Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 302
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 151(2): 372-83, 2012 Oct 12.
Article in English | MEDLINE | ID: mdl-23063126

ABSTRACT

Mammalian two-pore channel proteins (TPC1, TPC2; TPCN1, TPCN2) encode ion channels in intracellular endosomes and lysosomes and were proposed to mediate endolysosomal calcium release triggered by the second messenger, nicotinic acid adenine dinucleotide phosphate (NAADP). By directly recording TPCs in endolysosomes from wild-type and TPC double-knockout mice, here we show that, in contrast to previous conclusions, TPCs are in fact sodium-selective channels activated by PI(3,5)P(2) and are not activated by NAADP. Moreover, the primary endolysosomal ion is Na(+), not K(+), as had been previously assumed. These findings suggest that the organellar membrane potential may undergo large regulatory changes and may explain the specificity of PI(3,5)P(2) in regulating the fusogenic potential of intracellular organelles.


Subject(s)
Calcium Channels/metabolism , Lysosomes/metabolism , Phosphatidylinositol Phosphates/metabolism , Animals , Calcium/metabolism , Calcium Channels/genetics , Cell Line , Glucose/metabolism , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Mice , Mice, Knockout , NADP/analogs & derivatives , NADP/metabolism , Sodium Channels/metabolism
2.
Circ Res ; 134(1): 60-80, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38084631

ABSTRACT

BACKGROUND: Increasing evidence suggests that long noncoding RNAs play significant roles in vascular biology and disease development. One such long noncoding RNA, PSMB8-AS1, has been implicated in the development of tumors. Nevertheless, the precise role of PSMB8-AS1 in cardiovascular diseases, particularly atherosclerosis, has not been thoroughly elucidated. Thus, the primary aim of this investigation is to assess the influence of PSMB8-AS1 on vascular inflammation and the initiation of atherosclerosis. METHODS: We generated PSMB8-AS1 knockin and Apoe (Apolipoprotein E) knockout mice (Apoe-/-PSMB8-AS1KI) and global Apoe and proteasome subunit-ß type-9 (Psmb9) double knockout mice (Apoe-/-Psmb9-/-). To explore the roles of PSMB8-AS1 and Psmb9 in atherosclerosis, we fed the mice with a Western diet for 12 weeks. RESULTS: Long noncoding RNA PSMB8-AS1 is significantly elevated in human atherosclerotic plaques. Strikingly, Apoe-/-PSMB8-AS1KI mice exhibited increased atherosclerosis development, plaque vulnerability, and vascular inflammation compared with Apoe-/- mice. Moreover, the levels of VCAM1 (vascular adhesion molecule 1) and ICAM1 (intracellular adhesion molecule 1) were significantly upregulated in atherosclerotic lesions and serum of Apoe-/-PSMB8-AS1KI mice. Consistently, in vitro gain- and loss-of-function studies demonstrated that PSMB8-AS1 induced monocyte/macrophage adhesion to endothelial cells and increased VCAM1 and ICAM1 levels in a PSMB9-dependent manner. Mechanistic studies revealed that PSMB8-AS1 induced PSMB9 transcription by recruiting the transcription factor NONO (non-POU domain-containing octamer-binding protein) and binding to the PSMB9 promoter. PSMB9 (proteasome subunit-ß type-9) elevated VCAM1 and ICAM1 expression via the upregulation of ZEB1 (zinc finger E-box-binding homeobox 1). Psmb9 deficiency decreased atherosclerotic lesion size, plaque vulnerability, and vascular inflammation in Apoe-/- mice in vivo. Importantly, endothelial overexpression of PSMB8-AS1-increased atherosclerosis and vascular inflammation were attenuated by Psmb9 knockout. CONCLUSIONS: PSMB8-AS1 promotes vascular inflammation and atherosclerosis via the NONO/PSMB9/ZEB1 axis. Our findings support the development of new long noncoding RNA-based strategies to counteract atherosclerotic cardiovascular disease.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , RNA, Long Noncoding , Animals , Humans , Mice , Apolipoproteins E/genetics , Atherosclerosis/metabolism , Endothelial Cells/metabolism , Inflammation/genetics , Mice, Inbred C57BL , Mice, Knockout , Plaque, Atherosclerotic/pathology , Proteasome Endopeptidase Complex/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
3.
Proc Natl Acad Sci U S A ; 120(34): e2215777120, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37585464

ABSTRACT

TRPML3 is a Ca2+/Na+ release channel residing in both phagophores and endolysosomal membranes. It is activated by PI3P and PI3,5P2. Its activity can be enhanced by high luminal pH and by replacing luminal Na+ with K+. Here, we report that big-conductance Ca2+-activated potassium (BK) channels form a positive feedback loop with TRPML3. Ca2+ release via TRPML3 activates BK, which in turn facilitates TRPML3-mediated Ca2+ release, potentially through removing luminal Na+ inhibition. We further show that TRPML3/BK and mammalian target of rapamycin (mTOR) form another positive feedback loop to facilitate autophagy induction in response to nutrient starvation, i.e., mTOR inhibition upon nutrient starvation activates TRPML3/BK, and this further reduces mTOR activity, thereby increasing autophagy induction. Mechanistically, the feedback regulation between TRPML3/BK and mTOR is mediated by PI3P, an endogenous TRPML3 activator that is enriched in phagophores and is up-regulated by mTOR reduction. Importantly, bacterial infection activates TRPML3 in a BK-dependent manner, and both TRPML3 and BK are required for mTOR suppression and autophagy induction responding to bacterial infection. Suppressing either TRPML3 or BK helps bacteria survival whereas increasing either TRPML3 or BK favors bacterial clearance. Considering that TRPML3/BK is inhibited by low luminal pH but activated by high luminal pH and PI3P in phagophores, we suggest that TRPML3/BK and mTOR form a positive feedback loop via PI3P to ensure efficient autophagy induction in response to nutrient deprivation and bacterial infection. Our study reveals a role of TRPML3-BK coupling in controlling cellular homeostasis and intracellular bacterial clearance via regulating mTOR signaling.


Subject(s)
Large-Conductance Calcium-Activated Potassium Channels , Sirolimus , Feedback , Large-Conductance Calcium-Activated Potassium Channels/physiology , Autophagy , Bacteria , TOR Serine-Threonine Kinases
4.
Cell ; 141(2): 331-43, 2010 Apr 16.
Article in English | MEDLINE | ID: mdl-20403327

ABSTRACT

A plethora of growth factors regulate keratinocyte proliferation and differentiation that control hair morphogenesis and skin barrier formation. Wavy hair phenotypes in mice result from naturally occurring loss-of-function mutations in the genes for TGF-alpha and EGFR. Conversely, excessive activities of TGF-alpha/EGFR result in hairless phenotypes and skin cancers. Unexpectedly, we found that mice lacking the Trpv3 gene also exhibit wavy hair coat and curly whiskers. Here we show that keratinocyte TRPV3, a member of the transient receptor potential (TRP) family of Ca(2+)-permeant channels, forms a signaling complex with TGF-alpha/EGFR. Activation of EGFR leads to increased TRPV3 channel activity, which in turn stimulates TGF-alpha release. TRPV3 is also required for the formation of the skin barrier by regulating the activities of transglutaminases, a family of Ca(2+)-dependent crosslinking enzymes essential for keratinocyte cornification. Our results show that a TRP channel plays a role in regulating growth factor signaling by direct complex formation.


Subject(s)
ErbB Receptors/metabolism , Hair/growth & development , Signal Transduction , Skin/growth & development , TRPV Cation Channels/metabolism , Animals , Calcium/metabolism , Cells, Cultured , Hair/metabolism , Humans , Keratinocytes/metabolism , Mice , Mice, Knockout , Skin/metabolism , TRPV Cation Channels/genetics , Transforming Growth Factor alpha/metabolism
5.
Small ; 20(25): e2309331, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38213019

ABSTRACT

The ß-relaxation is one of the major dynamic behaviors in metallic glasses (MGs) and exhibits diverse features. Despite decades of efforts, the understanding of its structural origin and contribution to the overall dynamics of MG systems is still unclear. Here two palladium-based Pd─Cu─P and Pd─Ni─P MGs are reported with distinct different ß-relaxation behaviors and reveal the structural origins for the difference using the advanced X-ray photon correlation spectroscopy and absorption fine structure techniques together with the first-principles calculations. The pronounced ß-relaxation and fast atomic dynamics in the Pd─Cu─P MG mainly come from the strong mobility of Cu atoms and their locally favored structures. In contrast, the motion of Ni atoms is constrained by P atoms in the Pd─Ni─P MG, leading to the weakened ß-relaxation peak and sluggish dynamics. The correlation of atomic dynamics with microscopic structures provides a way to understand the structural origins of different dynamic behaviors as well as the nature of aging in disordered materials.

6.
J Transl Med ; 22(1): 326, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566102

ABSTRACT

BACKGROUND: The effects of gut microbiota and metabolites on the responses to immune checkpoint inhibitors (ICIs) in advanced epidermal growth factor receptor (EGFR) wild-type non-small cell lung cancer (NSCLC) have been studied. However, their effects on EGFR-mutated (EGFR +) NSCLC remain unknown. METHODS: We prospectively recorded the clinicopathological characteristics of patients with advanced EGFR + NSCLC and assessed potential associations between the use of antibiotics or probiotics and immunotherapy efficacy. Fecal samples were collected at baseline, early on-treatment, response and progression status and were subjected to metagenomic next-generation sequencing and ultra-high-performance liquid chromatography-mass spectrometry analyses to assess the effects of gut microbiota and metabolites on immunotherapy efficacy. RESULTS: The clinical data of 74 advanced EGFR + NSCLC patients were complete and 18 patients' fecal samples were dynamically collected. Patients that used antibiotics had shorter progression-free survival (PFS) (mPFS, 4.8 vs. 6.7 months; P = 0.037); probiotics had no impact on PFS. Two dynamic types of gut microbiota during immunotherapy were identified: one type showed the lowest relative abundance at the response time point, whereas the other type showed the highest abundance at the response time point. Metabolomics revealed significant differences in metabolites distribution between responders and non-responders. Deoxycholic acid, glycerol, and quinolinic acid were enriched in responders, whereas L-citrulline was enriched in non-responders. There was a significant correlation between gut microbiota and metabolites. CONCLUSIONS: The use of antibiotics weakens immunotherapy efficacy in patients with advanced EGFR + NSCLC. The distribution characteristics and dynamic changes of gut microbiota and metabolites may indicate the efficacy of immunotherapy in advanced EGFR + NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Gastrointestinal Microbiome , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/therapy , Lung Neoplasms/drug therapy , Immunotherapy , ErbB Receptors/genetics , Anti-Bacterial Agents/therapeutic use
7.
New Phytol ; 242(2): 576-591, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38362937

ABSTRACT

Leucine-rich repeat receptor-like kinases (LRR-RLKs) comprise the largest class of membrane-localized receptor-like kinases in plants. Leucine-rich repeat receptor-like kinases are key immune sectors contributing to pattern-triggered immunity (PTI), but whether LRR-RLK mediates effector-triggered immunity (ETI) in plants remains unclear. In this study, we evaluated the function of LRR-RLKs in regulating ETI by using a virus-induced gene silencing (VIGS)-based reverse genetic screening assay, and identified a LRR-RLK named ETI-dependent receptor-like kinase 1 (EDK1) required for ETI triggered by the avirulence effector AVRblb2 secreted by Phytophthora infestans and its cognate receptor Rpi-blb2. Silencing or knockout of EDK1 compromised immunity mediated by Rpi-blb2 and the cell death triggered by recognition of AVRblb2. NLR-required for cell death 4 (NRC4), a signaling component acts downstream of Rpi-blb2, was identified that interacts with EDK1 using the LC-MS analysis and the interaction was further evaluated by co-immunoprecipitation. EDK1 promotes protein accumulation of NRC4 in a kinase-dependent manner and positively regulates resistance to P. infestans in Nicotiana benthamiana. Our study revealed that EDK1 positively regulates plant ETI through modulating accumulation of the NLR signaling component NRC4, representing a new regulatory role of the membrane-localized LRR-RLKs in plant immunity.


Subject(s)
Innate Immunity Recognition , Nicotiana , Nicotiana/genetics , Leucine , Plants , Plant Immunity , Cell Death , Plant Diseases/genetics
8.
Arch Virol ; 169(6): 123, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753216

ABSTRACT

Chinese bayberry is a fruit that is appreciated for its taste. A novel totivirus associated with rolling, disfiguring, chlorotic and vein-clearing symptoms on the leaf apices of Chinese bayberry was identified by transcriptome sequencing and reverse transcription PCR (RT-PCR). The complete genome of the virus was determined to be 4959 nucleotides long, and it contains two open reading frames (ORFs). Its genomic organization is similar to that of previously reported totiviruses. ORF1 encodes a putative coat protein (CP) of 765 aa, and ORF2 encodes an RNA-dependent RNA polymerase (RdRp) of 815 aa. These two putative proteins share 55.1% and 62.6%, amino acid sequence identity, respectively, with the corresponding proteins of Panax notoginseng virus A, respectively. According to the demarcation criteria for totivirus species established by the International Committee on Taxonomy of Viruses (ICTV), the new virus should be considered a member of a new species in the genus totivirus, family Orthototiviridae, which we have tentatively named ''Myrica rubra-associated totivirus'' (MRaTV).


Subject(s)
Genome, Viral , Myrica , Open Reading Frames , Phylogeny , Plant Diseases , Plant Leaves , Totivirus , Whole Genome Sequencing , Genome, Viral/genetics , Plant Diseases/virology , Plant Leaves/virology , Myrica/virology , Myrica/genetics , Totivirus/genetics , Totivirus/isolation & purification , Totivirus/classification , Viral Proteins/genetics , RNA-Dependent RNA Polymerase/genetics , RNA, Viral/genetics
9.
BMC Infect Dis ; 24(1): 485, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730327

ABSTRACT

BACKGROUND: Neurobrucellosis (NB) is a rare and serious complication of brucellosis. Its clinical manifestations vary, with no obvious specificity. At present, there is no clear clinical diagnosis or treatment for reference. In this study, we retrospectively analyzed the clinical data for 21 patients with NB to provide reference data for its further study. METHODS: We analyzed the epidemiological and clinical manifestations, laboratory tests, imaging examinations, cerebrospinal fluid, and treatment plans of 21 patients diagnosed with NB in the Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China. RESULTS: The ages of the patients ranged from 15 to 60 years old (mean age 40.1 ± 13.33 years), the male: female ratio was 4.25:1. Thirteen patients had a history of animal (sheep, cattle) contact, three had no history of animal contact, and the contact status of four was unknown. Brucella can invade various systems of the body and show multi-system symptoms, the main general manifestations were fever (66.67%), fatigue (57.14%) and functional urination or defecation disturbance (42.86%). The main nervous system manifestations were limb weakness (52.38%) and hearing loss (47.62%).The main positive signs of the nervous system included positive pathological signs (71.43%), sensory abnormalities (52.38%), limb paralysis (42.86%). Nervous system lesions mainly included spinal cord damage (66.67%), cranial nerve involvement (61.90%), central demyelination (28.57%) and meningitis (28.57%). In patients with cranial nerve involvement, 69.23% of auditory nerve, 15.38% of optic nerve and 15.38% of oculomotor nerve were involved. The blood of eight patients was cultured for Brucella, and three (37.5%) cultures were positive and five (63.5%) negative. The cerebrospinal fluid (CSF) of eight patients was cultured for Brucella, and two (25.00%) cultures were positive and six (75.00%) negative. Nineteen of the patients underwent a serum agglutination test (SAT), 18 (94.74%) of whom were positive and one (5.26%) of whom were negative. A biochemical analysis of the CSF was performed in 21 patients, and the results were all abnormal. Nineteen patients underwent magnetic resonance imaging (MRI). Twenty-one patients were treated with doxycycline and/or rifampicin, combined with ceftriaxone, quinolone, aminoglycoside, or minocycline. After hospitalization, 15 patients improved (71.43%), two patients did not recover, and the status of four patients was unknown. CONCLUSIONS: The clinical manifestations, CSF parameters, and neurological imaging data for patients with NB show no significant specificity or correlations. When patients with unexplained neurological symptoms accompanied by fever, fatigue, and other systemic manifestations in a brucellosis epidemic area or with a history of contact with cattle, sheep, animals, or raw food are encountered in clinical practice, the possibility of NB should be considered. Treatment is based on the principles of an early, combined, and long course of treatment, and the general prognosis is good.


Subject(s)
Anti-Bacterial Agents , Brucellosis , Humans , Male , Female , Middle Aged , Brucellosis/drug therapy , Brucellosis/microbiology , Brucellosis/cerebrospinal fluid , Brucellosis/diagnosis , Brucellosis/epidemiology , Adult , Anti-Bacterial Agents/therapeutic use , Retrospective Studies , Adolescent , Young Adult , China/epidemiology , Treatment Outcome , Brucella/isolation & purification , Animals
10.
Acta Pharmacol Sin ; 45(3): 517-530, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37880339

ABSTRACT

Malignant ventricular arrhythmia (VA) after myocardial infarction (MI) is mainly caused by myocardial electrophysiological remodeling. Brahma-related gene 1 (BRG1) is an ATPase catalytic subunit that belongs to a family of chromatin remodeling complexes called Switch/Sucrose Non-Fermentable Chromatin (SWI/SNF). BRG1 has been reported as a molecular chaperone, interacting with various transcription factors or proteins to regulate transcription in cardiac diseases. In this study, we investigated the potential role of BRG1 in ion channel remodeling and VA after ischemic infarction. Myocardial infarction (MI) mice were established by ligating the left anterior descending (LAD) coronary artery, and electrocardiogram (ECG) was monitored. Epicardial conduction of MI mouse heart was characterized in Langendorff-perfused hearts using epicardial optical voltage mapping. Patch-clamping analysis was conducted in single ventricular cardiomyocytes isolated from the mice. We showed that BRG1 expression in the border zone was progressively increased in the first week following MI. Cardiac-specific deletion of BRG1 by tail vein injection of AAV9-BRG1-shRNA significantly ameliorated susceptibility to electrical-induced VA and shortened QTc intervals in MI mice. BRG1 knockdown significantly enhanced conduction velocity (CV) and reversed the prolonged action potential duration in MI mouse heart. Moreover, BRG1 knockdown improved the decreased densities of Na+ current (INa) and transient outward potassium current (Ito), as well as the expression of Nav1.5 and Kv4.3 in the border zone of MI mouse hearts and in hypoxia-treated neonatal mouse ventricular cardiomyocytes. We revealed that MI increased the binding among BRG1, T-cell factor 4 (TCF4) and ß-catenin, forming a transcription complex, which suppressed the transcription activity of SCN5A and KCND3, thereby influencing the incidence of VA post-MI.


Subject(s)
Myocardial Infarction , Mice , Animals , Myocardial Infarction/metabolism , Arrhythmias, Cardiac/genetics , Myocardium/pathology , Transcription Factors/genetics , Transcription Factors/metabolism , Myocytes, Cardiac/metabolism
11.
Acta Derm Venereol ; 104: adv13213, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38299232

ABSTRACT

Retinal G protein-coupled receptor (RGR), a photosensitive protein, functions as a retinal photoisomerase under light conditions in humans. Cutaneous squamous cell carcinoma (cSCC) is linked to chronic ultraviolet exposure, which suggests that the photoreceptor RGR may be associated with tumorigenesis and progression of squamous cell carcinoma (SCC). However, the expression and function of RGR remain uncharacterized in SCC. This study analysed RGR expression in normal skin and in lesions of actinic keratosis, Bowen's disease and invasive SCC of the skin with respect to SCC initiation and development. A total of 237 samples (normal skin (n = 28), actinic keratosis (n = 42), Bowen's (n = 35) and invasive SCC (n = 132) lesions) were examined using immunohistochemistry. Invasive SCC samples had higher expression of RGR protein than the other samples. A high immunohistochemical score for RGR was associated with increased tumour size, tumour depth, Clark level, factor classification, and degree of differentiation and a more aggressive histological subtype. In addition, RGR expression was inversely correlated with involucrin expression and positively correlated with proliferating cell nuclear antigen (PCNA) and Ki67 expression. Furthermore, RGR regulates SCC cell differentiation through the PI3K-Akt signalling pathway, as determined using molecular biology approaches in vitro, suggesting that high expression of RGR is associated with aberrant proliferation and differentiation in SCC.


Subject(s)
Bowen's Disease , Carcinoma, Squamous Cell , Keratosis, Actinic , Skin Neoplasms , Humans , Carcinoma, Squamous Cell/pathology , Keratosis, Actinic/pathology , Skin Neoplasms/pathology , Phosphatidylinositol 3-Kinases , Bowen's Disease/pathology , Cell Proliferation , Cell Differentiation , Receptors, G-Protein-Coupled
12.
Curr Microbiol ; 81(7): 182, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769214

ABSTRACT

Fusarium proliferatum is the main pathogen that causes Panax notoginseng root rot. The shortcomings of strong volatility and poor water solubility of Illicium verum essential oil (EO) limit its utilization. In this study, we prepared traditional emulsion (BDT) and nanoemulsion (Bneo) of I. verum EO by ultrasonic method with Tween-80 and absolute ethanol as solvents. The chemical components of EO, BDT, and Bneo were identified by gas chromatography-mass spectrometry (GC-MS) and the antifungal activity and mechanism were compared. The results show that Bneo has good stability and its particle size is 34.86 nm. The contents of (-) -anethole and estragole in Bneo were significantly higher than those in BDT. The antifungal activity against F. proliferatum was 5.8-fold higher than BDT. In the presence of I. verum EO, the occurrence of P. notoginseng root rot was significantly reduced. By combining transcriptome and metabolomics analysis, I. verum EO was found to be involved in the mutual transformation of pentose and glucuronic acid, galactose metabolism, streptomycin biosynthesis, carbon metabolism, and other metabolic pathways of F. proliferatum, and it interfered with the normal growth of F. proliferatum to exert antifungal effects. This study provide a theoretical basis for expanding the practical application of Bneo.


Subject(s)
Antifungal Agents , Emulsions , Fusarium , Illicium , Metabolomics , Oils, Volatile , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Fusarium/drug effects , Fusarium/genetics , Fusarium/metabolism , Illicium/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Antifungal Agents/chemistry , Emulsions/chemistry , Transcriptome , Gas Chromatography-Mass Spectrometry , Plant Diseases/microbiology , Plant Diseases/prevention & control , Gene Expression Profiling
13.
Environ Geochem Health ; 46(5): 157, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38592345

ABSTRACT

The bioavailable mercury (Hg) in the soil is highly active and can affect the formulation of methyl-Hg (MeHg) in soil and its accumulation in rice. Herein, we predicted the concentration of MeHg in rice using bioavailable Hg extracted from soils; additionally, we determined the threshold value of soil Hg in karst mountain areas based on species sensitivity distribution. The bioavailable Hg was extracted using calcium chloride, hydrochloric acid (HCl), diethylenetriaminepentaacetic acid mixture, ammonium acetate, and thioglycolic acid. Results showed that HCl is the best extractant, and the prediction model demonstrated good predictability of the MeHg concentration in rice based on the HCl-extractable Hg, pH, and soil organic matter (SOM) data. Compared with the actual MeHg concentration in rice, approximately 99% of the predicted values (n = 103) were within the 95% prediction range, indicating the good performance of the rice MeHg prediction model based on soil pH, SOM, and bioavailable Hg in karst mountain areas. Based on this MeHg prediction model, the safety threshold of soil Hg was calculated to be 0.0936 mg/kg, which is much lower than the soil pollution risk screening value of agricultural land (0.5 mg/kg), suggesting that a stricter standard should be applied regarding soil Hg in karst mountain areas. This study presents the threshold of soil Hg pollution for rice safety in karst mountain areas, and future studies should target this threshold range.


Subject(s)
Mercury , Methylmercury Compounds , Oryza , Soil , Agriculture
14.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(5): 622-625, 2024 May 10.
Article in Zh | MEDLINE | ID: mdl-38684313

ABSTRACT

OBJECTIVE: To carry out invasive prenatal diagnosis for a fetus with ultrasound-indicated agenesis of corpus callosum and explore its genetic etiology. METHODS: A pregnant woman presented at the Affiliated Hospital of Putian College on December 16, 2022 was selected as the study subject. Amniotic fluid and peripheral blood samples from the fetus and the couple were collected. Conventional G-banded chromosomal karyotyping was carried out, and whole-genome copy number variation analysis was performed using single nucleotide polymorphism microarray (SNP-array). RESULTS: The karyotypes of the fetus and the couple were normal by the G-banding analysis. SNP-array analysis of the amniotic fluid sample revealed a 4.5 Mb microdeletion in the 18q21.2q21.31 region of the fetus. SNP-array analysis of peripheral blood samples from the couple did not find any abnormality. CONCLUSION: Through G-banded chromosomal karyotyping and SNP-array analysis, a fetus with 18q21.2q21.31 microdeletion was identified, which has conformed to the diagnosis of Pitt-Hopkins syndrome. Above finding has provided a basis for genetic counseling for the couple.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 18 , Hyperventilation , Intellectual Disability , Karyotyping , Humans , Female , Pregnancy , Intellectual Disability/genetics , Chromosomes, Human, Pair 18/genetics , Adult , Hyperventilation/genetics , Polymorphism, Single Nucleotide , Prenatal Diagnosis , Fetus/abnormalities , Facies , Chromosome Banding , DNA Copy Number Variations
15.
Pharmacogenet Genomics ; 33(5): 101-110, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37261937

ABSTRACT

BACKGROUND: Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by deficits in social communication and restrictive behaviors. Mouse nerve growth factor (mNGF), a neurotrophic factor, is critical for neuronal growth and survival, and the mNGF treatment is considered a promising therapy for neurodegeneration. In light of this, we aimed to evaluate the effect of mNGF on neurological function in ASD. METHODS: An ASD rat model was established by intraperitoneal injection of valproic acid (VPA). Social behavior, learning, and memory of the rats were measured. TdT-mediated dUTP Nick-end labeling and Nissl assays were performed to detect neuronal apoptosis and survival in the hippocampus and prefrontal cortex. Apoptosis-related proteins and oxidative stress markers were detected. RESULTS: mNGF improved locomotor activity, exploratory behavior, social interaction, and spatial learning and memory in VPA-induced ASD rats. In the hippocampus and prefrontal cortex, mNGF suppressed neuronal apoptosis, increased the number of neurons, superoxide dismutase, and glutathione levels, and decreased reactive oxygen species, nitric oxide, TNF-α, and IL-1ß levels compared with the VPA group. In addition, mNGF increased the levels of Bcl-2, p-phosphoinositide-3-kinase (PI3K), and p-serine/threonine kinase (Akt), and decreased the levels of Bax and cleaved caspase-3, while the PI3K inhibitor LY294002 reversed these effects. CONCLUSION: These data suggest that mNGF suppressed neuronal apoptosis and ameliorated the abnormal behaviors in VPA-induced ASD rats, in part, by activating the PI3K/Akt signaling pathway.


Subject(s)
Autism Spectrum Disorder , Valproic Acid , Rats , Animals , Mice , Humans , Valproic Acid/adverse effects , Autism Spectrum Disorder/chemically induced , Autism Spectrum Disorder/drug therapy , Protein Serine-Threonine Kinases/adverse effects , Protein Serine-Threonine Kinases/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinase/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/pharmacology , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/pharmacology , Signal Transduction , Apoptosis , Phosphatidylinositols/adverse effects , Serine/adverse effects , Disease Models, Animal
16.
Small ; 19(47): e2304384, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37480176

ABSTRACT

Responsive structural colors from artificially engineered micro/nanostructures are critical to the development of anti-counterfeiting, optical encryption, and intelligent display. Herein, the responsive structural color of hydrogel micropillar array is demonstrated under the external stimulus of ethanol vapor. Micropillar arrays with full color are fabricated via femtosecond laser direct writing by controlling the height and diameter of the micropillars according to the FDTD simulation. Color-switching of the micropillar arrays is achieved in <1 s due to the formation of liquid film among micropillars. More importantly, the structural color blueshift of the micropillar arrays is sensitive to the micropillar diameter, instead of the micropillar height. The micropillar array with a diameter of 772 nm takes 400 ms to complete blueshift under ethanol vapor, while that with a diameter of 522 nm blueshifts at 2400 ms. Microscale patterns are realized by employing the size-dependent color-switching of designed micropillar arrays under ethanol vapor. Moreover, Morse code and directional blueshift of structural colors are realized in the micropillar arrays. The advantages of controllable color-switching of the hydrogel micropillar array would be prospective in the areas of optical encryption, dynamic display, and anti-counterfeiting.

17.
Small ; 19(40): e2303166, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37264716

ABSTRACT

With the development of bionics as well as materials science, intelligent soft actuators have shown promising applications in many fields such as soft robotics, sensing, and remote manipulation. Microfabrication technologies have enabled the reduction of the size of responsive soft actuators to the micron level. However, it is still challenging to construct microscale actuators capable of responding to different external stimuli in complex and diverse conditions. Here, this work demonstrates a dual-stimuli cooperative responsive hydrogel microactuator by asymmetric fabrication via femtosecond laser direct writing. The dual response of the hydrogel microstructure is achieved by employing responsive hydrogel with functional monomer 2-(dimethylamino)ethyl methacrylate. Raman spectra of the hydrogel microstructures suggest that the pH and temperature response of the hydrogel is generated by the changes in tertiary amine groups and hydrogen bonds, respectively. The asymmetric hydrogel microstructures show opposite bending direction when being heated to high temperature or exposed to acid solution, and can independently accomplish the grasp of polystyrene microspheres. Moreover, this work depicts the cooperative response of the hydrogel microactuator to pH and temperature at the same time. The dual-stimuli cooperative responsive hydrogel microactuators will provide a strategy for designing and fabricating controllable microscale actuators with promising applications in microrobotics and microfluidics.

18.
Small ; 19(49): e2303572, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37592111

ABSTRACT

Cross-scale micro-nano structures play an important role in semiconductors, MEMS, chemistry, and cell biology. Positive photoresist is widely used in lithography due to the advantages of high resolution and environmental friendliness. However, cross-scale micro-nano structures of positive photoresist are difficult to flexibly pattern, and the feature resolution is limited by the optical diffraction. Here, cross-scale patterned micro-nano structures are achieved using the positive photoresist based on the femtosecond laser maskless optical projection lithography (MOPL) technique. The dependence between exposure dose and groove width is comprehensively analyzed, and a feature size of 112 nm is obtained at 110 µW. Furthermore, large-area topography considering cell size is efficiently fabricated by the MOPL technique, which enables the regulation of cell behavior. The proposed protocol of achieving cross-scale structures with the exact size by MOPL of positive photoresist would provide new avenues for potential applications in nanoelectronics and tissue engineering.


Subject(s)
Lasers , Printing , Surface Properties , Cell Size
19.
Small ; 19(29): e2300311, 2023 07.
Article in English | MEDLINE | ID: mdl-37026658

ABSTRACT

Cell aggregates as a 3D culture model can effectively mimic the physiological processes such as embryonic development, immune response, and tissue renewal in vivo. Researches show that the topography of biomaterials plays an important role in regulating cell proliferation, adhesion, and differentiation. It is of great significance to understand how cell aggregates respond to surface topography. Herein, microdisk array structures with the optimized size are used to investigate the wetting of cell aggregates. Cell aggregates exhibit complete wetting with distinct wetting velocities on the microdisk array structures of different diameters. The wetting velocity of cell aggregates reaches a maximum of 293 µm h-1 on microdisk structures with a diameter of 2 µm and is a minimum of 247 µm h-1 on microdisk structures of 20 µm diameter, which suggests that the cell-substrates adhesion energy on the latter is smaller. Actin stress fibers, focal adhesions (FAs), and cell morphology are analyzed to reveal the mechanisms of variation of wetting velocity. Furthermore, it is demonstrated that cell aggregates adopt climb and detour wetting modes on small and large-sized microdisk structures, respectively. This work reveals the response of cell aggregates to micro-scale topography, providing guidance for better understanding of tissue infiltration.


Subject(s)
Biocompatible Materials , Focal Adhesions , Cell Adhesion , Focal Adhesions/metabolism , Biocompatible Materials/chemistry , Wettability , Actins/metabolism
20.
Opt Express ; 31(2): 3258-3268, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36785322

ABSTRACT

A Bragg grating is successfully inscribed in a piece of strongly coupled seven-core fiber (SCF). There are two separate Bragg resonance notches observed in the transmission spectrum, corresponding to backward coupling of HE11-like and HE12-like supermodes of the SCF. The mode coupling mechanism of the Bragg grating is theoretically investigated via modeling and analyzing modal properties of the SCF. The theoretical results agree well with the experimental results. Since the SCF is spliced between two standard single mode fibers with central alignments at both ends, the transmission spectrum of the device also contains a set of interference fringe due to modal interference between the supermodes. The device's responses to temperature and curvature are experimentally measured, respectively. The obtained temperature sensitivities and curvature sensitivities of the supermode Bragg grating notches are 9.55 pm/°C and 9.55 pm/°C, -1.8 pm/m-1 and -112.3 pm/m-1, respectively. The obtained temperature sensitivity and curvature sensitivity of one of the interference spectrum dips are 11.8 pm/°C and -3909.8 pm/m-1, respectively. This device is potentially useful for simultaneous measurement of temperature and curvature.

SELECTION OF CITATIONS
SEARCH DETAIL