Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Mol Ther ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38872307

ABSTRACT

Efferocytosis, the clearance of apoptotic cells by macrophages, plays a crucial role in inflammatory responses and effectively prevents secondary necrosis. However, the mechanisms underlying efferocytosis in acute pancreatitis (AP) remain unclear. In this study, we demonstrated the presence of efferocytosis in injured human and mouse pancreatic tissues. We also observed significant upregulation of CD47, an efferocytosis-related the "do not eat me" molecule in injured acinar cells. Subsequently, we used CRISPR-Cas9 gene editing, anti-adeno-associated virus (AAV) gene modification, and anti-CD47 antibody to investigate the potential therapeutic role of AP. CD47 expression was negatively regulated by upstream miR133a, which is controlled by the transcription factor TRIM28. To further investigate the regulation of efferocytosis and reduction of pancreatic necrosis in AP, we used miR-133a-agomir and pancreas-specific AAV-shTRIM28 to modulate CD47 expression. Our findings confirmed that CD47-mediated efferocytosis is critical for preventing pancreatic necrosis and suggest that targeting the TRIM28-miR133a-CD47 axis is clinically relevant for the treatment of AP.

2.
Am J Gastroenterol ; 119(6): 1158-1166, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38587286

ABSTRACT

INTRODUCTION: To investigate whether increased intrapancreatic fat deposition (IPFD) heightens the risk of diseases of the exocrine and endocrine pancreas. METHODS: A prospective cohort study was conducted using data from the UK Biobank. IPFD was quantified using MRI and a deep learning-based framework called nnUNet. The prevalence of fatty change of the pancreas (FP) was determined using sex- and age-specific thresholds. Associations between IPFD and pancreatic diseases were assessed with multivariate Cox-proportional hazard model adjusted for age, sex, ethnicity, body mass index, smoking and drinking status, central obesity, hypertension, dyslipidemia, liver fat content, and spleen fat content. RESULTS: Of the 42,599 participants included in the analysis, the prevalence of FP was 17.86%. Elevated IPFD levels were associated with an increased risk of acute pancreatitis (hazard ratio [HR] per 1 quintile change 1.513, 95% confidence interval [CI] 1.179-1.941), pancreatic cancer (HR per 1 quintile change 1.365, 95% CI 1.058-1.762) and diabetes mellitus (HR per 1 quintile change 1.221, 95% CI 1.132-1.318). FP was also associated with a higher risk of acute pancreatitis (HR 3.982, 95% CI 2.192-7.234), pancreatic cancer (HR 1.976, 95% CI 1.054-3.704), and diabetes mellitus (HR 1.337, 95% CI 1.122-1.593, P = 0.001). DISCUSSION: FP is a common pancreatic disorder. Fat in the pancreas is an independent risk factor for diseases of both the exocrine pancreas and endocrine pancreas.


Subject(s)
Pancreatic Diseases , Humans , Female , Male , Middle Aged , Prospective Studies , United Kingdom/epidemiology , Aged , Pancreatic Diseases/epidemiology , Pancreatic Diseases/metabolism , Pancreatic Diseases/diagnostic imaging , Adult , Magnetic Resonance Imaging , Pancreatitis/epidemiology , Risk Factors , Biological Specimen Banks , Incidence , Pancreatic Neoplasms/epidemiology , Pancreatic Neoplasms/pathology , Intra-Abdominal Fat/diagnostic imaging , Prevalence , Diabetes Mellitus/epidemiology , Pancreas, Exocrine/metabolism , Proportional Hazards Models , Pancreas/diagnostic imaging , Pancreas/pathology , Pancreas/metabolism , UK Biobank
3.
J Chem Inf Model ; 64(12): 4835-4849, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38847742

ABSTRACT

The lymphocyte-specific protein tyrosine kinase (LCK) plays a crucial role in both T-cell development and activation. Dysregulation of LCK signaling has been demonstrated to drive the oncogenesis of T-cell acute lymphoblastic leukemia (T-ALL), thus providing a therapeutic target for leukemia treatment. In this study, we introduced a sophisticated virtual screening strategy combined with biological evaluations to discover potent LCK inhibitors. Our initial approach involved utilizing the PLANET algorithm to assess and contrast various scoring methodologies suitable for LCK inhibitor screening. After effectively evaluating PLANET, we progressed to devise a virtual screening workflow that synergistically combines the strengths of PLANET with the capabilities of Schrödinger's suite. This integrative strategy led to the efficient identification of four potential LCK inhibitors. Among them, compound 1232030-35-1 stood out as the most promising candidate with an IC50 of 0.43 nM. Further in vitro bioassays revealed that 1232030-35-1 exhibited robust antiproliferative effects on T-ALL cells, which was attributed to its ability to suppress the phosphorylations of key molecules in the LCK signaling pathway. More importantly, 1232030-35-1 treatment demonstrated profound in vivo antileukemia efficacy in a human T-ALL xenograft model. In addition, complementary molecular dynamics simulations provided deeper insight into the binding kinetics between 1232030-35-1 and LCK, highlighting the formation of a hydrogen bond with Met319. Collectively, our study established a robust and effective screening strategy that integrates AI-driven and conventional methodologies for the identification of LCK inhibitors, positioning 1232030-35-1 as a highly promising and novel drug-like candidate for potential applications in treating T-ALL.


Subject(s)
Deep Learning , Lymphocyte Specific Protein Tyrosine Kinase p56(lck) , Molecular Docking Simulation , Protein Kinase Inhibitors , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/antagonists & inhibitors , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Animals , Drug Discovery , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Mice
4.
Bioorg Chem ; 150: 107553, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38901279

ABSTRACT

The overexpression of FGFR1 is thought to significantly contribute to the progression of triple-negative breast cancer (TNBC), impacting aspects such as tumorigenesis, growth, metastasis, and drug resistance. Consequently, the pursuit of effective inhibitors for FGFR1 is a key area of research interest. In response to this need, our study developed a hybrid virtual screening method. Utilizing KarmaDock, an innovative algorithm that blends deep learning with molecular docking, alongside Schrödinger's Residue Scanning. This strategy led us to identify compound 6, which demonstrated promising FGFR1 inhibitory activity, evidenced by an IC50 value of approximately 0.24 nM in the HTRF bioassay. Further evaluation revealed that this compound also inhibits the FGFR1 V561M variant with an IC50 value around 1.24 nM. Our subsequent investigations demonstrate that Compound 6 robustly suppresses the migration and invasion capacities of TNBC cell lines, through the downregulation of p-FGFR1 and modulation of EMT markers, highlighting its promise as a potent anti-metastatic therapeutic agent. Additionally, our use of molecular dynamics simulations provided a deeper understanding of the compound's specific binding interactions with FGFR1.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Molecular Dynamics Simulation , Protein Kinase Inhibitors , Receptor, Fibroblast Growth Factor, Type 1 , Triple Negative Breast Neoplasms , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Structure-Activity Relationship , Molecular Structure , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Cell Proliferation/drug effects , Drug Discovery , Cell Movement/drug effects , Molecular Docking Simulation , Cell Line, Tumor , Drug Evaluation, Preclinical
5.
Bioorg Chem ; 142: 106952, 2024 01.
Article in English | MEDLINE | ID: mdl-37952486

ABSTRACT

PARP1 is a multifaceted component of DNA repair and chromatin remodeling, making it an effective therapeutic target for cancer therapy. The recently reported proteolytic targeting chimera (PROTAC) could effectively degrade PARP1 through the ubiquitin-proteasome pathway, expanding the therapeutic application of PARP1 blocking. In this study, a series of nitrogen heterocyclic PROTACs were designed and synthesized through ternary complex simulation analysis based on our previous work. Our efforts have resulted in a potent PARP1 degrader D6 (DC50 = 25.23 nM) with high selectivity due to nitrogen heterocyclic linker generating multiple interactions with the PARP1-CRBN PPI surface, specifically. Moreover, D6 exhibited strong cytotoxicity to triple negative breast cancer cell line MDA-MB-231 (IC50 = 1.04 µM). And the proteomic results showed that the antitumor mechanism of D6 was found that intensifies DNA damage by intercepting the CDC25C-CDK1 axis to halt cell cycle transition in triple-negative breast cancer cells. Furthermore, in vivo study, D6 showed a promising PK property with moderate oral absorption activity. And D6 could effectively inhibit tumor growth (TGI rate = 71.4 % at 40 mg/kg) without other signs of toxicity in MDA-MB-321 tumor-bearing mice. In summary, we have identified an original scaffold and potent PARP1 PROTAC that provided a novel intervention strategy for the treatment of triple-negative breast cancer.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Mice , Animals , Triple Negative Breast Neoplasms/pathology , Proteomics , Cell Proliferation , Cell Cycle Checkpoints , Nitrogen , Cell Line, Tumor , cdc25 Phosphatases , Poly (ADP-Ribose) Polymerase-1 , CDC2 Protein Kinase
6.
Acta Pharmacol Sin ; 45(8): 1673-1685, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38641746

ABSTRACT

Acute kidney injury (AKI) is defined as sudden loss of renal function characterized by increased serum creatinine levels and reduced urinary output with a duration of 7 days. Ferroptosis, an iron-dependent regulated necrotic pathway, has been implicated in the progression of AKI, while ferrostatin-1 (Fer-1), a selective inhibitor of ferroptosis, inhibited renal damage, oxidative stress and tubular cell death in AKI mouse models. However, the clinical translation of Fer-1 is limited due to its lack of efficacy and metabolic instability. In this study we designed and synthesized four Fer-1 analogs (Cpd-A1, Cpd-B1, Cpd-B2, Cpd-B3) with superior plasma stability, and evaluated their therapeutic potential in the treatment of AKI. Compared with Fer-1, all the four analogs displayed a higher distribution in mouse renal tissue in a pharmacokinetic assay and a more effective ferroptosis inhibition in erastin-treated mouse tubular epithelial cells (mTECs) with Cpd-A1 (N-methyl-substituted-tetrazole-Fer-1 analog) being the most efficacious one. In hypoxia/reoxygenation (H/R)- or LPS-treated mTECs, treatment with Cpd-A1 (0.25 µM) effectively attenuated cell damage, reduced inflammatory responses, and inhibited ferroptosis. In ischemia/reperfusion (I/R)- or cecal ligation and puncture (CLP)-induced AKI mouse models, pre-injection of Cpd-A1 (1.25, 2.5, 5 mg·kg-1·d-1, i.p.) dose-dependently improved kidney function, mitigated renal tubular injury, and abrogated inflammation. We conclude that Cpd-A1 may serve as a promising therapeutic agent for the treatment of AKI.


Subject(s)
Acute Kidney Injury , Ferroptosis , Mice, Inbred C57BL , Phenylenediamines , Animals , Ferroptosis/drug effects , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Mice , Male , Phenylenediamines/pharmacology , Phenylenediamines/therapeutic use , Cyclohexylamines/pharmacology , Cyclohexylamines/therapeutic use , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism
7.
Arch Pharm (Weinheim) ; : e2400066, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809025

ABSTRACT

Oncogenic overexpression or activation of C-terminal Src kinase (CSK) has been shown to play an important role in triple-negative breast cancer (TNBC) progression, including tumor initiation, growth, metastasis, drug resistance. This revelation has pivoted the focus toward CSK as a potential target for novel treatments. However, until now, there are few inhibitors designed to target the CSK protein. Responding to this, our research has implemented a comprehensive virtual screening protocol. By integrating energy-based screening methods with AI-driven scoring functions, such as Attentive FP, and employing rigorous rescoring methods like Glide docking and molecular mechanics generalized Born surface area (MM/GBSA), we have systematically sought out inhibitors of CSK. This approach led to the discovery of a compound with a potent CSK inhibitory activity, reflected by an IC50 value of 1.6 nM under a homogeneous time-resolved fluorescence (HTRF) bioassay. Subsequently, molecule 2 exhibits strong growth inhibition of MD anderson - metastatic breast (MDA-MB) -231, Hs578T, and SUM159 cells, showing a level of growth inhibition comparable to that observed with dasatinib. Treatment with molecule 2 also induced significant G1 phase accumulation and cell apoptosis. Furthermore, we have explored the explicit binding interactions of the compound with CSK using molecular dynamics simulations, providing valuable insights into its mechanism of action.

8.
Tob Induc Dis ; 222024.
Article in English | MEDLINE | ID: mdl-39006371

ABSTRACT

INTRODUCTION: Tobacco smoking is a major risk factor for various diseases worldwide, including pancreatic exocrine diseases such as pancreatitis and pancreatic cancer (PC). Currently, few studies have examined the impact of smoking cessation on the likelihood of common pancreatic exocrine diseases. This study sought to determine whether smoking cessation would reduce pancreatitis and PC morbidity. METHODS: This cohort study used data from the UK Biobank (UKB) to examine the association between smoking status and the likelihood of pancreatitis and PC among 492855 participants. The subjects were divided into never smokers, ex-smokers, and current smokers. Using a multivariate-adjusted binary logistic regression model, we analyzed the relationship between different smoking conditions and the likelihood of pancreatitis and PC. Further, we studied the impact of smoking cessation on pancreatitis and PC compared with current smoking. RESULTS: After adjusting for potential confounders, current smokers had higher odds for acute pancreatitis (AP) (AOR=1.38; 95% CI: 1.18-1.61), chronic pancreatitis (CP) (AOR=3.29; 95% CI: 2.35-4.62) and PC (AOR=1.72; 95% CI: 1.42-2.09). People who quit smoking had comparable odds for the diseases as those who never smoked. Compared with current smokers, ex-smokers had reduced odds for AP (AOR=0.76; 95% CI: 0.64-0.89), CP (AOR=0.31; 95% CI: 0.21-0.46), and PC (AOR=0.62; 95% CI: 0.50-0.76). Subgroup analysis revealed reduced odds for these pancreatic diseases in males and females. CONCLUSIONS: Smokers have an increased odds for pancreatitis and pancreatic cancer. Moreover, smoking cessation can significantly reduce the odds for acute pancreatitis, chronic pancreatitis and pancreatic cancer.

9.
Naunyn Schmiedebergs Arch Pharmacol ; 397(8): 5989-5999, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38376541

ABSTRACT

Ferroptosis, characterized by lipid peroxidation, plays a significant role in the pathogenesis of acute pancreatitis (AP). While sterol O-acyltransferase 2 (Soat2) is known for its crucial regulatory role in cholesterol homeostasis, its involvement in the development of AP remains unreported. We conducted this study to identify the pivotal role of Soat2 in AP using transcriptomic databases. Subsequently, we confirmed its alterations through both in vitro and in vivo experimental models. Furthermore, we performed intervention with the Soat2 inhibitor avasimibe to evaluate pancreatic tissue pathology and serum enzymatic levels and observe inflammatory cell infiltration through immunohistochemistry. Additionally, changes in indicators related to ferroptosis were also observed. The results showed that in the AP mouse model, the protein and mRNA levels of Soat2 were significantly increased. Following avasimibe administration, there was a decrease in serum amylase levels, reduction in pancreatic tissue pathological damage, and attenuation of inflammatory cell infiltration. Furthermore, avasimibe administration resulted in downregulation of ferroptosis-related indicators. In conclusion, our findings suggest that the Soat2 inhibitor avasimibe protects against AP in mice through inhibition of the ferroptosis.


Subject(s)
Acinar Cells , Ferroptosis , Pancreatitis , Sterol O-Acyltransferase , Animals , Ferroptosis/drug effects , Pancreatitis/drug therapy , Pancreatitis/pathology , Pancreatitis/metabolism , Acinar Cells/drug effects , Acinar Cells/metabolism , Acinar Cells/pathology , Male , Mice , Sterol O-Acyltransferase/antagonists & inhibitors , Sterol O-Acyltransferase/metabolism , Mice, Inbred C57BL , Disease Models, Animal , Pancreas/pathology , Pancreas/drug effects , Pancreas/metabolism , Humans
10.
Eur J Med Chem ; 267: 116206, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38350360

ABSTRACT

Hematopoietic progenitor kinase 1 (HPK1), a serine/threonine kinase in the MAP4K family, is expressed predominantly in immune cells, and has been identified as a negative regulator of immune signaling. Accumulating evidences demonstrated that loss of HPK1 kinase function effectively enhances anti-tumor responses. In this study, we disclose the medicinal chemistry campaigns to discovery potent, selective, and orally active HPK1 inhibitors, starting from our previous work based on rigidification strategy. Systematically structure-activity relationship (SAR) exploration led to the identification of F03 (HMC-B17). The representative compound, HMC-B17, showed the potent HPK1 inhibition with an IC50 value of 1.39 nM and favorable selectivity against TCR-related kinases. In addition, the HMC-B17 effectively enhanced the IL-2 secretion in Jurkat cells (EC50 = 11.56 nM). Strikingly, immune-reverse effects and improved immune response in vivo were observed after HMC-B17 treatment. Furthermore, HMC-B17 combined with anti-PD-L1 antibody demonstrated a synergistic antitumor efficacy with TGI% value of 71.24 % in CT26 model. Collectively, our findings suggest that HMC-B17 could be a valuable lead compound to develop a safe and potent HPK1 inhibitor for further cancer immunotherapy.


Subject(s)
Signal Transduction , Humans , Jurkat Cells
11.
Talanta ; 270: 125571, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38154354

ABSTRACT

Acute myocardial infarction (AMI) patients are at an elevated risk for life-threatening myocardial ischemia/reperfusion injury. Early-stage nonradioactive and noninvasive diagnosis of AMI is imperative for the subsequent disease treatment, yet it presents substantial challenges. After AMI, the myocardium typically exhibits elevated levels of peroxynitrite (ONOO-), constituting a distinct microenvironmental feature. In this context, the near-infrared imaging probe (BBEB) is employed to precisely delineate the boundaries of AMI lesions with a high level of sensitivity and specificity by monitoring endogenous ONOO-. This probe allows for the early detection of myocardial damage at cellular and animal levels, providing exceptional temporal and spatial resolution. Notably, BBEB enables visualization of ONOO- level alterations during AMI treatment incorporating antioxidant drugs. Overall, BBEB can rapidly and accurately visualize myocardial injury, particularly in the early stages, and can further facilitate antioxidant drug screening.


Subject(s)
Myocardial Infarction , Myocardial Reperfusion Injury , Animals , Humans , Antioxidants/pharmacology , Myocardial Infarction/diagnostic imaging , Myocardium , Diagnostic Imaging , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/prevention & control , Peroxynitrous Acid , Fluorescent Dyes
12.
Adv Sci (Weinh) ; 11(13): e2306309, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38269648

ABSTRACT

Bystander-killing payloads can significantly overcome the tumor heterogeneity issue and enhance the clinical potential of antibody-drug conjugates (ADC), but the rational design and identification of effective bystander warheads constrain the broader implementation of this strategy. Here, graph attention networks (GAT) are constructed for a rational bystander killing scoring model and ADC construction workflow for the first time. To generate efficient bystander-killing payloads, this model is utilized for score-directed exatecan derivatives design. Among them, Ed9, the most potent payload with satisfactory permeability and bioactivity, is further used to construct ADC. Through linker optimization and conjugation, novel ADCs are constructed that perform excellent anti-tumor efficacy and bystander-killing effect in vivo and in vitro. The optimal conjugate T-VEd9 exhibited therapeutic efficacy superior to DS-8201 against heterogeneous tumors. These results demonstrate that the effective scoring approach can pave the way for the discovery of novel ADC with promising bystander payloads to combat tumor heterogeneity.


Subject(s)
Immunoconjugates , Cell Line, Tumor , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use
13.
Eur J Med Chem ; 275: 116542, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38875807

ABSTRACT

The potential for secondary stroke prevention, which can significantly reduce the risk of recurrent strokes by almost 90%, underscores its critical importance. N-butylphthalide (NBP) has emerged as a promising treatment for acute cerebral ischemia, yet its efficacy for secondary stroke prevention is hindered by inadequate pharmacokinetic properties. This study, driven by a comprehensive structural analysis, the iterative process of structure optimization culminated in the identification of compound B4, which demonstrated exceptional neuroprotective efficacy and remarkable oral exposure and oral bioavailability. Notably, in an in vivo transient middle cerebral artery occlusion (tMCAO) model, B4 substantially attenuated infarct volumes, surpassing the effectiveness of NBP. While oral treatment with B4 exhibited stronger prevention potency than NBP in photothrombotic (PT) model. In summary, compound B4, with its impressive oral bioavailability and potent neuroprotective effects, offers promise for both acute ischemic stroke treatment and secondary stroke prevention.


Subject(s)
Ischemic Stroke , Neuroprotective Agents , Secondary Prevention , Tetrazolium Salts , Animals , Humans , Male , Mice , Rats , Administration, Oral , Biological Availability , Dose-Response Relationship, Drug , Drug Discovery , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/prevention & control , Ischemic Stroke/prevention & control , Ischemic Stroke/drug therapy , Mice, Inbred C57BL , Molecular Structure , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemical synthesis , Structure-Activity Relationship , Tetrazolium Salts/administration & dosage , Tetrazolium Salts/pharmacokinetics , Tetrazolium Salts/pharmacology , Rats, Sprague-Dawley , Female
14.
Eur J Med Chem ; 275: 116539, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38878515

ABSTRACT

AML is an aggressive malignancy of immature myeloid progenitor cells. Discovering effective treatments for AML through cell differentiation and anti-proliferation remains a significant challenge. Building on previous studies on CDK2 PROTACs with differentiation-inducing properties, this research aims to enhance CDKs degradation through structural optimization to facilitate the differentiation and inhibit the proliferation of AML cells. Compound C3, featuring a 4-methylpiperidine ring linker, effectively degraded CDK2 with a DC50 value of 18.73 ± 10.78 nM, and stimulated 72.77 ± 3.51 % cell differentiation at 6.25 nM in HL-60 cells. Moreover, C3 exhibited potent anti-proliferative activity against various AML cell types. Degradation selectivity analysis indicated that C3 could be endowed with efficient degradation of CDK2/4/6/9 and FLT3, especially FLT3-ITD in MV4-11 cells. These findings propose that C3 combined targeting CDK2/4/6/9 and FLT3 with enhanced differentiation and proliferation inhibition, which holds promise as a potential treatment for AML.


Subject(s)
Antineoplastic Agents , Cyclin-Dependent Kinases , Drug Discovery , Leukemia, Myeloid, Acute , Protein Kinase Inhibitors , Proteolysis Targeting Chimera , Proteolysis , fms-Like Tyrosine Kinase 3 , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/metabolism , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/metabolism , Leukemia, Myeloid, Acute/drug therapy , Molecular Structure , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Structure-Activity Relationship , Proteolysis Targeting Chimera/chemistry , Proteolysis Targeting Chimera/pharmacology , Proteolysis Targeting Chimera/therapeutic use
15.
Eur J Med Chem ; 272: 116468, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38718626

ABSTRACT

High expression of ubiquitin-specific protease 10 (USP10) promote the proliferation of hepatocellular carcinoma (HCC), thus the development of USP10 inhibitors holds promise as a novel therapeutic approach for HCC treatment. However, the development of selective USP10 inhibitor is still limited. In this study, we developed a novel USP10 inhibitor for investigating the feasibility of targeting USP10 for the treatment of HCC. Due to high USP10 inhibition potency and prominent selectivity, compound D1 bearing quinolin-4(1H)-one scaffold was identified as a lead compound. Subsequent research revealed that D1 significantly inhibits cell proliferation and clone formation in HCC cells. Mechanistic insights indicated that D1 targets the ubiquitin pathway, facilitating the degradation of YAP (Yes-associated protein), thereby triggering the downregulation of p53 and its downstream protein p21. Ultimately, this cascade leads to S-phase arrest in HCC cells, followed by cell apoptosis. Collectively, our findings highlight D1 as a promising starting point for USP10-positive HCC treatment, underscoring its potential as a vital tool for unraveling the functional intricacies of USP10.


Subject(s)
Adaptor Proteins, Signal Transducing , Antineoplastic Agents , Carcinoma, Hepatocellular , Cell Proliferation , Drug Discovery , Liver Neoplasms , Transcription Factors , Ubiquitin Thiolesterase , YAP-Signaling Proteins , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/metabolism , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , Structure-Activity Relationship , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , YAP-Signaling Proteins/metabolism , Molecular Structure , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Apoptosis/drug effects , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Small Molecule Libraries/chemical synthesis , Cell Line, Tumor
16.
J Med Chem ; 67(3): 1914-1931, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38232131

ABSTRACT

Decaprenylphosphoryl-ß-d-ribose oxidase (DprE1) is a promising target for treating tuberculosis (TB). Currently, most novel DprE1 inhibitors are discovered through high-throughput screening, while computer-aided drug design (CADD) strategies are expected to promote the discovery process. In this study, with the aid of structure-based virtual screening and computationally guided design, a series of novel scaffold N-(1-(6-oxo-1,6-dihydropyrimidine)-pyrazole) acetamide derivatives with significant antimycobacterial activities were identified. Among them, compounds LK-60 and LK-75 are capable of effectively suppressing the proliferation of Mtb with MICMtb values of 0.78-1.56 µM, comparable with isoniazid and much superior to the phase II candidate TBA-7371 (MICMtb = 12.5 µM). LK-60 is also the most active DprE1 inhibitor derived from CADD so far. Further studies confirmed their high affinity to DprE1, good safety profiles to gut microbiota and human cells, and synergy effects with either rifampicin or ethambutol, indicating their broad potential for clinical applications.


Subject(s)
Mycobacterium tuberculosis , Humans , Antitubercular Agents/pharmacology , Alcohol Oxidoreductases , Pyrazoles/pharmacology , Acetamides/pharmacology , Bacterial Proteins
17.
J Med Chem ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39084610

ABSTRACT

HPK1, a well-known negative regulator of T cell receptors, can cause T cell dysfunction when abnormally activated. In this study, a PROTAC C3 was designed and synthesized by optimizing the physicochemical properties of the warhead, linker, and CRBN ligand. C3 demonstrated significant HPK1 degradation with a DC50 of 21.26 nM, excellent oral absorption with a Cmax of 10,899.92 ng/mL, and a bioavailability (F %) of 81.7%. C3 also showed degradation selectivity and potent immune activation effects. Proteomic and WB analyses revealed that immune-activating effect of C3 is attributed to the inhibition of SLP76 and NF-κB signaling pathways, as well as the enhancement of MAPK signaling pathway transduction. In vivo efficacy study demonstrated that oral administration of C3 in combination with anti-PDL1 antibody significantly inhibited tumor growth (tumor growth inhibition = 65.58%). These findings suggest that C3, a novel HPK1 PROTAC, holds promise as a therapeutic agent for tumor immunotherapy.

18.
J Med Chem ; 67(13): 11326-11353, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38913763

ABSTRACT

BRD9 is a pivotal epigenetic factor involved in cancers and inflammatory diseases. Still, the limited selectivity and poor phenotypic activity of targeted agents make it an atypically undruggable target. PROTAC offers an alternative strategy for overcoming the issue. In this study, we explored diverse E3 ligase ligands for the contribution of BRD9 PROTAC degradation. Through molecular docking, binding affinity analysis, and structure-activity relationship study, we identified a highly potent PROTAC E5, with excellent BRD9 degradation (DC50 = 16 pM) and antiproliferation in MV4-11 cells (IC50 = 0.27 nM) and OCI-LY10 cells (IC50 = 1.04 nM). E5 can selectively degrade BRD9 and induce cell cycle arrest and apoptosis. Moreover, the therapeutic efficacy of E5 was confirmed in xenograft tumor models, accompanied by further RNA-seq analysis. Therefore, these results may pave the way and provide the reference for the discovery and investigation of highly effective PROTAC degraders.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Molecular Docking Simulation , Ubiquitin-Protein Ligases , Humans , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Structure-Activity Relationship , Cell Proliferation/drug effects , Ubiquitin-Protein Ligases/metabolism , Cell Line, Tumor , Mice , Drug Discovery , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/pathology , Hematologic Neoplasms/metabolism , Transcription Factors/metabolism , Transcription Factors/antagonists & inhibitors , Apoptosis/drug effects , Proteolysis/drug effects , Mice, Nude , Mice, Inbred BALB C , Xenograft Model Antitumor Assays , Drug Screening Assays, Antitumor , Bromodomain Containing Proteins
19.
J Med Chem ; 67(14): 11712-11731, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38996382

ABSTRACT

Ferroptosis is a promising therapeutic target for injury-related diseases, yet diversity in ferroptosis inhibitors remains limited. In this study, initial structure optimization led us to focus on the bond dissociation enthalpy (BDE) of the N-H bond and the residency time of radical scavengers in a phospholipid bilayer, which may play an important role in ferroptosis inhibition potency. This led to the discovery of compound D1, exhibiting potent ferroptosis inhibition, high radical scavenging, and moderate membrane permeability. D1 demonstrated significant neuroprotection in an oxygen glucose deprivation/reoxygenation (OGD/R) model and reduced infarct volume in an in vivo stroke model upon intravenous treatment. Further screening based on this strategy identified NecroX-7 and Eriodictyol-7-O-glucoside as novel ferroptosis inhibitors with highly polar structural characteristics. This approach bridges the gap between free radical scavengers and ferroptosis inhibitors, providing a foundation for research and insights into novel ferroptosis inhibitor development.


Subject(s)
Ferroptosis , Free Radical Scavengers , Ischemic Stroke , Ferroptosis/drug effects , Animals , Free Radical Scavengers/pharmacology , Free Radical Scavengers/therapeutic use , Free Radical Scavengers/chemistry , Free Radical Scavengers/chemical synthesis , Ischemic Stroke/drug therapy , Humans , Mice , Structure-Activity Relationship , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/chemical synthesis , Drug Discovery , Male , Molecular Structure , Mice, Inbred C57BL
20.
Adv Sci (Weinh) ; 11(18): e2307899, 2024 May.
Article in English | MEDLINE | ID: mdl-38460164

ABSTRACT

Gastric cancer (GC) presents a formidable global health challenge, and conventional therapies face efficacy limitations. Ubiquitin-specific protease 7 (USP7) plays pivotal roles in GC development, immune response, and chemo-resistance, making it a promising target. Various USP7 inhibitors have shown selectivity and efficacy in preclinical studies. However, the mechanistic role of USP7 has not been fully elucidated, and currently, no USP7 inhibitors have been approved for clinical use. In this study, DHPO is identified as a potent USP7 inhibitor for GC treatment through in silico screening. DHPO demonstrates significant anti-tumor activity in vitro, inhibiting cell viability and clonogenic ability, and preventing tumor migration and invasion. In vivo studies using orthotopic gastric tumor mouse models validate DHPO's efficacy in suppressing tumor growth and metastasis without significant toxicity. Mechanistically, DHPO inhibition triggers ferroptosis, evidenced by mitochondrial alterations, lipid Reactive Oxygen Species (ROS), Malondialdehyde (MDA) accumulation, and iron overload. Further investigations unveil USP7's regulation of Stearoyl-CoA Desaturase (SCD) through deubiquitination, linking USP7 inhibition to SCD degradation and ferroptosis induction. Overall, this study identifies USP7 as a key player in ferroptosis of GC, elucidates DHPO's inhibitory mechanisms, and highlights its potential for GC treatment by inducing ferroptosis through SCD regulation.


Subject(s)
Ferroptosis , Stearoyl-CoA Desaturase , Stomach Neoplasms , Ubiquitin-Specific Peptidase 7 , Animals , Humans , Mice , Cell Line, Tumor , Disease Models, Animal , Ferroptosis/drug effects , Ferroptosis/genetics , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Ubiquitin-Specific Peptidase 7/metabolism , Ubiquitin-Specific Peptidase 7/genetics
SELECTION OF CITATIONS
SEARCH DETAIL