Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Brain ; 145(3): 925-938, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35355055

ABSTRACT

Focal malformations of cortical development including focal cortical dysplasia, hemimegalencephaly and megalencephaly, are a spectrum of neurodevelopmental disorders associated with brain overgrowth, cellular and architectural dysplasia, intractable epilepsy, autism and intellectual disability. Importantly, focal cortical dysplasia is the most common cause of focal intractable paediatric epilepsy. Gain and loss of function variants in the PI3K-AKT-MTOR pathway have been identified in this spectrum, with variable levels of mosaicism and tissue distribution. In this study, we performed deep molecular profiling of common PI3K-AKT-MTOR pathway variants in surgically resected tissues using droplet digital polymerase chain reaction (ddPCR), combined with analysis of key phenotype data. A total of 159 samples, including 124 brain tissue samples, were collected from 58 children with focal malformations of cortical development. We designed an ultra-sensitive and highly targeted molecular diagnostic panel using ddPCR for six mutational hotspots in three PI3K-AKT-MTOR pathway genes, namely PIK3CA (p.E542K, p.E545K, p.H1047R), AKT3 (p.E17K) and MTOR (p.S2215F, p.S2215Y). We quantified the level of mosaicism across all samples and correlated genotypes with key clinical, neuroimaging and histopathological data. Pathogenic variants were identified in 17 individuals, with an overall molecular solve rate of 29.31%. Variant allele fractions ranged from 0.14 to 22.67% across all mutation-positive samples. Our data show that pathogenic MTOR variants are mostly associated with focal cortical dysplasia, whereas pathogenic PIK3CA variants are more frequent in hemimegalencephaly. Further, the presence of one of these hotspot mutations correlated with earlier onset of epilepsy. However, levels of mosaicism did not correlate with the severity of the cortical malformation by neuroimaging or histopathology. Importantly, we could not identify these mutational hotspots in other types of surgically resected epileptic lesions (e.g. polymicrogyria or mesial temporal sclerosis) suggesting that PI3K-AKT-MTOR mutations are specifically causal in the focal cortical dysplasia-hemimegalencephaly spectrum. Finally, our data suggest that ultra-sensitive molecular profiling of the most common PI3K-AKT-MTOR mutations by targeted sequencing droplet digital polymerase chain reaction is an effective molecular approach for these disorders with a good diagnostic yield when paired with neuroimaging and histopathology.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Hemimegalencephaly , Malformations of Cortical Development , Brain/pathology , Child , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/metabolism , Drug Resistant Epilepsy/metabolism , Epilepsy/genetics , Hemimegalencephaly/genetics , Hemimegalencephaly/metabolism , Hemimegalencephaly/pathology , Humans , Malformations of Cortical Development/diagnostic imaging , Malformations of Cortical Development/genetics , Mutation , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
2.
J Craniofac Surg ; 23(3): 664-8, 2012 May.
Article in English | MEDLINE | ID: mdl-22565872

ABSTRACT

Although Muenke syndrome is the most common syndromic form of craniosynostosis, the frequency of oral and palatal anomalies including high-arched palate, cleft lip with or without cleft palate has not been documented in a patient series of Muenke syndrome to date. Further, to our knowledge, cleft lip and palate has not been reported yet in a patient with Muenke syndrome (a previous patient with isolated cleft palate has been reported). This study sought to evaluate the frequency of palatal anomalies in patients with Muenke syndrome through both a retrospective investigation and literature review. A total of 21 patients who met criteria for this study were included in the retrospective review. Fifteen patients (71%) had a structural anomaly of the palate. Cleft lip and palate was present in 1 patient (5%). Other palatal findings included high-arched hard palate in 14 patients (67%). Individuals with Muenke syndrome have the lowest incidence of cleft palate among the most common craniosynostosis syndromes. However, high-arched palate in Muenke syndrome is common and may warrant clinical attention, as these individuals are more susceptible to recurrent chronic otitis media with effusion, dental malocclusion, and hearing loss.


Subject(s)
Cleft Lip/epidemiology , Cleft Palate/epidemiology , Craniosynostoses/epidemiology , Female , Hearing Loss/epidemiology , Humans , Incidence , Male , Malocclusion/epidemiology , Otitis Media with Effusion/epidemiology , Palate, Hard/abnormalities , Retrospective Studies , United States/epidemiology
3.
Case Rep Med ; 2018: 4319818, 2018.
Article in English | MEDLINE | ID: mdl-29770149

ABSTRACT

Gastrointestinal ganglioneuromatous proliferations are rare, most often found in the colon, and are three types: polypoid ganglioneuromas, ganglioneuromatous polyposis, and diffuse ganglioneuromatosis. We present a case of diffuse ganglioneuromatosis in the posterior gastric wall in a nine-year-old female. To our knowledge, this is the first reported case of diffuse ganglioneuromatosis located in the stomach. Only six cases of gastric ganglioneuromatous proliferations have previously been reported, two in English and none were diffuse ganglioneuromatosis. A diagnosis of diffuse ganglioneuromatosis is relevant for patient care because, unlike sporadic polypoid ganglioneuromas or ganglioneuromatous polyposis, most are syndromic. Diffuse ganglioneuromatosis is commonly associated with neurofibromatosis type 1, multiple endocrine neoplasia type 2b, and Cowden Syndrome, one of the phenotypes of PTEN hamartoma tumor syndrome. The patient had the noted gastric diffuse ganglioneuromatosis, as well as other major and minor criteria for Cowden syndrome. Genetic testing revealed a novel frameshift mutation in the PTEN gene in the patient, her father, paternal aunt, and the aunt's son who is a paternal first cousin of the patient.

4.
Am J Med Genet A ; 143A(24): 3204-15, 2007 Dec 15.
Article in English | MEDLINE | ID: mdl-18000976

ABSTRACT

Muenke syndrome is an autosomal dominant disorder characterized by coronal suture craniosynostosis, hearing loss, developmental delay, carpal and tarsal fusions, and the presence of the Pro250Arg mutation in the FGFR3 gene. Reduced penetrance and variable expressivity contribute to the wide spectrum of clinical findings in Muenke syndrome. To better define the clinical features of this syndrome, we initiated a study of the natural history of Muenke syndrome. To date, we have conducted a standardized evaluation of nine patients with a confirmed Pro250Arg mutation in FGFR3. We reviewed audiograms from an additional 13 patients with Muenke syndrome. A majority of the patients (95%) demonstrated a mild-to-moderate, low frequency sensorineural hearing loss. This pattern of hearing loss was not previously recognized as characteristic of Muenke syndrome. We also report on feeding and swallowing difficulties in children with Muenke syndrome. Combining 312 reported cases of Muenke syndrome with data from the nine NIH patients, we found that females with the Pro250Arg mutation were significantly more likely to be reported with craniosynostosis than males (P < 0.01). Based on our findings, we propose that the clinical management should include audiometric and developmental assessment in addition to standard clinical care and appropriate genetic counseling.


Subject(s)
Craniosynostoses/diagnosis , Craniosynostoses/genetics , Hearing Loss, Sensorineural/genetics , Receptor, Fibroblast Growth Factor, Type 3/genetics , Adult , Aged , Audiometry/methods , Child, Preschool , Developmental Disabilities/diagnosis , Developmental Disabilities/genetics , Female , Hearing Loss, Sensorineural/diagnosis , Humans , Infant , Male , Mutation , Pedigree , Phenotype , Sex Factors , Speech Disorders/diagnosis , Speech Disorders/genetics , Syndrome , Tomography, X-Ray Computed/methods
5.
Neurology ; 86(23): 2171-8, 2016 06 07.
Article in English | MEDLINE | ID: mdl-27164704

ABSTRACT

OBJECTIVE: To determine the phenotypic spectrum caused by mutations in GRIN1 encoding the NMDA receptor subunit GluN1 and to investigate their underlying functional pathophysiology. METHODS: We collected molecular and clinical data from several diagnostic and research cohorts. Functional consequences of GRIN1 mutations were investigated in Xenopus laevis oocytes. RESULTS: We identified heterozygous de novo GRIN1 mutations in 14 individuals and reviewed the phenotypes of all 9 previously reported patients. These 23 individuals presented with a distinct phenotype of profound developmental delay, severe intellectual disability with absent speech, muscular hypotonia, hyperkinetic movement disorder, oculogyric crises, cortical blindness, generalized cerebral atrophy, and epilepsy. Mutations cluster within transmembrane segments and result in loss of channel function of varying severity with a dominant-negative effect. In addition, we describe 2 homozygous GRIN1 mutations (1 missense, 1 truncation), each segregating with severe neurodevelopmental phenotypes in consanguineous families. CONCLUSIONS: De novo GRIN1 mutations are associated with severe intellectual disability with cortical visual impairment as well as oculomotor and movement disorders being discriminating phenotypic features. Loss of NMDA receptor function appears to be the underlying disease mechanism. The identification of both heterozygous and homozygous mutations blurs the borders of dominant and recessive inheritance of GRIN1-associated disorders.


Subject(s)
Mutation , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Cohort Studies , Consanguinity , Heterozygote , Homozygote , Humans , Intellectual Disability/genetics , Intellectual Disability/metabolism , Movement Disorders/genetics , Movement Disorders/metabolism , Oocytes , Phenotype , Seizures/genetics , Seizures/metabolism , Xenopus laevis
6.
Am J Med Genet A ; 140(20): 2216-22, 2006 Oct 15.
Article in English | MEDLINE | ID: mdl-16955414

ABSTRACT

Patients with mitochondrial disease usually manifest multisystemic dysfunction with a broad clinical spectrum. When the tests for common mitochondrial DNA (mtDNA) point mutations are negative and the mtDNA defects are still hypothesized, it is necessary to screen the entire mitochondrial genome for unknown mutations in order to confirm the diagnosis. We report an 8-year-old girl who had a long history of ragged-red fiber myopathy, short stature, and deafness, who ultimately developed renal failure and fatal cardiac dysfunction. Respiratory chain enzyme analysis on muscle biopsy revealed deficiency in complexes I, II/III, and IV. Whole mitochondrial genome sequencing analysis was performed. Three novel changes: homoplasmic 15458T > C and 15519T > C in cytochrome b, and a near homoplasmic 5783G > A in tRNA(cys), were found in the proband in various tissues. Her mother and asymptomatic sibling also carry the two homoplasmic mutations and the heteroplasmic 5783G > A mutation in blood, hair follicles, and buccal cells, at lower percentage. The 5783G > A mutation occurs at the T arm of tRNA(cys), resulting in the disruption of the stem structure, which may reduce the stability of the tRNA. 15458T > C changes an amino acid serine to proline at a conserved alpha-helix, which may force the helix to bend. These two mutations may have pathogenic significance. This case emphasizes the importance of pursuing more extensive mutational analysis of mtDNA in the absence of common mtDNA point mutations or large deletions, when there is a high suspicion of a mitochondrial disorder.


Subject(s)
Abnormalities, Multiple/genetics , Cardiomyopathies/genetics , DNA, Mitochondrial/genetics , Deafness/genetics , Mitochondrial Diseases/genetics , Mutation/genetics , Renal Insufficiency/genetics , Base Pairing , Base Sequence , Child , DNA Mutational Analysis , DNA Primers , Female , Humans , Molecular Sequence Data , Muscle, Skeletal/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL