Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Mol Microbiol ; 117(2): 261-273, 2022 02.
Article in English | MEDLINE | ID: mdl-34278632

ABSTRACT

The infection and colonization of pathogenic fungi are often regulated by transcription factors. In our previous study, the zinc finger protein-encoding gene StMR1 was found to be highly expressed during the infection process of Setosphaeria turcica, the pathogen causing northern corn leaf blight. Evolutionary tree analysis showed that this gene was associated with regulatory factors of melanin synthesis. However, the regulatory mechanism of melanin synthesis and its effect on pathogenicity remain unclear. In this study, the function of StMR1 was analyzed by gene knockout. When the expression level of StMR1 in the mutants was significantly reduced, the colony color became lighter, the mycelia were curved and transparent, and the mutant showed a significant loss of pathogenicity. In addition, compared with wild-type, the accumulation of melanin decreased significantly in ΔStmr1. RNA-seq analysis revealed 1,981 differentially expressed genes between the wild-type and knockout mutant, among which 39 genes were involved in melanin metabolism. qPCR revealed that the expression levels of six key genes in the melanin synthesis pathway were significantly reduced. ChIP-PCR and yeast one-hybrid assays confirmed that StMR1 directly binds to the promoters of St3HNR, St4HNR, StPKS, and StLAC2 in the DHN melanin synthesis pathway and regulates gene expression. The C2H2-type zinc fingers and Zn(Ⅱ)2Cys6 binuclear cluster in StMR1 were important for the binding to targets.


Subject(s)
Melanins , Plant Diseases , Ascomycota , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Plant Diseases/microbiology , Virulence , Zinc Fingers
2.
Plant Physiol ; 190(4): 2335-2349, 2022 11 28.
Article in English | MEDLINE | ID: mdl-35972411

ABSTRACT

In cell-cell communication, noncell-autonomous transcription factors play vital roles in controlling plant stem cell fate. We previously reported that AUXIN RESPONSE FACTOR3 (ARF3), a member of the ARF family with critical roles in floral meristem maintenance and determinacy, has a distinct accumulation pattern that differs from the expression domain of its encoding gene in the shoot apical meristem (SAM). However, the biological meaning of this difference is obscure. Here, we demonstrate that ARF3 expression in Arabidopsis (Arabidopsis thaliana) is mainly activated at the periphery of the SAM by auxin where ARF3 cell autonomously regulates the expression of meristem-organ boundary-specific genes, such as CUP-SHAPED COTYLEDON1-3 (CUC1-3), BLADE ON PETIOLE1-2 (BOP1-2), and TARGETS UNDER ETTIN CONTROL3 (TEC3) to regulate the arrangement of organs in regular pattern, a phenomenon referred to as phyllotaxis. We also show that ARF3 is translocated into the organizing center where it represses cytokinin activity and WUSCHEL expression to regulate meristem activity noncell-autonomously. Therefore, ARF3 acts as a molecular link that mediates the interaction of auxin and cytokinin signaling in the SAM while coordinating the balance between meristem maintenance and organogenesis. Our findings reveal an ARF3-mediated coordination mechanism through cell-cell communication in dynamic SAM maintenance.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Meristem/metabolism , Indoleacetic Acids/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Cytokinins/metabolism , Cell Proliferation , Gene Expression Regulation, Plant
3.
Pestic Biochem Physiol ; 194: 105480, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37532346

ABSTRACT

Natural products are one of the important sources for the creation of new pesticides. Drupacine ((1R,11S,12S,13R,15S)-13-methoxy-5,7,21-trioxa-19-azahexacyclo[11.7.1.02,10.04,8.011,15.015,19]henicosa-2,4(8),9-trien-12-ol), isolated from Cephalotaxus sinensis (Chinese plum-yew), is a potent herbicidal compound containing an oxo-bridged oxygen bond structure. However, its molecular target still remains unknown. In this study, the targets of drupacine in Amaranthus retroflexus were identified by combining drug affinity responsive target stability (DARTS), cellular thermal shift assay coupled with mass spectrometry (CETSA MS), RNA-seq transcriptomic, and TMT proteomic analyses. Fifty-one and sixty-eight main binding proteins were identified by DARTS and CETSA MS, respectively, including nine co-existing binding proteins. In drupacine-treated A. retroflexus seedlings we identified 1389 up-regulated genes and 442 down-regulated genes, 34 up-regulated proteins, and 194 down-regulated proteins, respectively. Combining the symptoms and the biochemical profiles, Profilin, Shikimate dehydrogenase (SkDH), and Zeta-carotene desaturase were predicted to be the drupacine potential target proteins. At the same time, drupacine was found to bind SkDH stronger by molecular docking, and its inhibition on ArSkDH increased with the treatment concentration increase. Our results suggest that the molecular target of drupacine is SkDH, a new herbicide target, which lay a foundation for the rational design of herbicides based on new targets from natural products and enrich the target resources for developing green herbicides.


Subject(s)
Biological Products , Herbicides , Herbicides/pharmacology , Herbicides/chemistry , Molecular Docking Simulation , Proteomics , Oxidoreductases , Proteins
4.
Plant Dis ; 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36510430

ABSTRACT

Foxtail millet (Setaria italica) is an important grain and forage crop. This crop is widely grown in Northern China (Yang et al.2020). In Aug 2021, foxtail millet variety of Jigu42 showing lodging were found in Baoding China with the incidence of 30% and irregular brown lesions were found in sheaths and leaves of infected plants. The center of the lesions was kraurotic and pale, and the edges were gray-brown or dark brown. Twelve samples with typical lesions were collected from the surveyed field to isolate the pathogen. The infected samples were cut into square pieces of about 3 to 5 mm and were immersed into NaOCl (1%) for 1 min followed by washing with sterile water for three times. Then all sterilized tissues were inoculated on potato dextrose agar (PDA) plates and incubated at 25℃. After 3 days, fresh mycelial tips grown from the tissues were transferred to new plates for purification and incubated in the dark at 25°C for 4-5 days until the hyphae covered the whole plates. The colonies of 15 isolates on PDA medium showed similar colonial characteristics, which were fluffy and white initially, gradually turned light brown, and no sclerotia was observed even at 20 days later. Micro-examination revealed that all isolates showed the identical morphological features as Rhizoctonia sp. (Sneh et al. 1991), which contained the septate and right-angled branching hyphae with slight constriction at the base of mycelial branches, and three to seven nuclei per cell (Yang et al. 2013). Total genomic DNA was extracted from 5-day-old cultures, and the internal transcribed spacer (ITS) region of rDNA was amplified with ITS1 and ITS4 as the primers (Garibaldi et al. 2019). The sequencing results showed that the nucleotide sequences of 15 amplicons were identical and shared 100% identity with the corresponding fragments of R. solani AG-4 HG-III from sugar beet (GenBank accession No. MH172666 and MH172663) in Blastn search. The sequencing size of ITS in this study was 3 bp shorter than that of sugar beet, with a length of 722, because the base 'T' in the beginning and 'GA' in the end of the sequences did not detected in our study. Phylogenetic tree of 16 isolates of different AG4 subgroups was created by the software MEGA 7.0 through the NJ method, and the showed that the isolates were clustered to the clade of AG-4 HG-III group. The sequences of three isolates were deposited in GenBank under the accession No. ON810364, ON810365 and ON810366. For pathogenicity test, 5 mm diameters plate of the 5-day-old fungus which cultured on PDA were inoculated to the sheath of 10 foxtail millet plants grown in pots at 5- or 6-leaf stage. Then, the inoculated plants were placed into a growth chamber, and the inoculated sheaths were covered with wet cotton ball for 2 days to keep humidity, while sterile water was inoculated as the control. All plants were cultivated at 26°C with 14 h light and 10 h dark for 14 days. The experiment was repeated for three times. As the result, the same lesions observed in the field appeared on the inoculated plants at 10-14 days post inoculation, whereas the mock was healthy. The pathogen was re-isolated from the infected samples. The morphological characteristics and the nucleotide sequences of ITSs were same as that of the original isolates. All in above, the pathogen cusing sheath blight on foxtail millet was identified as R. solani AG-4 HG-III. To our knowledge, this is the first report of R. solani AG-4 HG-III causing sheath blight on S. italica in China. This finding expands the host range known for R. solani AG-4 HG-III and will be helpful for developing effective control strategies of foxtail millet sheath blight.

5.
Ecotoxicol Environ Saf ; 225: 112766, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34509967

ABSTRACT

Natural adjuvants are novel options to reduce the doses of chemical herbicides. The aim of the current study was to examine the compositions and adjuvant effects of rosin and coconut oil on herbicides using a combination of indoor experiment and field trial. The GC-MS results showed that the main component of rosin was abietic acid (40.02%), and the main components of coconut oil were 2-pentanone, 4-hydroxy-4-methyl- (21.45%) and dodecanoic acid (14.59%). In greenhouse experiment, rosin showed a significant adjuvant effect on nicosulfuron against Digitaria sanguinalis and Amaranthus retroflexus, with the GR50 ratios of 1.47 and 1.69, respectively. The GR50 values of nicosulfuron in the present of coconut oil were 3.99 and 10.13 g a.i./hm2 against D. sanguinalis and A. retroflexus, lower than that of individual application. The adjuvant effect of rosin and coconut oil on mesotrione was also found. In field trial, the fresh weight control efficiency of nicosulfuron (45 g a.i./hm2) and mesotrione (112.5 g a.i./hm2) was significantly improved after the addition of rosin and coconut oil, similar with that of recommended dose. Rosin and coconut oil could reduce the contact angle of nicosulfuron, with the results of 56.68° and 53.90°, respectively, lower than that of individual application. Furthermore, rosin and coconut oil could decrease the surface tension, wetting and penetration time; and increase the spreading diameter and maximum retention. Both rosin and coconut oil have adjuvant effects on herbicides in the lab & field with multiple mechanisms. Thus, they have the potential to be developed into natural adjuvants for herbicide formulation to control weeds.


Subject(s)
Adjuvants, Pharmaceutic , Coconut Oil , Cyclohexanones , Pyridines , Resins, Plant , Sulfonylurea Compounds
6.
Plant Physiol ; 180(2): 1132-1151, 2019 06.
Article in English | MEDLINE | ID: mdl-30926656

ABSTRACT

Pseudomonas syringae, a major hemibiotrophic bacterial pathogen, causes many devastating plant diseases. However, the transcriptional regulation of plant defense responses to P. syringae remains largely unknown. Here, we found that gain-of-function of BTB AND TAZ DOMAIN PROTEIN 4 (BT4) enhanced the resistance of Arabidopsis (Arabidopsis thaliana) to Pst DC3000 (Pseudomonas syringae pv. tomato DC3000). Disruption of BT4 also weakened the salicylic acid (SA)-induced defense response to Pst DC3000 in bt4 mutants. Further investigation indicated that, under Pst infection, transcription of BT4 is modulated by components of both the SA and ethylene (ET) signaling pathways. Intriguingly, the specific binding elements of ETHYLENE RESPONSE FACTOR (ERF) proteins, including dehydration responsive/C-repeat elements and the GCC box, were found in the putative promoter of BT4 Based on publicly available microarray data and transcriptional confirmation, we determined that ERF11 is inducible by salicylic acid and Pst DC3000 and is modulated by the SA and ET signaling pathways. Consistent with the function of BT4, loss-of-function of ERF11 weakened Arabidopsis resistance to Pst DC3000 and the SA-induced defense response. Biochemical and molecular assays revealed that ERF11 binds specifically to the GCC box of the BT4 promoter to activate its transcription. Genetic studies further revealed that the BT4-regulated Arabidopsis defense response to Pst DC3000 functions directly downstream of ERF11. Our findings indicate that transcriptional activation of BT4 by ERF11 is a key step in SA/ET-regulated plant resistance against Pst DC3000, enhancing our understanding of plant defense responses to hemibiotrophic bacterial pathogens.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Arabidopsis Proteins/genetics , Arabidopsis/immunology , Plant Immunity , Pseudomonas syringae/physiology , Repressor Proteins/metabolism , Transcription Factors/metabolism , Transcription, Genetic , Adaptor Proteins, Signal Transducing/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Disease Resistance/drug effects , Disease Resistance/immunology , Ethylenes/metabolism , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Loss of Function Mutation , Plant Diseases/genetics , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Immunity/drug effects , Plant Immunity/genetics , Promoter Regions, Genetic/genetics , Pseudomonas syringae/drug effects , Salicylic Acid/pharmacology , Signal Transduction/drug effects , Transcription, Genetic/drug effects
7.
Phytopathology ; 110(12): 2014-2016, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32689897

ABSTRACT

The heterothallic ascomycete Setosphaeria turcica (anamorph Exserohilum turcicum) causes northern corn leaf blight, which results in devastating yield losses and a reduction in feed value. Although genome sequences of two model strains of the pathogen are available (https://mycocosm.jgi.doe.gov/mycocosm/home), previous drafts were assembled using short read technologies, making evolutionary and genetic linkage inferences difficult. Here, race 23N of S. turcica strain Et28A was sequenced again using Illumina HiSeq and PacBio Sequel technologies, and assembled to approximately 43,480,261 bp on 30 scaffolds. In all, 13,183 protein-coding genes were predicted, 13,142 of them were well annotated. This S. turcica genome resource is important for understanding the genetics behind pathogen evolution and infection mechanisms.


Subject(s)
Ascomycota , Zea mays , Ascomycota/genetics , Genetic Linkage , Plant Diseases
8.
J Basic Microbiol ; 58(1): 68-75, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29112275

ABSTRACT

Laccases are multicopper oxidases (E.C. 1.10.3.2) that catalyze the oxidation of many phenolic compounds. In this study, a novel laccase, Stlac4, from Setosphaeria turcica was cloned and expressed in Escherichia coli by insertion into the pET-30a expression plasmid. The recombinant laccase was purified and visualized on SDS-PAGE as a single band with an apparent molecular weight of 71.5 KDa, and confirmed by Western blot. The maximum activity of the purified laccase was 127.78 U · mg-1 , the optimum temperature and pH value were 60 °C and 4.0 respectively, measured by oxidation of 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS). Purified laccase activity under different metal ions and an inhibitor were tested, revealing that laccase activity increased by approximately 434.8% with Fe3+ , and 217.4% with Cu2+ at 10 mmol · L-1 concentrations, Mn2+ increased the laccase activity only at 5 mmol · L-1 , while Na+ increased activity at 1 mmol · L-1 but inhibited activity at 5 and 10 mmol · L-1 . SDS increased laccase activity at 1 mmol · L-1 , and inhibited activity at 5 and 10 mmol · L-1 .


Subject(s)
Ascomycota/enzymology , Escherichia coli/genetics , Laccase/isolation & purification , Laccase/metabolism , Ascomycota/drug effects , Ascomycota/genetics , Benzothiazoles/metabolism , Cloning, Molecular , Electrophoresis, Polyacrylamide Gel , Enzyme Stability , Hydrogen-Ion Concentration , Laccase/drug effects , Laccase/genetics , Molecular Weight , Oxidation-Reduction , Plasmids , RNA, Fungal/isolation & purification , Real-Time Polymerase Chain Reaction , Sodium Dodecyl Sulfate/pharmacology , Substrate Specificity , Sulfonic Acids/metabolism , Temperature , Vanillic Acid/pharmacology
9.
Molecules ; 23(9)2018 Aug 23.
Article in English | MEDLINE | ID: mdl-30142874

ABSTRACT

Transketolase (TKL) plays a key role in plant photosynthesis and has been predicted to be a potent herbicide target. Homology modeling and molecular dynamics simulation were used to construct a target protein model. A target-based virtual screening was developed to discover novel potential transketolase inhibitors. Based on the receptor transketolase 1 and a target-based virtual screening combined with structural similarity, six new compounds were selected from the ZINC database. Among the structural leads, a new compound ZINC12007063 was identified as a novel inhibitor of weeds. Two novel series of carboxylic amide derivatives were synthesized, and their structures were rationally identified by NMR and HRMS. Biological evaluation of the herbicidal and antifungal activities indicated that the compounds 4u and 8h were the most potent herbicidal agents, and they also showed potent fungicidal activity with a relatively broad-spectrum. ZINC12007063 was identified as a lead compound of potential transketolase inhibitors, 4u and 8h which has the herbicidal and antifungal activities were synthesized based on ZINC12007063. This study lays a foundation for the discovery of new pesticides.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Transketolase/antagonists & inhibitors , Amides/chemistry , Enzyme Inhibitors/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Structure-Activity Relationship
10.
BMC Biotechnol ; 17(1): 81, 2017 Nov 14.
Article in English | MEDLINE | ID: mdl-29137618

ABSTRACT

BACKGROUND: Recent development of DNA assembly technologies has spurred myriad advances in synthetic biology, but new tools are always required for complicated scenarios. Here, we have developed an alternative DNA assembly method named AFEAP cloning (Assembly of Fragment Ends After PCR), which allows scarless, modular, and reliable construction of biological pathways and circuits from basic genetic parts. METHODS: The AFEAP method requires two-round of PCRs followed by ligation of the sticky ends of DNA fragments. The first PCR yields linear DNA fragments and is followed by a second asymmetric (one primer) PCR and subsequent annealing that inserts overlapping overhangs at both sides of each DNA fragment. The overlapping overhangs of the neighboring DNA fragments annealed and the nick was sealed by T4 DNA ligase, followed by bacterial transformation to yield the desired plasmids. RESULTS: We characterized the capability and limitations of new developed AFEAP cloning and demonstrated its application to assemble DNA with varying scenarios. Under the optimized conditions, AFEAP cloning allows assembly of an 8 kb plasmid from 1-13 fragments with high accuracy (between 80 and 100%), and 8.0, 11.6, 19.6, 28, and 35.6 kb plasmids from five fragments at 91.67, 91.67, 88.33, 86.33, and 81.67% fidelity, respectively. AFEAP cloning also is capable to construct bacterial artificial chromosome (BAC, 200 kb) with a fidelity of 46.7%. CONCLUSIONS: AFEAP cloning provides a powerful, efficient, seamless, and sequence-independent DNA assembly tool for multiple fragments up to 13 and large DNA up to 200 kb that expands synthetic biologist's toolbox.


Subject(s)
Cloning, Molecular/methods , DNA/metabolism , Polymerase Chain Reaction/methods , Synthetic Biology/methods , Chromosomes, Artificial, Bacterial/chemistry , Chromosomes, Artificial, Bacterial/genetics , Chromosomes, Artificial, Bacterial/metabolism , DNA/chemistry , DNA/genetics , Plasmids/genetics
11.
BMC Biotechnol ; 17(1): 32, 2017 03 17.
Article in English | MEDLINE | ID: mdl-28302113

ABSTRACT

BACKGROUND: Restriction-free (RF) cloning, a PCR-based method for the creation of custom DNA plasmids, allows for the insertion of any sequence into any plasmid vector at any desired position, independent of restriction sites and/or ligation. Here, we describe a simple and fast method for performing gene reconstitution by modified RF cloning. RESULTS: Double-stranded inserts and acceptors were first amplified by regular PCR. The amplified fragments were then used as the templates in two separate linear amplification reactions containing either forward or reverse primer to generate two single-strand reverse-complement counterparts, which could anneal to each other. The annealed inserts and acceptors with 5' and 3' cohesive ends were sealed by ligation reaction. Using this method, we made 46 constructs containing insertions of up to 20 kb. The average cloning efficiency was higher than 85%, as confirmed by colony PCR and sequencing of the inserts. CONCLUSIONS: Our method provides an alternative cloning method capable of inserting any DNA fragment of up to at least 20 kb into a plasmid, with high efficiency. This new method does not require restriction sites or alterations of the plasmid or the gene of interest, or additional treatments. The simplicity of both primer design and the procedure itself makes the method suitable for high-throughput cloning and structural genomics.


Subject(s)
Cloning, Molecular/methods , DNA Primers/genetics , DNA/genetics , Plasmids/genetics , DNA Restriction Enzymes/genetics , Polymerase Chain Reaction
12.
Plant Physiol ; 170(4): 2340-50, 2016 04.
Article in English | MEDLINE | ID: mdl-26850275

ABSTRACT

Seed germination, a critical stage initiating the life cycle of a plant, is severely affected by salt stress. However, the underlying mechanism of salt inhibition of seed germination (SSG) is unclear. Here, we report that the Arabidopsis (Arabidopsis thaliana) CONSTITUTIVE PHOTOMORPHOGENESIS1 (COP1) counteracts SSG Genetic assays provide evidence that SSG in loss of function of the COP1 mutant was stronger than this in the wild type. A GUS-COP1 fusion was constitutively localized to the nucleus in radicle cells. Salt treatment caused COP1 to be retained in the cytosol, but the addition of ethylene precursor 1-aminocyclopropane-1-carboxylate had the reverse effect on the translocation of COP1 to the nucleus, revealing that ethylene and salt exert opposite regulatory effects on the localization of COP1 in germinating seeds. However, loss of function of the ETHYLENE INSENSITIVE3 (EIN3) mutant impaired the ethylene-mediated rescue of the salt restriction of COP1 to the nucleus. Further research showed that the interaction between COP1 and LONG HYPOCOTYL5 (HY5) had a role in SSG Correspondingly, SSG in loss of function of HY5 was suppressed. Biochemical detection showed that salt promoted the stabilization of HY5, whereas ethylene restricted its accumulation. Furthermore, salt treatment stimulated and ethylene suppressed transcription of ABA INSENSITIVE5 (ABI5), which was directly transcriptionally regulated by HY5. Together, our results reveal that salt stress and ethylene antagonistically regulate nucleocytoplasmic partitioning of COP1, thereby controlling Arabidopsis seed germination via the COP1-mediated down-regulation of HY5 and ABI5. These findings enhance our understanding of the stress response and have great potential for application in agricultural production.


Subject(s)
Arabidopsis Proteins/metabolism , Cell Nucleus/metabolism , Ethylenes/pharmacology , Germination/drug effects , Seeds/growth & development , Sodium Chloride/pharmacology , Stress, Physiological/drug effects , Ubiquitin-Protein Ligases/metabolism , Arabidopsis/drug effects , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Cell Nucleus/drug effects , Cytosol/drug effects , Cytosol/metabolism , Gene Expression Regulation, Plant/drug effects , Models, Biological , Mutation/genetics , Protein Stability/drug effects , Protein Transport/drug effects , Seeds/drug effects , Seeds/genetics , Stress, Physiological/genetics , Transcription, Genetic/drug effects , Ubiquitin-Protein Ligases/genetics
15.
Plant Mol Biol ; 92(4-5): 473-482, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27561782

ABSTRACT

Our previous investigation revealed that GDP-Man pyrophosphorylase (VTC1), a vital ascorbic acid (AsA) biosynthesis enzyme, could be degraded through interaction with the photomorphogenic factor COP9 signalosome subunit 5B (CSN5B) in the darkness, demonstrating the posttranscriptional regulation of light signal in AsA production. Here, we further report that a point mutation in D27E of VTC1 disables the interaction with CSN5B, resulting in enhancement of AsA biosynthesis and seedling growth in Arabidopsis thaliana. To identify the interaction sites with CSN5B, we first predicted the key amino acids in VTC1 via bioinformatics analysis. And then we biochemically and genetically demonstrated that the 27th Asp was the amino acid that influenced the interaction of VTC1 with CSN5B in plants. Moreover, transgenic lines overexpressing the site-specific mutagenesis from D27 (Asp) into E27 (Glu) in VTC1 showed enhanced AsA accumulation and reduced H2O2 content in Arabidopsis seedlings, compared with the lines overexpressing the mutation from D27 into N27 (Asn) in VTC1. In addition, this regulation of VTC1 D27E mutation promoted seedling growth. Together, our data reveal that the 27th amino acid of VTC1 confers a key regulation in the interaction with CSN5B and AsA biosynthesis, as well as in Arabidopsis seedling growth.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis , Ascorbic Acid/biosynthesis , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Seedlings , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , COP9 Signalosome Complex , Gene Expression Regulation, Plant/genetics , Mutation/genetics , Protein Stability , Seedlings/genetics , Seedlings/growth & development
16.
Yi Chuan ; 36(10): 985-94, 2014 Oct.
Article in Zh | MEDLINE | ID: mdl-25406246

ABSTRACT

R2R3-MYB transcription factors of Arabidopsis play important roles in regulatory networks controlling development, metabolism and responses to biotic and abiotic stresses. R2R3-MYB transcription factors can be divided into 25 subfamilies based on the conserved amino acid sequences. In these subfamilies, the 22nd subfamily that responses to biotic and abiotic stresses includ AtMYB44, AtMYB77, AtMYB73 and AtMYB70. In this review, we summarize these 4 genes of the 22nd subfamily from three aspects, including the similarity of gene function, consistency of gene expression and conservation of the genetic structure. Then we discuss the redundancy and diversity about gene structure and function of these 4 genes.


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Transcription Factors/chemistry , Transcription Factors/metabolism , Amino Acid Sequence , Arabidopsis/genetics , Computational Biology , Conserved Sequence , Gene Expression Regulation, Plant , Molecular Sequence Data
17.
Front Microbiol ; 15: 1352354, 2024.
Article in English | MEDLINE | ID: mdl-38384269

ABSTRACT

In eukaryotic cells, purine metabolism is the way to the production of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) and plays key roles in various biological processes. Purine metabolism mainly consists of de novo, salvage, and catabolic pathways, and some components of these pathways have been characterized in some plant pathogenic fungi, such as the rice blast fungus Magnaporthe oryzae and wheat head blight fungus Fusarium graminearum. The enzymatic steps of the de novo pathway are well-conserved in plant pathogenic fungi and play crucial roles in fungal growth and development. Blocking this pathway inhibits the formation of penetration structures and invasive growth, making it essential for plant infection by pathogenic fungi. The salvage pathway is likely indispensable but requires exogenous purines, implying that purine transporters are functional in these fungi. The catabolic pathway balances purine nucleotides and may have a conserved stage-specific role in pathogenic fungi. The significant difference of the catabolic pathway in planta and in vitro lead us to further explore and identify the key genes specifically regulating pathogenicity in purine metabolic pathway. In this review, we summarized recent advances in the studies of purine metabolism, focusing on the regulation of pathogenesis and growth in plant pathogenic fungi.

18.
Pest Manag Sci ; 80(3): 1016-1025, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37831548

ABSTRACT

BACKGROUND: Weeds are one of the critical factors that negatively affect crop yield and quality. Microbial herbicides are a research hotspot for novel herbicides owing to their environmental safety and lack of weed resistance. In the current study, the active ingredients of Serratia marcescens Ha1, a new microbial herbicide, were investigated for their effectiveness against agricultural weeds using bioassay-guided fractionation. RESULTS: The results revealed that petroleum ether and ethyl acetate extracts of S. marcescens Ha1 had high herbicidal activity. Forty-nine compounds were identified from the petroleum ether extract, including 2,4-di-tert-butylphenol (DB; C14 H22 O, 38.82%), ethyl 14-methyl-hexadecanoate, 1-nonadecene, and [1,1'-biphenyl]-2,3'-diol, 3,4',5,6'-tetrakis. Of these, DB showed significant inhibitory effects on root and shoot growth in Amaranthus retroflexus, with half-maximal inhibitory concentration (IC50 ) values of 389.17 and 832.44 mg L-1 , respectively. In addition, 7-hydroxy-3-(2-methylpropyl)-2,3,6,7,8,8a-hexahydropyrrolo[1,2-a]pyrazine-1,4-dione (HPD) was identified as the major active ingredient in the ethyl acetate extract of S. marcescens Ha1 using bioassay-guided fractionation, with IC50 values of 439.86 and 476.95 mg L-1 against A. retroflexus shoot and root growth, respectively. Scanning electron microscopy indicated that DB and HPD exert destructive effects on A. retroflexus root, and the damage is gradually aggravated with increasing treatment time and concentration. CONCLUSION: The S. marcescens Ha1 extract and its active compounds DB and HPD exhibit significant herbicidal activity, which could be utilized further for the development of microbial herbicides. © 2023 Society of Chemical Industry.


Subject(s)
Acetates , Alkanes , Herbicides , Phenols , Herbicides/pharmacology , Serratia marcescens , Plant Weeds
19.
Database (Oxford) ; 20242024 Mar 19.
Article in English | MEDLINE | ID: mdl-38502608

ABSTRACT

Fungal secondary metabolites are not necessary for growth, but they are important for fungal metabolism and ecology because they provide selective advantages for competition, survival and interactions with the environment. These various metabolites are widely used as medicinal precursors and insecticides. Secondary metabolism genes are commonly arranged in clusters along chromosomes, which allow for the coordinate control of complete pathways. In this study, we created the Fungal Gene Cluster Database to store, retrieve, and visualize secondary metabolite gene cluster information across fungal species. The database was created by merging data from RNA sequencing, Basic Local Alignment Search Tool, genome browser, enrichment analysis and the R Shiny web framework to visualize and query putative gene clusters. This database facilitated the rapid and thorough examination of significant gene clusters across fungal species by detecting, defining and graphically displaying the architecture, organization and expression patterns of secondary metabolite gene clusters. In general, this genomic resource makes use of the tremendous chemical variety of the products of these ecologically and biotechnologically significant gene clusters to our further understanding of fungal secondary metabolism. Database URL: https://www.hebaubioinformatics.cn/FungalGeneCluster/.


Subject(s)
Genes, Fungal , Genome, Fungal , Secondary Metabolism/genetics , Genomics , Multigene Family , Fungal Proteins/genetics , Fungal Proteins/metabolism
20.
J Agric Food Chem ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38917402

ABSTRACT

Validamycin A (VMA) is an antifungal antibiotic derived from Streptomyces hygroscopicus commonly used in plant disease management. Surprisingly, VMA was discovered to impede the production of fumonisin B1 (FB1) in agricultural settings. However, the specific target of VMA in Fusarium verticillioides remained unclear. To unravel the molecular mechanism of VMA, ultrastructural observations unveiled damage to mitochondrial membranes. Trehalase (FvNth) was pinpointed as the target of VMA by utilizing a 3D-printed surface plasmon resonance sensor. Molecular docking identified Trp285, Arg447, Asp452, and Phe665 as the binding sites between VMA and FvNth. A ΔFvnth mutant lacking amino acids 250-670 was engineered through homologous recombination. Transcriptome analysis indicated that samples treated with VMA and ΔFvnth displayed similar expression patterns, particularly in the suppression of the FUM gene cluster. VMA treatment resulted in reduced trehalase and ATPase activity as well as diminished production of glucose, pyruvic acid, and acetyl-CoA. Conversely, these effects were absent in samples treated with ΔFvnth. This research proposes that VMA hinders acetyl-CoA synthesis by trehalase, thereby suppressing the FB1 biosynthesis. These findings present a novel target for the development of mycotoxin control agents.

SELECTION OF CITATIONS
SEARCH DETAIL