Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Infect Dis ; 224(4): 632-642, 2021 08 16.
Article in English | MEDLINE | ID: mdl-33367826

ABSTRACT

BACKGROUND: Ebola virus disease (EVD) supportive care strategies are largely guided by retrospective observational research. This study investigated the effect of EVD supportive care algorithms on duration of survival in a controlled nonhuman primate (NHP) model. METHODS: Fourteen rhesus macaques were challenged intramuscularly with a target dose of Ebola virus (1000 plaque-forming units; Kikwit). NHPs were allocated to intensive care unit (ICU)-like algorithms (n = 7), intravenous fluids plus levofloxacin (n = 2), or a control group (n = 5). The primary outcome measure was duration of survival, and secondary outcomes included changes in clinical laboratory values. RESULTS: Duration of survival was not significantly different between the pooled ICU-like algorithm and control groups (8.2 vs 6.9 days of survival; hazard ratio; 0.50; P = .25). Norepinephrine was effective in transiently maintaining baseline blood pressure. NHPs treated with ICU-like algorithms had delayed onset of liver and kidney injury. CONCLUSIONS: While an obvious survival difference was not observed with ICU-like care, clinical observations from this model may aid in EVD supportive care NHP model refinement.


Subject(s)
Critical Care , Hemorrhagic Fever, Ebola , Intensive Care Units , Animals , Disease Models, Animal , Ebolavirus , Hemorrhagic Fever, Ebola/therapy , Macaca mulatta , Primates , Retrospective Studies
2.
Clin Proteomics ; 16: 7, 2019.
Article in English | MEDLINE | ID: mdl-30774579

ABSTRACT

BACKGROUND: In-depth examination of the plasma proteomic response to infection with a wide variety of pathogens can assist in the development of new diagnostic paradigms, while providing insight into the interdependent pathogenic processes which encompass a host's immunological and physiological responses. Ebola virus (EBOV) causes a highly lethal infection termed Ebola virus disease (EVD) in primates and humans. The Gram negative non-spore forming bacillus Burkholderia pseudomallei (Bp) causes melioidosis in primates and humans, characterized by severe pneumonia with high mortality. We sought to examine the host response to infection with these two bio-threat pathogens using established animal models to provide information on the feasibility of pre-symptomatic diagnosis, since the induction of host molecular signaling networks can occur before clinical presentation and pathogen detection. METHODS: Herein we report the quantitative proteomic analysis of plasma collected at various times of disease progression from 10 EBOV-infected and 5 Bp-infected nonhuman primates (NHP). Our strategy employed high resolution LC-MS/MS and a peptide-tagging approach for relative protein quantitation. In each infection type, for all proteins with > 1.3 fold abundance change at any post-infection time point, a direct comparison was made with levels obtained from plasma collected daily from 5 naïve rhesus macaques, to determine the fold changes that were significant, and establish the natural variability of abundance for endogenous plasma proteins. RESULTS: A total of 41 plasma proteins displayed significant alterations in abundance during EBOV infection, and 28 proteins had altered levels during Bp infection, when compared to naïve NHPs. Many major acute phase proteins quantitated displayed similar fold-changes between the two infection types but exhibited different temporal dynamics. Proteins related to the clotting cascade, immune signaling and complement system exhibited significant differential abundance during infection with EBOV or Bp, indicating a specificity of the response. CONCLUSIONS: These results advance our understanding of the global plasma proteomic response to EBOV and Bp infection in relevant primate models for human disease and provide insight into potential innate immune response differences between viral and bacterial infections.

3.
Emerg Infect Dis ; 23(8): 1316-1324, 2017 08.
Article in English | MEDLINE | ID: mdl-28726603

ABSTRACT

The Ebola virus (EBOV) outbreak in West Africa during 2013-2016 demonstrated the need to improve Ebola virus disease (EVD) diagnostics and standards of care. This retrospective study compared laboratory values and clinical features of 3 nonhuman primate models of lethal EVD to assess associations with improved survival time. In addition, the study identified laboratory values useful as predictors of survival, surrogates for EBOV viral loads, and triggers for initiation of therapeutic interventions in these nonhuman primate models. Furthermore, the data support that, in nonhuman primates, the Makona strain of EBOV may be less virulent than the Kikwit strain of EBOV. The applicability of these findings as potential diagnostic and management tools for EVD in humans warrants further investigation.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/virology , Animals , Biomarkers , Hemorrhagic Fever, Ebola/mortality , Hemorrhagic Fever, Ebola/transmission , Humans , Kaplan-Meier Estimate , Primates , RNA, Viral , ROC Curve , Retrospective Studies , Viral Load
4.
J Virol ; 89(19): 9875-85, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26202230

ABSTRACT

UNLABELLED: Marburg virus (MARV) infection is a lethal hemorrhagic fever for which no licensed vaccines or therapeutics are available. Development of appropriate medical countermeasures requires a thorough understanding of the interaction between the host and the pathogen and the resulting disease course. In this study, 15 rhesus macaques were sequentially sacrificed following aerosol exposure to the MARV variant Angola, with longitudinal changes in physiology, immunology, and histopathology used to assess disease progression. Immunohistochemical evidence of infection and resulting histopathological changes were identified as early as day 3 postexposure (p.e.). The appearance of fever in infected animals coincided with the detection of serum viremia and plasma viral genomes on day 4 p.e. High (>10(7) PFU/ml) viral loads were detected in all major organs (lung, liver, spleen, kidney, brain, etc.) beginning day 6 p.e. Clinical pathology findings included coagulopathy, leukocytosis, and profound liver destruction as indicated by elevated liver transaminases, azotemia, and hypoalbuminemia. Altered cytokine expression in response to infection included early increases in Th2 cytokines such as interleukin 10 (IL-10) and IL-5 and late-stage increases in Th1 cytokines such as IL-2, IL-15, and granulocyte-macrophage colony-stimulating factor (GM-CSF). This study provides a longitudinal examination of clinical disease of aerosol MARV Angola infection in the rhesus macaque model. IMPORTANCE: In this study, we carefully analyzed the timeline of Marburg virus infection in nonhuman primates in order to provide a well-characterized model of disease progression following aerosol exposure.


Subject(s)
Cytokines/blood , Host-Pathogen Interactions , Marburg Virus Disease/physiopathology , Marburgvirus/pathogenicity , Aerosols , Animals , Disease Progression , Immunohistochemistry , Longitudinal Studies , Macaca mulatta , Marburg Virus Disease/blood , Time Factors , Viral Load
5.
PLoS One ; 17(2): e0263834, 2022.
Article in English | MEDLINE | ID: mdl-35143571

ABSTRACT

Disease associated with Nipah virus infection causes a devastating and often fatal spectrum of syndromes predominated by both respiratory and neurologic conditions. Additionally, neurologic sequelae may manifest months to years later after virus exposure or apparent recovery. In the two decades since this disease emerged, much work has been completed in an attempt to understand the pathogenesis and facilitate development of medical countermeasures. Here we provide detailed organ system-specific pathologic findings following exposure of four African green monkeys to 2.41×105 pfu of the Malaysian strain of Nipah virus. Our results further substantiate the African green monkey as a model of human Nipah virus disease, by demonstrating both the respiratory and neurologic components of disease. Additionally, we demonstrate that a chronic phase of disease exists in this model, that may provide an important opportunity to study the enigmatic late onset and relapse encephalitis as it is described in human disease.


Subject(s)
Encephalitis, Viral/pathology , Henipavirus Infections/pathology , Lung Diseases/virology , Nipah Virus/pathogenicity , Animals , Chlorocebus aethiops , Disease Models, Animal , Lung Diseases/pathology , Malaysia , Male , Nipah Virus/classification
6.
PLoS One ; 13(10): e0199339, 2018.
Article in English | MEDLINE | ID: mdl-30339670

ABSTRACT

Laboratory animals are commonly anesthetized to prevent pain and distress and to provide safe handling. Anesthesia procedures are well-developed for common laboratory mammals, but not as well established in reptiles. We assessed the performance of intramuscularly injected tiletamine (dissociative anesthetic) and zolazepam (benzodiazepine sedative) in fixed combination (2 mg/kg and 3 mg/kg) in comparison to 2 mg/kg of midazolam (benzodiazepine sedative) in ball pythons (Python regius). We measured heart and respiratory rates and quantified induction parameters (i.e., time to loss of righting reflex, time to loss of withdrawal reflex) and recovery parameters (i.e., time to regain righting reflex, withdrawal reflex, normal behavior). Mild decreases in heart and respiratory rates (median decrease of <10 beats per minute and <5 breaths per minute) were observed for most time points among all three anesthetic dose groups. No statistically significant difference between the median time to loss of righting reflex was observed among animals of any group (p = 0.783). However, the withdrawal reflex was lost in all snakes receiving 3mg/kg of tiletamine+zolazepam but not in all animals of the other two groups (p = 0.0004). In addition, the time for animals to regain the righting reflex and resume normal behavior was longer in the drug combination dose groups compared to the midazolam group (p = 0.0055). Our results indicate that midazolam is an adequate sedative for ball pythons but does not suffice to achieve reliable immobilization or anesthesia, whereas tiletamine+zolazepam achieves short-term anesthesia in a dose-dependent manner.


Subject(s)
Boidae , Immobilization/veterinary , Midazolam/pharmacology , Tiletamine/pharmacology , Zolazepam/pharmacology , Anesthetics, Dissociative/administration & dosage , Anesthetics, Dissociative/pharmacology , Animals , Drug Administration Schedule , Drug Combinations , Female , Heart Rate/drug effects , Immobilization/methods , Injections, Intramuscular , Male , Midazolam/administration & dosage , Respiration/drug effects , Tiletamine/administration & dosage , Zolazepam/administration & dosage
7.
PLoS One ; 10(2): e0117817, 2015.
Article in English | MEDLINE | ID: mdl-25706617

ABSTRACT

Henipaviruses are implicated in severe and frequently fatal pneumonia and encephalitis in humans. There are no approved vaccines or treatments available for human use, and testing of candidates requires the use of well-characterized animal models that mimic human disease. We performed a comprehensive and statistically-powered evaluation of the African green monkey model to define parameters critical to disease progression and the extent to which they correlate with human disease. African green monkeys were inoculated by the intratracheal route with 2.5 × 10(4) plaque forming units of the Malaysia strain of Nipah virus. Physiological data captured using telemetry implants and assessed in conjunction with clinical pathology were consistent with shock, and histopathology confirmed widespread tissue involvement associated with systemic vasculitis in animals that succumbed to acute disease. In addition, relapse encephalitis was identified in 100% of animals that survived beyond the acute disease phase. Our data suggest that disease progression in the African green monkey is comparable to the variable outcome of Nipah virus infection in humans.


Subject(s)
Chlorocebus aethiops/virology , Henipavirus Infections/pathology , Henipavirus Infections/virology , Nipah Virus/pathogenicity , Animals , Communicable Diseases/pathology , Communicable Diseases/virology , Disease Models, Animal , Disease Progression , Encephalitis/pathology , Encephalitis/virology , Malaysia
SELECTION OF CITATIONS
SEARCH DETAIL