Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Mikrochim Acta ; 191(4): 208, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38499898

ABSTRACT

The identification and correction of negative factors, such as 4-ethylphenol and ethanethiol, is important to comply with food safety regulations and avoid economic losses to wineries. A simple amperometric measurement procedure that facilitates the simultaneous quantification of both compounds in the gas phase has been developed using fullerene and cobalt (II) phthalocyanine-modified dual screen-printed electrodes coated with a room temperature ionic liquid-based gel polymer electrolyte. The replacement of the typical aqueous supporting electrolyte by low-volatility ones improves both operational and storage lifetime. Under the optimum conditions of the experimental variables, Britton Robinson buffer pH 5 and applied potentials of + 0.86 V and + 0.40 V for each working electrode (vs. Ag ref. electrode), reproducibility values of 7.6% (n = 3) for 4-ethylphenol and 6.6% (n = 3) for ethanethiol were obtained, as well as capability of detection values of 23.8 µg/L and decision limits of 1.3 µg/L and 9.2 µg/L (α = ß = 0.05), respectively. These dual electrochemical devices have successfully been applied to the headspace detection of both compounds in white and red wines, showing their potential to be routinely used for rapid analysis control in wineries.

2.
Talanta ; 270: 125543, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38103285

ABSTRACT

4-ethylphenol and 4-ethylguaicol levels in wine are associated to organoleptic defects that cause consumer rejection accompanied by significant economic losses for producers. Thus, electrochemical sensors based on screen-printed carbon electrodes (SPCEs) modified with activated fullerene C60 (AC60) have been developed for the analysis of both phenols by direct headspace amperometric measurements. Upon optimization of the experimental variables affecting the sensors performance, the AC60/SPCE sensors presented linearity ranges from 9.9 to 65.4 µg/L and from 19.6 to 107.1 µg/L for 4-ethylphenol and 4-ethylguaicol, respectively. The achieved detection capacities were 10.3 µg/L (4-ethylphenol) and 19.6 µg/L (4-ethylguaicol), with a reproducibility of 6.3 % and 9.1 % (n = 3), respectively. In addition, dual-working AC60/SPCE devices were developed for the simultaneous analysis of both phenols using different working potentials for each electrode. The dual systems were successfully applied in the analysis of different spiked wine samples, obtaining good recoveries ranging from 94 to 108 %.

SELECTION OF CITATIONS
SEARCH DETAIL