysine, and (iii) adopts the canonical homo-tetrameric structure in both solution and the crystal state. This study describes for the first time the structure, function and allostery of the bona fide DHDPS from A. tumefaciens, which offers insight into the rational design of pesticide agents for combating Crown Gall disease.


Subject(s)
Agrobacterium tumefaciens/enzymology , Catalytic Domain , Hydro-Lyases/ultrastructure , Agrobacterium tumefaciens/genetics , Amino Acid Sequence , Base Sequence , Cloning, Molecular , Crystallography, X-Ray , Hydro-Lyases/biosynthesis , Hydro-Lyases/genetics , Plant Tumors/microbiology , Protein Structure, Secondary , Sequence Alignment , Sequence Analysis, DNA
10.
Biochem J ; 456(3): 323-35, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24070258

ABSTRACT

Following its secretion from cytotoxic lymphocytes into the immune synapse, perforin binds to target cell membranes through its Ca(2+)-dependent C2 domain. Membrane-bound perforin then forms pores that allow passage of pro-apoptopic granzymes into the target cell. In the present study, structural and biochemical studies reveal that Ca(2+) binding triggers a conformational change in the C2 domain that permits four key hydrophobic residues to interact with the plasma membrane. However, in contrast with previous suggestions, these movements and membrane binding do not trigger irreversible conformational changes in the pore-forming MACPF (membrane attack complex/perforin-like) domain, indicating that subsequent monomer-monomer interactions at the membrane surface are required for perforin pore formation.


Subject(s)
Calcium/metabolism , Cell Membrane/metabolism , Phospholipids/metabolism , Pore Forming Cytotoxic Proteins/metabolism , Animals , Calcium/chemistry , Cell Membrane/chemistry , Cell Membrane/genetics , Humans , Jurkat Cells , K562 Cells , Mice , Mice, Knockout , Phospholipids/chemistry , Pore Forming Cytotoxic Proteins/chemistry , Pore Forming Cytotoxic Proteins/genetics , Protein Structure, Tertiary , Rats
11.
Nat Commun ; 15(1): 937, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38297033

ABSTRACT

Malaria poses an enormous threat to human health. With ever increasing resistance to currently deployed drugs, breakthrough compounds with novel mechanisms of action are urgently needed. Here, we explore pyrimidine-based sulfonamides as a new low molecular weight inhibitor class with drug-like physical parameters and a synthetically accessible scaffold. We show that the exemplar, OSM-S-106, has potent activity against parasite cultures, low mammalian cell toxicity and low propensity for resistance development. In vitro evolution of resistance using a slow ramp-up approach pointed to the Plasmodium falciparum cytoplasmic asparaginyl-tRNA synthetase (PfAsnRS) as the target, consistent with our finding that OSM-S-106 inhibits protein translation and activates the amino acid starvation response. Targeted mass spectrometry confirms that OSM-S-106 is a pro-inhibitor and that inhibition of PfAsnRS occurs via enzyme-mediated production of an Asn-OSM-S-106 adduct. Human AsnRS is much less susceptible to this reaction hijacking mechanism. X-ray crystallographic studies of human AsnRS in complex with inhibitor adducts and docking of pro-inhibitors into a model of Asn-tRNA-bound PfAsnRS provide insights into the structure-activity relationship and the selectivity mechanism.


Subject(s)
Antimalarials , Aspartate-tRNA Ligase , Animals , Humans , Plasmodium falciparum/genetics , Asparagine/metabolism , Aspartate-tRNA Ligase/genetics , RNA, Transfer, Amino Acyl/metabolism , Antimalarials/pharmacology , Mammals/genetics
12.
J Biol Chem ; 287(24): 19961-72, 2012 Jun 08.
Article in English | MEDLINE | ID: mdl-22511788

ABSTRACT

The plant defensin, NaD1, from the flowers of Nicotiana alata, is a member of a family of cationic peptides that displays growth inhibitory activity against several filamentous fungi, including Fusarium oxysporum. The antifungal activity of NaD1 has been attributed to its ability to permeabilize membranes; however, the molecular basis of this function remains poorly defined. In this study, we have solved the structure of NaD1 from two crystal forms to high resolution (1.4 and 1.58 Å, respectively), both of which contain NaD1 in a dimeric configuration. Using protein cross-linking experiments as well as small angle x-ray scattering analysis and analytical ultracentrifugation, we show that NaD1 forms dimers in solution. The structural studies identified Lys(4) as critical in formation of the NaD1 dimer. This was confirmed by site-directed mutagenesis of Lys(4) that resulted in substantially reduced dimer formation. Significantly, the reduced ability of the Lys(4) mutant to dimerize correlated with diminished antifungal activity. These data demonstrate the importance of dimerization in NaD1 function and have implications for the use of defensins in agribiotechnology applications such as enhancing plant crop protection against fungal pathogens.


Subject(s)
Anti-Infective Agents/chemistry , Defensins/chemistry , Fusarium , Nicotiana/chemistry , Plant Proteins/chemistry , Protein Multimerization , Anti-Infective Agents/metabolism , Crystallography, X-Ray , Defensins/metabolism , Mutagenesis, Site-Directed , Plant Diseases/microbiology , Plant Proteins/metabolism , Protein Structure, Quaternary , Nicotiana/metabolism , Nicotiana/microbiology
13.
Plant Mol Biol ; 81(4-5): 431-46, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23354837

ABSTRACT

Lysine is one of the most limiting amino acids in plants and its biosynthesis is carefully regulated through inhibition of the first committed step in the pathway catalyzed by dihydrodipicolinate synthase (DHDPS). This is mediated via a feedback mechanism involving the binding of lysine to the allosteric cleft of DHDPS. However, the precise allosteric mechanism is yet to be defined. We present a thorough enzyme kinetic and thermodynamic analysis of lysine inhibition of DHDPS from the common grapevine, Vitis vinifera (Vv). Our studies demonstrate that lysine binding is both tight (relative to bacterial DHDPS orthologs) and cooperative. The crystal structure of the enzyme bound to lysine (2.4 Å) identifies the allosteric binding site and clearly shows a conformational change of several residues within the allosteric and active sites. Molecular dynamics simulations comparing the lysine-bound (PDB ID 4HNN) and lysine free (PDB ID 3TUU) structures show that Tyr132, a key catalytic site residue, undergoes significant rotational motion upon lysine binding. This suggests proton relay through the catalytic triad is attenuated in the presence of lysine. Our study reveals for the first time the structural mechanism for allosteric inhibition of DHDPS from the common grapevine.


Subject(s)
Computational Biology , Hydro-Lyases/antagonists & inhibitors , Hydro-Lyases/chemistry , Lysine/pharmacology , Vitis/enzymology , Allosteric Regulation/drug effects , Allosteric Site , Bacteria/enzymology , Biosynthetic Pathways/drug effects , Calorimetry , Crystallography, X-Ray , Enzyme Stability/drug effects , Hydro-Lyases/metabolism , Kinetics , Lysine/biosynthesis , Molecular Dynamics Simulation , Protein Structure, Quaternary , Protein Structure, Secondary , Pyruvic Acid/metabolism , Solutions , Thermodynamics , Vitis/drug effects
14.
Article in English | MEDLINE | ID: mdl-24100576

ABSTRACT

Dihydrodipicolinate synthase (DHDPS) catalyses the rate-limiting step in the biosynthesis of meso-diaminopimelate and lysine. Here, the cloning, expression, purification and crystallization of DHDPS from the intracellular pathogen Legionella pneumophila are described. Crystals grown in the presence of high-molecular-weight PEG precipitant and magnesium chloride were found to diffract beyond 1.65 Šresolution. The crystal lattice belonged to the hexagonal space group P6122, with unit-cell parameters a=b=89.31, c=290.18 Å, and contained two molecules in the asymmetric unit. The crystal structure was determined by molecular replacement using a single chain of Pseudomonas aeruginosa DHDPS as the search model.


Subject(s)
Hydro-Lyases/chemistry , Intracellular Space/parasitology , Legionella pneumophila/enzymology , Cloning, Molecular , Crystallization , Crystallography, X-Ray , Electrophoresis, Polyacrylamide Gel , Hydro-Lyases/isolation & purification , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Spectrometry, Mass, Electrospray Ionization
15.
Res Sq ; 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37546892

ABSTRACT

Malaria poses an enormous threat to human health. With ever increasing resistance to currently deployed drugs, breakthrough compounds with novel mechanisms of action are urgently needed. Here, we explore pyrimidine-based sulfonamides as a new low molecular weight inhibitor class with drug-like physical parameters and a synthetically accessible scaffold. We show that the exemplar, OSM-S-106, has potent activity against parasite cultures, low mammalian cell toxicity and low propensity for resistance development. In vitro evolution of resistance using a slow ramp-up approach pointed to the Plasmodium falciparum cytoplasmic asparaginyl tRNA synthetase (PfAsnRS) as the target, consistent with our finding that OSM-S-106 inhibits protein translation and activates the amino acid starvation response. Targeted mass spectrometry confirms that OSM-S-106 is a pro-inhibitor and that inhibition of PfAsnRS occurs via enzyme-mediated production of an Asn-OSM-S-106 adduct. Human AsnRS is much less susceptible to this reaction hijacking mechanism. X-ray crystallographic studies of human AsnRS in complex with inhibitor adducts and docking of pro-inhibitors into a model of Asn-tRNA-bound PfAsnRS provide insights into the structure activity relationship and the selectivity mechanism.

16.
Protein Expr Purif ; 85(1): 66-76, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22776412

ABSTRACT

Given the rise of multi drug resistant bacterial strains, such as methicillin-resistant Staphylococcus aureus (MRSA), there is an urgent need to discover new antimicrobial agents. A validated but as yet unexplored target for new antibiotics is dihydrodipicolinate reductase (DHDPR), an enzyme that catalyzes the second step of the lysine biosynthesis pathway in bacteria. We report here the cloning, expression and purification of N-terminally his-tagged recombinant DHDPR from MRSA (6H-MRSA-DHDPR) and compare its secondary and quaternary structure with the wild type (MRSA-DHDPR) enzyme. Comparative analyses demonstrate that recombinant 6H-MRSA-DHDPR is folded and adopts the native tetrameric quaternary structure in solution. Furthermore, kinetic studies show 6H-MRSA-DHDPR is functional, displaying parameters for K(m)(NADH) of 6.0 µM, K(m)(DHDP) of 22 µM, and k(cat) of 21s(-1), which are similar to those reported for the native enzyme. The solution properties and stability of the 6H-MRSA-DHDPR enzyme are also reported in varying physicochemical conditions.


Subject(s)
Dihydrodipicolinate Reductase/chemistry , Dihydrodipicolinate Reductase/metabolism , Methicillin-Resistant Staphylococcus aureus/enzymology , Cloning, Molecular , Dihydrodipicolinate Reductase/genetics , Dihydrodipicolinate Reductase/isolation & purification , Enzyme Stability , Histidine/chemistry , Histidine/genetics , Histidine/isolation & purification , Histidine/metabolism , Kinetics , Methicillin-Resistant Staphylococcus aureus/chemistry , Methicillin-Resistant Staphylococcus aureus/genetics , Osmolar Concentration , Protein Conformation , Protein Folding , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
17.
Article in English | MEDLINE | ID: mdl-22949190

ABSTRACT

Dihydrodipicolinate synthase (DHDPS) catalyzes the first committed step of the lysine-biosynthesis pathway in bacteria, plants and some fungi. This study describes the cloning, expression, purification and crystallization of DHDPS (NP_354047.1) from the plant pathogen Agrobacterium tumefaciens (AgT-DHDPS). Enzyme-kinetics studies demonstrate that AgT-DHDPS possesses DHDPS activity in vitro. Crystals of AgT-DHDPS were grown in the unliganded form and in forms with substrate bound and with substrate plus allosteric inhibitor (lysine) bound. X-ray diffraction data sets were subsequently collected to a maximum resolution of 1.40 Å. Determination of the structure with and without substrate and inhibitor will offer insight into the design of novel pesticide agents.


Subject(s)
Agrobacterium tumefaciens/enzymology , Hydro-Lyases/chemistry , Amino Acid Sequence , Cloning, Molecular , Crystallization , Gene Expression , Hydro-Lyases/genetics , Hydro-Lyases/isolation & purification , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/isolation & purification , Ligands , Models, Molecular , Molecular Sequence Data , Protein Structure, Quaternary , Sequence Alignment
18.
Biochem J ; 434(3): 399-413, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21162712

ABSTRACT

An improved understanding of the roles of protein kinases in intracellular signalling and disease progression has driven significant advances in protein kinase inhibitor discovery. Peptide inhibitors that target the kinase protein substrate-binding site have continued to attract attention. In the present paper, we describe a novel JNK (c-Jun N-terminal kinase) inhibitory peptide PYC71N, which inhibits JNK activity in vitro towards a range of recombinant protein substrates including the transcription factors c-Jun, ATF2 (activating trancription factor 2) and Elk1, and the microtubule regulatory protein DCX (doublecortin). Analysis of cell culture studies confirmed the actions of a cell-permeable version of PYC71 to inhibit c-Jun phosphorylation during acute hyperosmotic stress. The analysis of the in vitro data for the kinetics of this inhibition indicated a substrate-inhibitor complex-mediated inhibition of JNK by PYC71N. Alanine-scanning replacement studies revealed the importance of two residues (PYC71N Phe9 or Phe11 within an FXF motif) for JNK inhibition. The importance of these residues was confirmed through interaction studies showing that each change decreased interaction of the peptide with c-Jun. Furthermore, PYC71N interacted with both non-phosphorylated (inactive) JNK1 and the substrate c-Jun, but did not recognize active JNK1. In contrast, a previously characterized JNK-inhibitory peptide TIJIP [truncated inhibitory region of JIP (JNK-interacting protein)], showed stronger interaction with active JNK1. Competition binding analysis confirmed that PYC71N inhibited the interaction of c-Jun with JNK1. Taken together, the results of the present study define novel properties of the PYC71N peptide as well as differences from the characterized TIJIP, and highlight the value of these peptides to probe the biochemistry of JNK-mediated substrate interactions and phosphorylation.


Subject(s)
JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , JNK Mitogen-Activated Protein Kinases/chemistry , Peptide Fragments/chemistry , Amino Acid Motifs , Amino Acid Substitution , Animals , Doublecortin Protein , Isoenzymes/antagonists & inhibitors , Isoenzymes/chemistry , Kinetics , Mitogen-Activated Protein Kinase 8/antagonists & inhibitors , Mitogen-Activated Protein Kinase 8/chemistry , Mitogen-Activated Protein Kinase 9/antagonists & inhibitors , Mitogen-Activated Protein Kinase 9/chemistry , PC12 Cells , Peptide Fragments/pharmacology , Phosphorylation , Protein Binding , Proto-Oncogene Proteins c-jun/metabolism , Rats , Recombinant Proteins/chemistry
19.
J Biol Chem ; 285(8): 5188-95, 2010 Feb 19.
Article in English | MEDLINE | ID: mdl-19948665

ABSTRACT

Bacillus anthracis is a gram-positive spore-forming bacterium that causes anthrax. With the increased threat of anthrax in biowarfare, there is an urgent need to characterize new antimicrobial targets from B. anthracis. One such target is dihydrodipicolinate synthase (DHDPS), which catalyzes the committed step in the pathway yielding meso-diaminopimelate and lysine. In this study, we employed CD spectroscopy to demonstrate that the thermostability of DHDPS from B. anthracis (Ba-DHDPS) is significantly enhanced in the presence of the substrate, pyruvate. Analytical ultracentrifugation studies show that the tetramer-dimer dissociation constant of the enzyme is 3-fold tighter in the presence of pyruvate compared with the apo form. To examine the significance of this substrate-mediated stabilization phenomenon, a dimeric mutant of Ba-DHDPS (L170E/G191E) was generated and shown to have markedly reduced activity compared with the wild-type tetramer. This demonstrates that the substrate, pyruvate, stabilizes the active form of the enzyme. We next determined the high resolution (2.15 A) crystal structure of Ba-DHDPS in complex with pyruvate (3HIJ) and compared this to the apo structure (1XL9). Structural analyses show that there is a significant (91 A(2)) increase in buried surface area at the tetramerization interface of the pyruvate-bound structure. This study describes a new mechanism for stabilization of the active oligomeric form of an antibiotic target from B. anthracis and reveals an "Achilles heel" that can be exploited in structure-based drug design.


Subject(s)
Anthrax/enzymology , Bacillus anthracis/enzymology , Bacterial Proteins/chemistry , Hydro-Lyases/chemistry , Pyruvic Acid/chemistry , Amino Acid Substitution , Anthrax/drug therapy , Anthrax/genetics , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/therapeutic use , Bacillus anthracis/genetics , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biological Warfare Agents , Diaminopimelic Acid/chemistry , Diaminopimelic Acid/metabolism , Drug Design , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/therapeutic use , Hydro-Lyases/antagonists & inhibitors , Hydro-Lyases/genetics , Hydro-Lyases/metabolism , Lysine/chemistry , Lysine/genetics , Lysine/metabolism , Mutation, Missense , Protein Structure, Quaternary/physiology , Pyruvic Acid/metabolism
20.
Arch Biochem Biophys ; 512(2): 167-74, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21704017

ABSTRACT

Given the rapid rise in antibiotic resistance, including methicillin resistance in Staphylococcus aureus (MRSA), there is an urgent need to characterize novel drug targets. Enzymes of the lysine biosynthesis pathway in bacteria are examples of such targets, including dihydrodipicolinate reductase (DHDPR, E.C. 1.3.1.26), which is the product of an essential bacterial gene. DHDPR catalyzes the NAD(P)H-dependent reduction of dihydrodipicolinate (DHDP) to tetrahydrodipicolinate (THDP) in the lysine biosynthesis pathway. We show that MRSA-DHDPR exhibits a unique nucleotide specificity utilizing NADPH (K(m)=12µM) as a cofactor more effectively than NADH (K(m)=26µM). However, the enzyme is inhibited by high concentrations of DHDP when using NADPH as a cofactor, but not with NADH. Isothermal titration calorimetry (ITC) studies reveal that MRSA-DHDPR has ∼20-fold greater binding affinity for NADPH (K(d)=1.5µM) relative to NADH (K(d)=29µM). Kinetic investigations in tandem with ITC studies show that the enzyme follows a compulsory-order ternary complex mechanism; with inhibition by DHDP through the formation of a nonproductive ternary complex with NADP(+). This work describes, for the first time, the catalytic mechanism and cofactor preference of MRSA-DHDPR, and provides insight into rational approaches to inhibiting this valid antimicrobial target.


Subject(s)
Dihydrodipicolinate Reductase/metabolism , Methicillin-Resistant Staphylococcus aureus/enzymology , Amino Acid Sequence , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Calorimetry , Catalysis , Dihydrodipicolinate Reductase/antagonists & inhibitors , Dihydrodipicolinate Reductase/chemistry , Dihydrodipicolinate Reductase/genetics , Escherichia coli/enzymology , Escherichia coli/genetics , Kinetics , Methicillin-Resistant Staphylococcus aureus/genetics , Molecular Sequence Data , NAD/metabolism , NADP/metabolism , Sequence Homology, Amino Acid , Substrate Specificity , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL