ABSTRACT
Cytomegalovirus (CMV) infection is a major driver of accelerated immunosenescence related to CD28null T cell expansion. CMV infection and these proatherogenic T cells have been independently associated with cardiovascular disease and coronavirus disease 2019 (COVID-19) severity. We investigated the potential contribution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to immunosenescence and its relationship with CMV. Innate and adaptive immune subpopulations from individuals with mild or asymptomatic SARS-CoV-2 infection (mCOVID-19) and healthy donors were immunophenotyped. A significant increase in CD28nullCD57+CX3CR1+ T cell percentages (CD4+ [P ≤ .01], CD8+ [P ≤ .01], and TcRγδ (CD4-CD8-) [P ≤ .001]) was found in unnvaccinated CMV-seropositive mCOVID-19 individuals stable up to 12 months after infection. This expansion did not occur in CMV-seronegative mCOVID-19 individuals or in CMV-seropositive individuals infected after SARS-CoV-2 vaccination. There were no significant differences between mCOVID-19 and aortic stenosis groups. Thus, individuals coinfected with SARS-CoV-2 and CMV have accelerated T cell senescence, which might lead to an increased risk of cardiovascular disease.
Subject(s)
COVID-19 , Cardiovascular Diseases , Cytomegalovirus Infections , Immunosenescence , Humans , Cytomegalovirus , T-Lymphocytes , COVID-19 Vaccines , SARS-CoV-2 , CD8-Positive T-LymphocytesABSTRACT
Aortic stenosis (AS) is a frequent cardiac disease in old individuals, characterized by valvular calcification, fibrosis, and inflammation. Recent studies suggest that AS is an active inflammatory atherosclerotic-like process. Particularly, it has been suggested that several immune cell types, present in the valve infiltrate, contribute to its degeneration and to the progression toward stenosis. Furthermore, the infiltrating T cell subpopulations mainly consist of oligoclonal expansions, probably specific for persistent antigens. Thus, the characterization of the cells implicated in the aortic valve calcification and the analysis of the antigens to which those cells respond to is of utmost importance to develop new therapies alternative to the replacement of the valve itself. However, calcified aortic valves have been only studied so far by histological and immunohistochemical methods, unable to render an in-depth phenotypical and functional cell profiling. Here we present, for the first time, a simple and efficient cytometry-based protocol that allows the identification and quantification of infiltrating inflammatory leukocytes in aortic valve explants. Our cytometry protocol saves time and facilitates the simultaneous analysis of numerous surface and intracellular cell markers and may well be also applied to the study of other cardiac diseases with an inflammatory component.
Subject(s)
Aortic Valve Stenosis , Humans , Constriction, Pathologic/metabolism , Aortic Valve Stenosis/pathology , Aortic Valve/pathology , Inflammation/metabolism , FibrosisABSTRACT
Patients with a single ventricle circulation continue to be a challenge for a heart transplant. The patients in this cohort, often in poor clinical condition with frequent hepatic and renal impairment having undergone previous multiple surgical procedures, are often allosensitive and consequently have an increased risk of post-transplant complications. Although the most recently published series results are improved, this group of patients, with preserved ventricular function, continues to have a higher mortality rate. Moreover, the operation can be complicated by anatomical differences among the pulmonary arteries. This case report presents a child with tricuspid atresia and pulmonary vascular resistance contraindicating Fontan surgery, unfavourable anatomy of the central pulmonary arteries and in poor clinical condition. An EXCOR ventricular assist device (Berlin Heart) was used for sub- pulmonary mechanical circulatory support and pulmonary bifurcation reconstruction, as a bridge to a transplant.
Subject(s)
Heart Transplantation , Heart-Assist Devices , Pulmonary Artery , Humans , Pulmonary Artery/surgery , Pulmonary Artery/abnormalities , Male , Heart Ventricles/surgery , Heart Ventricles/abnormalitiesABSTRACT
Human cytomegalovirus (HCMV) is linked to age-related diseases like cardiovascular disease, neurodegenerative conditions, and cancer. It can also cause congenital defects and severe illness in immunocompromised individuals. Accurate HCMV seroprevalence assessment is essential for public health planning and identifying at-risk individuals. This is the first HCMV seroprevalence study conducted in the general Spanish adult population in 30 years. We studied HCMV seroprevalence and HCMV IgG antibody titres in healthy adult donors (HDs) and HCMV-related disease patients from 2010 to 2013 and 2020 to 2023, categorized by sex and age. We compared our data with 1993 and 1999 studies in Spain. The current HCMV seroprevalence among HDs in Spain is 73.48%. In women of childbearing age, HCMV seroprevalence has increased 1.4-fold in the last decade. HCMV-seropositive individuals comprise 89.83% of CVD patients, 69% of SMI patients, and 70.37% of COVID-19 patients. No differences in HCMV seroprevalence or HCMV IgG antibody titres were observed between patients and HDs. A significant reduction in Spanish HCMV seroprevalence among HDs was observed in 1993. However, women of childbearing age have shown an upturn in the last decade that may denote a health risk in newborns and a change in HCMV seroprevalence trends.