Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Environ Pollut ; 358: 124537, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002746

ABSTRACT

Microbially induced carbonate precipitation (MICP) is a promising technique for remediating heavy metal-contaminated soils. However, the effectiveness of MICP in immobilizing Cd in alkaline calcareous soils, especially when applied in agricultural soils, remains unclear. Biochar and magnesium oxide are two environmentally friendly passivating materials, and there are few reports on the combined application of MICP with passivating materials for remediating heavy metal-contaminated soils. Additionally, the number of treatments with MICP cement and the concentration of calcium chloride during the MICP process can both affect the effectiveness of heavy metal immobilization by MICP. Therefore, we conducted MICP and MICP-biochar-magnesium oxide treatments on agricultural soils collected from Baiyin, Gansu Province (pH = 8.62), and analyzed the effects of the number of treatments with cement and the concentration of calcium chloride on the immobilization of Cd by MICP and combined treatments. The results showed that early-stage MICP could immobilize exchangeable cadmium and increase the residual cadmium content, especially with high-concentration calcium chloride MICP treatment. However, in the later stage, soil nitrification and exchange processes led to the dissolution of carbonate-bound cadmium and cadmium activation. The fixing effect of MICP influence whether the MICP-MgO-biochar is superior to the MgO-biochar. Four treatments with cement were more effective than single treatment in MICP-biochar-magnesium oxide treatment, and the MICP-biochar-magnesium oxide treatment with four treatments was the most effective, with passivation rates of 40.7% and 46.6% for exchangeable cadmium and bioavailable cadmium, respectively. However, attention should be paid to the increase in soil salinity. The main mechanism of MICP-magnesium oxide-biochar treatment in immobilizing cadmium was the formation of Cd(OH)2, followed by the formation of cadmium carbonate.

2.
Sci Total Environ ; 917: 170594, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38309366

ABSTRACT

Heavy metal composite pollution is widespread in the surrounding environment of tailings ponds in arid and semi-arid regions, leading to the abandonment of substantial agricultural land. This study investigates the speciation distribution and plant accumulation characteristics of heavy metals in abandoned farmland with different durations of natural aging. The aim is to comprehend the local heavy metal behavior pattern in the soil-plant system and offer insights for environmental remediation. Our findings reveal that Cd stands out as the primary heavy metal pollutant in this area. The mobility ranking of heavy metals is Cd > Pb > Zn > Cu, with Cd and Pb mobility decreasing along the basin. Notably, active Pb exhibits a higher affinity for soil binding compared to other metals. The predominant plant species in the region are primarily small shrubs, herbaceous plants, and semi-shrubs that demonstrate tolerance to drought and salt. Most plant samples showed elevated levels of Cd, Pb, and Zn, surpassing the maximum tolerance levels for dietary minerals in livestock. This elevated metal content poses potential threats to the health of local livestock and wildlife, yet it is also considered a potential for phytoremediation. Selected dominant plant species from the current study include Kalidium foliatum & gracile which shows potential as a Cd accumulator and indicator. Neotrinia splendens and Reaumuria songarica demonstrate potential as Cd excluders, with the latter exhibiting higher tolerance to Cd (62.9 mg/kg). Additionally, our observations indicate that different plant parts exhibit distinct responses to heavy metals, and Zn synergistically influences the aerial part accumulation of Cd. This study holds significant importance in understanding the complex behavior patterns of multi-metal pollutants in the natural environment. The identification of native plants with remediation potential is valuable for phytoremediation of environment pollution in mining area.


Subject(s)
Environmental Pollutants , Metals, Heavy , Soil Pollutants , Soil , Cadmium , Farms , Lead , Soil Pollutants/analysis , Metals, Heavy/analysis , Plants , China , Environmental Monitoring
SELECTION OF CITATIONS
SEARCH DETAIL