Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(19): e2318003121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38691588

ABSTRACT

Peptides presented by HLA-E, a molecule with very limited polymorphism, represent attractive targets for T cell receptor (TCR)-based immunotherapies to circumvent the limitations imposed by the high polymorphism of classical HLA genes in the human population. Here, we describe a TCR-based bispecific molecule that potently and selectively binds HLA-E in complex with a peptide encoded by the inhA gene of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis in humans. We reveal the biophysical and structural bases underpinning the potency and specificity of this molecule and demonstrate its ability to redirect polyclonal T cells to target HLA-E-expressing cells transduced with mycobacterial inhA as well as primary cells infected with virulent Mtb. Additionally, we demonstrate elimination of Mtb-infected cells and reduction of intracellular Mtb growth. Our study suggests an approach to enhance host T cell immunity against Mtb and provides proof of principle for an innovative TCR-based therapeutic strategy overcoming HLA polymorphism and therefore applicable to a broader patient population.


Subject(s)
Histocompatibility Antigens Class I , Mycobacterium tuberculosis , Receptors, Antigen, T-Cell , T-Lymphocytes , Mycobacterium tuberculosis/immunology , Humans , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , T-Lymphocytes/immunology , HLA-E Antigens , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Tuberculosis/immunology
2.
Mol Ther ; 32(3): 678-688, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38219014

ABSTRACT

Naturally occurring T cells that recognize microbial peptides via HLA-E, a nonpolymorphic HLA class Ib molecule, could provide the foundation for new universal immunotherapeutics. However, confidence in the biological relevance of putative ligands is crucial, given that the mechanisms by which pathogen-derived peptides can access the HLA-E presentation pathway are poorly understood. We systematically interrogated the HIV proteome using immunopeptidomic and bioinformatic approaches, coupled with biochemical and cellular assays. No HIV HLA-E peptides were identified by tandem mass spectrometry analysis of HIV-infected cells. In addition, all bioinformatically predicted HIV peptide ligands (>80) were characterized by poor complex stability. Furthermore, infected cell elimination assays using an affinity-enhanced T cell receptor bispecific targeted to a previously reported HIV Gag HLA-E epitope demonstrated inconsistent presentation of the peptide, despite normal HLA-E expression on HIV-infected cells. This work highlights the instability of the HIV HLA-E peptidome as a major challenge for drug development.


Subject(s)
HIV Infections , HLA-E Antigens , Humans , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Epitopes , HIV Infections/therapy , Peptides/metabolism
3.
HIV Med ; 23(4): 390-396, 2022 04.
Article in English | MEDLINE | ID: mdl-35243750

ABSTRACT

INTRODUCTION: Current UK guidelines for cervical cancer screening are based on the assumption that most women living with HIV (WLWH) are also high-risk (HR) human papillomavirus (HPV)-positive. We aimed to provide data on prevalence of HR-HPV in WLWH in the UK and to assess feasibility and acceptability of HR-HPV self-sampling in this group. METHODS: Women living with HIV attending six HIV services in London/south of England, with no history of cervical cancer, were enrolled. Participants self-collected a vaginal swab for the detection of HR-HPV, completed a survey about sexual/gynaecological history, attitudes towards annual screening and perception of HR-HPV self-sampling, and were asked to have their annual cervical smear. RESULTS: In all, 67 women were included: 86.5% were of black ethnicity, the median (range) age was 47 (24-60) years, median CD4 T-cell count was 683 cells/µL [interquartile range (IQR): 527-910], and 95.4% had viral load ≤ 50 copies/mL. All performed the vaginal swab. Eighteen (27%) had no cervical smear results; none of these women attended HIV services where this was routinely offered. No cervical samples were positive for HR-HPV. Three-quarters (75.8%) of participants reported adherence to annual screening, with only one woman (1.5%) attending irregularly. On visual analogue scales (from 0 to 100), median (IQR) acceptability and necessity of smear tests were 100 (75-100) and 100 (85-100), respectively. CONCLUSIONS: Our results suggest that the prevalence of HR-HPV in WLWH in the UK may be low. Self-sampling seems to be acceptable, suggesting, if validated, its potential role in supporting less frequent smear testing and improving screening uptake in WLWH.


Subject(s)
HIV Infections , Papillomavirus Infections , Uterine Cervical Neoplasms , Early Detection of Cancer/methods , Feasibility Studies , Female , HIV Infections/diagnosis , HIV Infections/epidemiology , Humans , Mass Screening/methods , Middle Aged , Papillomaviridae , Papillomavirus Infections/diagnosis , Papillomavirus Infections/epidemiology , Papillomavirus Infections/prevention & control , United Kingdom/epidemiology , Uterine Cervical Neoplasms/diagnosis , Uterine Cervical Neoplasms/epidemiology , Uterine Cervical Neoplasms/prevention & control , Vaginal Smears
4.
Lancet ; 395(10227): 888-898, 2020 03 14.
Article in English | MEDLINE | ID: mdl-32085823

ABSTRACT

BACKGROUND: Antiretroviral therapy (ART) cannot cure HIV infection because of a persistent reservoir of latently infected cells. Approaches that force HIV transcription from these cells, making them susceptible to killing-termed kick and kill regimens-have been explored as a strategy towards an HIV cure. RIVER is the first randomised trial to determine the effect of ART-only versus ART plus kick and kill on markers of the HIV reservoir. METHODS: This phase 2, open-label, multicentre, randomised, controlled trial was undertaken at six clinical sites in the UK. Patients aged 18-60 years who were confirmed as HIV-positive within a maximum of the past 6 months and started ART within 1 month from confirmed diagnosis were randomly assigned by a computer generated randomisation list to receive ART-only (control) or ART plus the histone deacetylase inhibitor vorinostat (the kick) and replication-deficient viral vector T-cell inducing vaccines encoding conserved HIV sequences ChAdV63. HIVconsv-prime and MVA.HIVconsv-boost (the kill; ART + V + V; intervention). The primary endpoint was total HIV DNA isolated from peripheral blood CD4+ T-cells at weeks 16 and 18 after randomisation. Analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, NCT02336074. FINDINGS: Between June 14, 2015 and Jul 11, 2017, 60 men with HIV were randomly assigned to receive either an ART-only (n=30) or an ART + V + V (n=30) regimen; all 60 participants completed the study, with no loss-to-follow-up. Mean total HIV DNA at weeks 16 and 18 after randomisation was 3·02 log10 copies HIV DNA per 106 CD4+ T-cells in the ART-only group versus 3·06 log10 copies HIV DNA per 106 CD4+ T-cells in ART + V + V group, with no statistically significant difference between the two groups (mean difference of 0·04 log10 copies HIV DNA per 106 CD4+ T-cells [95% CI -0·03 to 0·11; p=0·26]). There were no intervention-related serious adverse events. INTERPRETATION: This kick and kill approach conferred no significant benefit compared with ART alone on measures of the HIV reservoir. Although this does not disprove the efficacy kick and kill strategy, for future trials enhancement of both kick and kill agents will be required. FUNDING: Medical Research Council (MR/L00528X/1).


Subject(s)
AIDS Vaccines/administration & dosage , Anti-Retroviral Agents/therapeutic use , Disease Reservoirs , HIV Infections , Histone Deacetylase Inhibitors/administration & dosage , Vorinostat/administration & dosage , Adult , DNA, Viral/analysis , HIV Infections/drug therapy , Humans , Male , Transcription, Genetic/drug effects , Treatment Outcome
5.
Hepatology ; 72(5): 1541-1555, 2020 11.
Article in English | MEDLINE | ID: mdl-32012325

ABSTRACT

BACKGROUND AND AIMS: Induction of functional helper CD4+ T cells is the hallmark of a protective immune response against hepatitis C virus (HCV), associated with spontaneous viral clearance. Heterologous prime/boost viral vectored vaccination has demonstrated induction of broad and polyfunctional HCV-specific CD8+ T cells in healthy volunteers; however, much less is known about CD4+ T-cell subsets following vaccination. APPROACH AND RESULTS: We analyzed HCV-specific CD4+ T-cell populations using major histocompatibility complex class II tetramers in volunteers undergoing HCV vaccination with recombinant HCV adenoviral/modified vaccinia Ankara viral vectors. Peptide-specific T-cell responses were tracked over time, and functional (proliferation and cytokine secretion) and phenotypic (cell surface and intranuclear) markers were assessed using flow cytometry. These were compared to CD4+ responses in 10 human leukocyte antigen-matched persons with HCV spontaneous resolution and 21 chronically infected patients treated with directly acting antiviral (DAA) therapy. Vaccination induced tetramer-positive CD4+ T cells that were highest 1-4 weeks after boosting (mean, 0.06%). Similar frequencies were obtained for those tracked following spontaneous resolution of disease (mean, 0.04%). In addition, the cell-surface phenotype (CD28, CD127) memory subset markers and intranuclear transcription factors, as well as functional capacity of peptide-specific CD4+ T-cell responses characterized after vaccination, are comparable to those following spontaneous viral resolution. In contrast, helper responses in chronic infection were infrequently detected and poorly functional and did not consistently recover following HCV cure. CONCLUSIONS: Helper CD4+ T-cell phenotype and function following HCV viral vectored vaccination resembles "protective memory" that is observed following spontaneous clearance of HCV. DAA cure does not promote resurrection of exhausted CD4+ T-cell memory in chronic infection.


Subject(s)
Antiviral Agents/therapeutic use , Hepacivirus/immunology , Hepatitis C, Chronic/therapy , T-Lymphocytes, Helper-Inducer/immunology , Viral Hepatitis Vaccines/administration & dosage , Adenoviridae/genetics , Cell Line , Female , Genetic Vectors/genetics , Healthy Volunteers , Hepacivirus/isolation & purification , Hepatitis C, Chronic/diagnosis , Hepatitis C, Chronic/immunology , Hepatitis C, Chronic/virology , Humans , Immunogenicity, Vaccine , Immunologic Memory , Male , Middle Aged , Remission, Spontaneous , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Viral Hepatitis Vaccines/genetics , Viral Hepatitis Vaccines/immunology , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/immunology
6.
Hepatology ; 72(5): 1528-1540, 2020 11.
Article in English | MEDLINE | ID: mdl-32770836

ABSTRACT

BACKGROUND AND AIMS: Therapies for chronic hepatitis B virus (HBV) infection are urgently needed because of viral integration, persistence of viral antigen expression, inadequate HBV-specific immune responses, and treatment regimens that require lifelong adherence to suppress the virus. Immune mobilizing monoclonal T Cell receptors against virus (ImmTAV) molecules represent a therapeutic strategy combining an affinity-enhanced T Cell receptor with an anti-CD3 T Cell-activating moiety. This bispecific fusion protein redirects T cells to specifically lyse infected cells expressing the target virus-derived peptides presented by human leukocyte antigen (HLA). APPROACH AND RESULTS: ImmTAV molecules specific for HLA-A*02:01-restricted epitopes from HBV envelope, polymerase, and core antigens were engineered. The ability of ImmTAV-Env to activate and redirect polyclonal T cells toward cells containing integrated HBV and cells infected with HBV was assessed using cytokine secretion assays and imaging-based killing assays. Elimination of infected cells was further quantified using a modified fluorescent hybridization of viral RNA assay. Here, we demonstrate that picomolar concentrations of ImmTAV-Env can redirect T cells from healthy and HBV-infected donors toward hepatocellular carcinoma (HCC) cells containing integrated HBV DNA resulting in cytokine release, which could be suppressed by the addition of a corticosteroid in vitro. Importantly, ImmTAV-Env redirection of T cells induced cytolysis of antigen-positive HCC cells and cells infected with HBV in vitro, causing a reduction of hepatitis B e antigen and specific loss of cells expressing viral RNA. CONCLUSIONS: The ImmTAV platform has the potential to enable the elimination of infected cells by redirecting endogenous non-HBV-specific T cells, bypassing exhausted HBV-specific T cells. This represents a promising therapeutic option in the treatment of chronic hepatitis B, with our lead candidate now entering trials.


Subject(s)
Hepatitis B virus/immunology , Hepatitis B, Chronic/drug therapy , Receptors, Antigen, T-Cell/therapeutic use , Recombinant Fusion Proteins/pharmacology , T-Lymphocytes/drug effects , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , CD3 Complex/antagonists & inhibitors , Cell Line, Tumor , Epitopes/immunology , HLA-A2 Antigen/immunology , Hepatitis B Surface Antigens/immunology , Hepatitis B virus/isolation & purification , Hepatitis B, Chronic/immunology , Hepatitis B, Chronic/virology , Hepatocytes , Humans , Immunoconjugates/genetics , Immunoconjugates/immunology , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Lymphocyte Activation/drug effects , Primary Cell Culture , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/therapeutic use , T-Lymphocytes/immunology
7.
J Virol ; 93(4)2019 02 15.
Article in English | MEDLINE | ID: mdl-30487276

ABSTRACT

Elite and viremic HIV controllers are able to control their HIV infection and maintain undetectable or low-level viremia in the absence of antiretroviral treatment. Despite extensive studies, the immune factors responsible for such exclusive control remain poorly defined. We identified a cohort of 14 HIV controllers that suffered an abrupt loss of HIV control (LoC) to investigate possible mechanisms and virological and immunological events related to the sudden loss of control. The in-depth analysis of these subjects involved the study of cell tropism of circulating virus, evidence for HIV superinfection, cellular immune responses to HIV, as well as an examination of viral adaptation to host immunity by Gag sequencing. Our data demonstrate that a poor capacity of T cells to mediate in vitro viral suppression, even in the context of protective HLA alleles, predicts a loss of viral control. In addition, the data suggest that inefficient viral control may be explained by an increase of CD8 T-cell activation and exhaustion before LoC. Furthermore, we detected a switch from C5- to X4-tropic viruses in 4 individuals after loss of control, suggesting that tropism shift might also contribute to disease progression in HIV controllers. The significantly reduced inhibition of in vitro viral replication and increased expression of activation and exhaustion markers preceding the abrupt loss of viral control may help identify untreated HIV controllers that are at risk of losing control and may offer a useful tool for monitoring individuals during treatment interruption phases in therapeutic vaccine trials.IMPORTANCE A few individuals can control HIV infection without the need for antiretroviral treatment and are referred to as HIV controllers. We have studied HIV controllers who suddenly lose this ability and present with high in vivo viral replication and decays in their CD4+ T-cell counts to identify potential immune and virological factors that were responsible for initial virus control. We identify in vitro-determined reductions in the ability of CD8 T cells to suppress viral control and the presence of PD-1-expressing CD8+ T cells with a naive immune phenotype as potential predictors of in vivo loss of virus control. The findings could be important for the clinical management of HIV controller individuals, and it may offer an important tool to anticipate viral rebound in individuals in clinical studies that include combination antiretroviral therapy (cART) treatment interruptions and which, if not treated quickly, could pose a significant risk to the trial participants.


Subject(s)
HIV Infections/immunology , HIV Infections/metabolism , Viral Tropism/physiology , Adult , Anti-Retroviral Agents/therapeutic use , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cohort Studies , Female , HIV Infections/virology , HIV-1/immunology , HIV-1/physiology , Humans , Lymphocyte Activation , Male , Middle Aged , Viral Load/physiology , Viral Tropism/genetics , Viremia/immunology , Virus Replication/drug effects
8.
Proteomics ; 19(4): e1800357, 2019 02.
Article in English | MEDLINE | ID: mdl-30578603

ABSTRACT

LC-MS/MS has become the standard platform for the characterization of immunopeptidomes, the collection of peptides naturally presented by major histocompatibility complex molecules to the cell surface. The protocols and algorithms used for immunopeptidomics data analysis are based on tools developed for traditional bottom-up proteomics that address the identification of peptides generated by tryptic digestion. Such algorithms are generally not tailored to the specific requirements of MHC ligand identification and, as a consequence, immunopeptidomics datasets suffer from dismissal of informative spectral information and high false discovery rates. Here, a new pipeline for the refinement of peptide-spectrum matches (PSM) is proposed, based on the assumption that immunopeptidomes contain a limited number of recurring peptide motifs, corresponding to MHC specificities. Sequence motifs are learned directly from the individual peptidome by training a prediction model on high-confidence PSMs. The model is then applied to PSM candidates with lower confidence, and sequences that score significantly higher than random peptides are rescued as likely true ligands. The pipeline is applied to MHC class I immunopeptidomes from three different species, and it is shown that it can increase the number of identified ligands by up to 20-30%, while effectively removing false positives and products of co-precipitation. Spectral validation using synthetic peptides confirms the identity of a large proportion of rescued ligands in the experimental peptidome.


Subject(s)
Proteomics , Animals , Cell Line , Computational Biology , Histocompatibility Antigens/immunology , Humans , Mass Spectrometry , Mice
9.
Eur J Immunol ; 46(1): 60-9, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26467324

ABSTRACT

Recognition and eradication of infected cells by cytotoxic T lymphocytes is a key defense mechanism against intracellular pathogens. High-throughput definition of HLA class I-associated immunopeptidomes by mass spectrometry is an increasingly important analytical tool to advance our understanding of the induction of T-cell responses against pathogens such as HIV-1. We utilized a liquid chromatography tandem mass spectrometry workflow including de novo-assisted database searching to define the HLA class I-associated immunopeptidome of HIV-1-infected human cells. We here report for the first time the identification of 75 HIV-1-derived peptides bound to HLA class I complexes that were purified directly from HIV-1-infected human primary CD4(+) T cells and the C8166 human T-cell line. Importantly, one-third of eluted HIV-1 peptides had not been previously known to be presented by HLA class I. Over 82% of the identified sequences originated from viral protein regions for which T-cell responses have previously been reported but for which the precise HLA class I-binding sequences have not yet been defined. These results validate and expand the current knowledge of virus-specific antigenic peptide presentation during HIV-1 infection and provide novel targets for T-cell vaccine development.


Subject(s)
Antigens, Viral/immunology , HIV-1/immunology , Histocompatibility Antigens Class I/immunology , Cell Line , Chromatography, High Pressure Liquid , Humans , T-Lymphocytes, Cytotoxic/immunology , Tandem Mass Spectrometry
10.
PLoS Pathog ; 11(2): e1004658, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25723536

ABSTRACT

Defining the components of an HIV immunogen that could induce effective CD8+ T cell responses is critical to vaccine development. We addressed this question by investigating the viral targets of CD8+ T cells that potently inhibit HIV replication in vitro, as this is highly predictive of virus control in vivo. We observed broad and potent ex vivo CD8+ T cell-mediated viral inhibitory activity against a panel of HIV isolates among viremic controllers (VC, viral loads <5000 copies/ml), in contrast to unselected HIV-infected HIV Vaccine trials Network (HVTN) participants. Viral inhibition of clade-matched HIV isolates was strongly correlated with the frequency of CD8+ T cells targeting vulnerable regions within Gag, Pol, Nef and Vif that had been identified in an independent study of nearly 1000 chronically infected individuals. These vulnerable and so-called "beneficial" regions were of low entropy overall, yet several were not predicted by stringent conservation algorithms. Consistent with this, stronger inhibition of clade-matched than mismatched viruses was observed in the majority of subjects, indicating better targeting of clade-specific than conserved epitopes. The magnitude of CD8+ T cell responses to beneficial regions, together with viral entropy and HLA class I genotype, explained up to 59% of the variation in viral inhibitory activity, with magnitude of the T cell response making the strongest unique contribution. However, beneficial regions were infrequently targeted by CD8+ T cells elicited by vaccines encoding full-length HIV proteins, when the latter were administered to healthy volunteers and HIV-positive ART-treated subjects, suggesting that immunodominance hierarchies undermine effective anti-HIV CD8+ T cell responses. Taken together, our data support HIV immunogen design that is based on systematic selection of empirically defined vulnerable regions within the viral proteome, with exclusion of immunodominant decoy epitopes that are irrelevant for HIV control.


Subject(s)
AIDS Vaccines/therapeutic use , CD8-Positive T-Lymphocytes/pathology , HIV Infections/prevention & control , HIV Infections/therapy , HIV-1/immunology , Immunity, Cellular , AIDS Vaccines/immunology , Adult , CD8-Positive T-Lymphocytes/classification , Epitopes, T-Lymphocyte/immunology , Female , HIV Infections/immunology , Humans , Immunodominant Epitopes/immunology , Male , Middle Aged , Vaccination , Viral Load/immunology , Young Adult
11.
Mol Ther ; 24(11): 1913-1925, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27401039

ABSTRACT

Persistence of human immunodeficiency virus (HIV) in a latent state in long-lived CD4+ T-cells is a major barrier to eradication. Latency-reversing agents that induce direct or immune-mediated cell death upon reactivation of HIV are a possible solution. However, clearance of reactivated cells may require immunotherapeutic agents that are fine-tuned to detect viral antigens when expressed at low levels. We tested the antiviral efficacy of immune-mobilizing monoclonal T-cell receptors against viruses (ImmTAVs), bispecific molecules that redirect CD8+ T-cells to kill HIV-infected CD4+ T-cells. T-cell receptors specific for an immunodominant Gag epitope, SL9, and its escape variants were engineered to achieve supraphysiological affinity and fused to a humanised CD3-specific single chain antibody fragment. Ex vivo polyclonal CD8+ T-cells were efficiently redirected by immune-mobilising monoclonal T-cell receptors against viruses to eliminate CD4+ T-cells from human histocompatibility leukocyte antigen (HLA)-A*0201-positive antiretroviral therapy-treated patients after reactivation of inducible HIV in vitro. The efficiency of infected cell elimination correlated with HIV Gag expression. Immune-mobilising monoclonal T-cell receptors against viruses have potential as a therapy to facilitate clearance of reactivated HIV reservoir cells.


Subject(s)
HIV Antibodies/pharmacology , HIV Infections/drug therapy , HIV-1/physiology , Receptors, Antigen, T-Cell/immunology , Antibodies, Monoclonal/pharmacology , Antiretroviral Therapy, Highly Active , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Line , HIV Infections/immunology , HIV Infections/virology , HIV-1/drug effects , HIV-1/immunology , Humans , Virus Latency
12.
Angew Chem Int Ed Engl ; 56(3): 827-831, 2017 01 16.
Article in English | MEDLINE | ID: mdl-27966810

ABSTRACT

The p300/CBP-associated factor (PCAF) and related GCN5 bromodomain-containing lysine acetyl transferases are members of subfamily I of the bromodomain phylogenetic tree. Iterative cycles of rational inhibitor design and biophysical characterization led to the discovery of the triazolopthalazine-based L-45 (dubbed L-Moses) as the first potent, selective, and cell-active PCAF bromodomain (Brd) inhibitor. Synthesis from readily available (1R,2S)-(-)-norephedrine furnished L-45 in enantiopure form. L-45 was shown to disrupt PCAF-Brd histone H3.3 interaction in cells using a nanoBRET assay, and a co-crystal structure of L-45 with the homologous Brd PfGCN5 from Plasmodium falciparum rationalizes the high selectivity for PCAF and GCN5 bromodomains. Compound L-45 shows no observable cytotoxicity in peripheral blood mononuclear cells (PBMC), good cell-permeability, and metabolic stability in human and mouse liver microsomes, supporting its potential for in vivo use.


Subject(s)
Azo Compounds/pharmacology , Drug Discovery , Hydralazine/pharmacology , Molecular Probes/pharmacology , p300-CBP Transcription Factors/antagonists & inhibitors , Azo Compounds/chemical synthesis , Azo Compounds/chemistry , Dose-Response Relationship, Drug , Hydralazine/chemical synthesis , Hydralazine/chemistry , Molecular Probes/chemical synthesis , Molecular Probes/chemistry , Molecular Structure , Structure-Activity Relationship
13.
J Virol ; 89(11): 5760-71, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25810538

ABSTRACT

UNLABELLED: Cytotoxic T cells substantially contribute to the control of intracellular pathogens such as human immunodeficiency virus type 1 (HIV-1). Here, we evaluated the immunopeptidome of Jurkat cells infected with the vaccine candidate MVA.HIVconsv, which delivers HIV-1 conserved antigenic regions by using modified vaccinia virus Ankara (MVA). We employed liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify 6,358 unique peptides associated with the class I human leukocyte antigen (HLA), of which 98 peptides were derived from the MVA vector and 7 were derived from the HIVconsv immunogen. Human vaccine recipients responded to the peptide sequences identified by LC-MS/MS. Peptides derived from the conserved HIV-1 regions were readily detected as early as 1.5 h after MVA.HIVconsv infection. Four of the seven conserved peptides were monitored between 0 and 3.5 h of infection by using quantitative mass spectrometry (Q-MS), and their abundance in HLA class I associations reflected levels of the whole HIVconsv protein in the cell. While immunopeptides delivered by the incoming MVA vector proteins could be detected, all early HIVconsv-derived immunopeptides were likely synthesized de novo. MVA.HIVconsv infection generally altered the composition of HLA class I-associated human (self) peptides, but these changes corresponded only partially to changes in the whole cell host protein abundance. IMPORTANCE: The vast changes in cellular antigen presentation after infection of cells with a vectored vaccine, as shown here for MVA.HIVconsv, highlight the complexity of factors that need to be considered for efficient antigen delivery and presentation. Identification and quantitation of HLA class I-associated peptides by Q-MS will not only find broad application in T-cell epitope discovery but also inform vaccine design and allow evaluation of efficient epitope presentation using different delivery strategies.


Subject(s)
AIDS Vaccines/immunology , Antigens, Viral/analysis , HIV-1/immunology , Histocompatibility Antigens Class I/metabolism , Peptides/analysis , T-Lymphocytes, Cytotoxic/chemistry , Chromatography, Liquid , Genetic Vectors , Humans , Jurkat Cells , T-Lymphocytes, Cytotoxic/immunology , Tandem Mass Spectrometry , Time Factors , Vaccines, Synthetic/immunology , Vaccinia virus/genetics , Vaccinia virus/immunology
14.
Hum Mol Genet ; 22(9): 1903-10, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23372042

ABSTRACT

Human genetic variation contributes to differences in susceptibility to HIV-1 infection. To search for novel host resistance factors, we performed a genome-wide association study (GWAS) in hemophilia patients highly exposed to potentially contaminated factor VIII infusions. Individuals with hemophilia A and a documented history of factor VIII infusions before the introduction of viral inactivation procedures (1979-1984) were recruited from 36 hemophilia treatment centers (HTCs), and their genome-wide genetic variants were compared with those from matched HIV-infected individuals. Homozygous carriers of known CCR5 resistance mutations were excluded. Single nucleotide polymorphisms (SNPs) and inferred copy number variants (CNVs) were tested using logistic regression. In addition, we performed a pathway enrichment analysis, a heritability analysis, and a search for epistatic interactions with CCR5 Δ32 heterozygosity. A total of 560 HIV-uninfected cases were recruited: 36 (6.4%) were homozygous for CCR5 Δ32 or m303. After quality control and SNP imputation, we tested 1 081 435 SNPs and 3686 CNVs for association with HIV-1 serostatus in 431 cases and 765 HIV-infected controls. No SNP or CNV reached genome-wide significance. The additional analyses did not reveal any strong genetic effect. Highly exposed, yet uninfected hemophiliacs form an ideal study group to investigate host resistance factors. Using a genome-wide approach, we did not detect any significant associations between SNPs and HIV-1 susceptibility, indicating that common genetic variants of major effect are unlikely to explain the observed resistance phenotype in this population.


Subject(s)
Disease Resistance/genetics , Genome-Wide Association Study , HIV Infections/genetics , Hemophilia A/genetics , Adult , DNA Copy Number Variations , Epistasis, Genetic , Factor VIII/therapeutic use , Female , Gene Deletion , Genetic Predisposition to Disease , HIV Seropositivity/genetics , Heterozygote , Homozygote , Humans , Logistic Models , Male , Meta-Analysis as Topic , Middle Aged , Phenotype , Polymorphism, Single Nucleotide , Prospective Studies , Receptors, CCR5/genetics , Receptors, CCR5/metabolism
15.
J Transl Med ; 13: 60, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25879820

ABSTRACT

BACKGROUND: None of the HIV T-cell vaccine candidates that have reached advanced clinical testing have been able to induce protective T cell immunity. A major reason for these failures may have been suboptimal T cell immunogen designs. METHODS: To overcome this problem, we used a novel immunogen design approach that is based on functional T cell response data from more than 1,000 HIV-1 clade B and C infected individuals and which aims to direct the T cell response to the most vulnerable sites of HIV-1. RESULTS: Our approach identified 16 regions in Gag, Pol, Vif and Nef that were relatively conserved and predominantly targeted by individuals with reduced viral loads. These regions formed the basis of the HIVACAT T-cell Immunogen (HTI) sequence which is 529 amino acids in length, includes more than 50 optimally defined CD4(+) and CD8(+) T-cell epitopes restricted by a wide range of HLA class I and II molecules and covers viral sites where mutations led to a dramatic reduction in viral replicative fitness. In both, C57BL/6 mice and Indian rhesus macaques immunized with an HTI-expressing DNA plasmid (DNA.HTI) induced broad and balanced T-cell responses to several segments within Gag, Pol, and Vif. DNA.HTI induced robust CD4(+) and CD8(+) T cell responses that were increased by a booster vaccination using modified virus Ankara (MVA.HTI), expanding the DNA.HTI induced response to up to 3.2% IFN-γ T-cells in macaques. HTI-specific T cells showed a central and effector memory phenotype with a significant fraction of the IFN-γ(+) CD8(+) T cells being Granzyme B(+) and able to degranulate (CD107a(+)). CONCLUSIONS: These data demonstrate the immunogenicity of a novel HIV-1 T cell vaccine concept that induced broadly balanced responses to vulnerable sites of HIV-1 while avoiding the induction of responses to potential decoy targets that may divert effective T-cell responses towards variable and less protective viral determinants.


Subject(s)
AIDS Vaccines/immunology , HIV Infections/immunology , HIV Infections/virology , HIV-1/immunology , T-Lymphocytes/immunology , Alleles , Amino Acid Sequence , Animals , Antiviral Agents/immunology , CD4-Positive T-Lymphocytes/immunology , Cohort Studies , Epitopes/immunology , Epitopes, T-Lymphocyte/immunology , Female , HEK293 Cells , Haplotypes , Histocompatibility Antigens Class I/genetics , Humans , Immunity, Cellular , Immunity, Humoral , Immunologic Memory , Macaca mulatta , Male , Mice, Inbred C57BL , Peptides/chemistry , Peptides/immunology , T-Lymphocytes, Cytotoxic/immunology , Vaccination
16.
Mol Ther ; 22(2): 464-475, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24166483

ABSTRACT

Virus diversity and escape from immune responses are the biggest challenges to the development of an effective vaccine against HIV-1. We hypothesized that T-cell vaccines targeting the most conserved regions of the HIV-1 proteome, which are common to most variants and bear fitness costs when mutated, will generate effectors that efficiently recognize and kill virus-infected cells early enough after transmission to potentially impact on HIV-1 replication and will do so more efficiently than whole protein-based T-cell vaccines. Here, we describe the first-ever administration of conserved immunogen vaccines vectored using prime-boost regimens of DNA, simian adenovirus and modified vaccinia virus Ankara to uninfected UK volunteers. The vaccine induced high levels of effector T cells that recognized virus-infected autologous CD4(+) cells and inhibited HIV-1 replication by up to 5.79 log10. The virus inhibition was mediated by both Gag- and Pol- specific effector CD8(+) T cells targeting epitopes that are typically subdominant in natural infection. These results provide proof of concept for using a vaccine to target T cells at conserved epitopes, showing that these T cells can control HIV-1 replication in vitro.


Subject(s)
AIDS Vaccines/immunology , Epitopes, T-Lymphocyte/immunology , HIV Infections/immunology , HIV-1/immunology , T-Lymphocytes/immunology , AIDS Vaccines/genetics , Adolescent , Adult , Amino Acid Sequence , Cells, Cultured , Conserved Sequence/immunology , Epitope Mapping , Epitopes, T-Lymphocyte/chemistry , Female , HIV Infections/prevention & control , HIV-1/genetics , Humans , Male , Middle Aged , Molecular Sequence Data , T-Cell Antigen Receptor Specificity/immunology , T-Lymphocyte Subsets/immunology , Vaccines, DNA/genetics , Vaccines, DNA/immunology , Virus Replication/immunology , Young Adult , gag Gene Products, Human Immunodeficiency Virus/immunology , pol Gene Products, Human Immunodeficiency Virus/immunology
17.
J Infect Dis ; 210(7): 1047-51, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-24719475

ABSTRACT

A recent genome-wide association study (GWAS) involving patients with hemophilia A who were exposed to but uninfected with human immunodeficiency virus type 1 (HIV-1) did not reveal genetic variants associated with resistance to HIV-1 infection, beyond homozygosity for CCR5-Δ32. Since variation in HLA class I and KIR genes is not well interrogated by standard GWAS techniques, we tested whether these 2 loci were involved in protection from HIV-1 infection in the same hemophilia cohort, using controls from the general population. Our data indicate that HLA class I alleles, presence or absence of KIR genes, and functionally relevant combinations of the HLA/KIR genotypes are not involved in resistance to parenterally transmitted HIV-1 infection.


Subject(s)
Disease Resistance , HIV Infections/immunology , Hemophilia A/complications , Histocompatibility Antigens Class I/immunology , Receptors, KIR/immunology , Genetic Association Studies , Humans
18.
Circulation ; 128(8): 814-22, 2013 Aug 20.
Article in English | MEDLINE | ID: mdl-23817574

ABSTRACT

BACKGROUND: HIV infection continues to be endemic worldwide. Although treatments are successful, it remains controversial whether patients receiving optimal therapy have structural, functional, or biochemical cardiac abnormalities that may underlie their increased cardiac morbidity and mortality. The purpose of this study was to characterize myocardial abnormalities in a contemporary group of HIV-infected individuals undergoing combination antiretroviral therapy. METHODS AND RESULTS: Volunteers with HIV who were undergoing combination antiretroviral therapy and age-matched control subjects without a history of cardiovascular disease underwent cardiac magnetic resonance imaging and spectroscopy for the determination of cardiac function, myocardial fibrosis, and myocardial lipid content. A total of 129 participants were included in this analysis. Compared with age-matched control subjects (n=39; 30.23%), HIV-infected subjects undergoing combination antiretroviral therapy (n=90; 69.77%) had 47% higher median myocardial lipid levels (P <0.003) and 74% higher median plasma triglyceride levels (both P<0.001). Myocardial fibrosis, predominantly in the basal inferolateral wall of the left ventricle, was observed in 76% of HIV-infected subjects compared with 13% of control subjects (P<0.001). Peak myocardial systolic and diastolic longitudinal strain were also lower in HIV-infected individuals than in control subjects and remained statistically significant after adjustment for available confounders. CONCLUSIONS: Comprehensive cardiac imaging revealed cardiac steatosis, alterations in cardiac function, and a high prevalence of myocardial fibrosis in a contemporary group of asymptomatic HIV-infected subjects undergoing combination antiretroviral therapy. Cardiac steatosis and fibrosis may underlie cardiac dysfunction and increased cardiovascular morbidity and mortality in subjects with HIV.


Subject(s)
Cardiomyopathies/diagnosis , Cardiomyopathies/epidemiology , HIV Infections/complications , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Adult , Anti-Retroviral Agents/therapeutic use , Cardiomyopathies/pathology , Case-Control Studies , Cross-Sectional Studies , Female , Fibrosis , HIV Infections/drug therapy , Heart/physiopathology , Humans , Lipid Metabolism/physiology , Male , Middle Aged , Myocardium/metabolism , Myocardium/pathology , Prevalence
19.
Eur J Immunol ; 43(11): 2875-85, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23897063

ABSTRACT

Interleukin-10 (IL-10) plays a key role in regulating proinflammatory immune responses to infection but can interfere with pathogen clearance. Although IL-10 is upregulated throughout HIV-1 infection in multiple cell subsets, whether this is a viral immune evasion strategy or an appropriate response to immune activation is unresolved. Analysis of IL-10 production at the single cell level in 51 chronically infected subjects (31 antiretroviral (ART) naïve and 20 ART treated) showed that a subset of CD8(+) T cells with a CD25(neg) FoxP3(neg) phenotype contributes substantially to IL-10 production in response to HIV-1 gag stimulation. The frequencies of gag-specific IL-10- and IFN-γ-producing T cells in ART-naïve subjects were strongly correlated and the majority of these IL-10(+) CD8(+) T cells co-produced IFN-γ; however, patients with a predominant IL-10(+) /IFN-γ(neg) profile showed better control of viraemia. Depletion of HIV-specific CD8(+) IL-10(+) cells from PBMCs led to upregulation of CD38 on CD14(+) monocytes together with increased IL-6 production, in response to gag stimulation. Increased CD38 expression was positively correlated with the frequency of the IL-10(+) population and was also induced by exposure of monocytes to HIV-1 in vitro. Production of IL-10 by HIV-specific CD8(+) T cells may represent an adaptive regulatory response to monocyte activation during chronic infection.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , HIV Infections/immunology , HIV-1/immunology , Interleukin-10/metabolism , ADP-ribosyl Cyclase 1/metabolism , Adult , Antiretroviral Therapy, Highly Active , CD4 Lymphocyte Count , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/metabolism , Female , Forkhead Transcription Factors/metabolism , Humans , Interferon-gamma/biosynthesis , Interleukin-10/biosynthesis , Interleukin-2 Receptor alpha Subunit/metabolism , Interleukin-6/biosynthesis , Lipopolysaccharide Receptors/metabolism , Lymphocyte Activation/immunology , Male , Middle Aged , Up-Regulation , Viral Load , gag Gene Products, Human Immunodeficiency Virus/immunology
20.
J Cardiovasc Magn Reson ; 16: 57, 2014 Aug 16.
Article in English | MEDLINE | ID: mdl-25187084

ABSTRACT

BACKGROUND: Patients with treated Human Immunodeficiency Virus-1 (HIV) infection are at increased risk of cardiovascular events. Traditionally much of this risk has been attributed to metabolic and anthropometric abnormalities associated with HIV, which are similar to the metabolic syndrome (MS), an established risk factor for cardiovascular mortality. It remains unclear whether treated HIV infection is itself associated with increased risk, via increase vascular stiffness. METHODS: 226 subjects (90 with HIV) were divided into 4 groups based on HIV and MS status: 1) HIV-ve/MS-ve, 2) HIV-ve/MS + ve, 3) HIV + ve/MS-ve and 4)HIV + ve/MS + ve. CMR was used to determine aortic pulse wave velocity (PWV) and regional aortic distensibility (AD). RESULTS: PWV was 11% higher and regional AD up to 14% lower in the HIV + ve/MS-ve group when compared to HIV-ve/MS-ve (p < 0.01 all analyses). PWV and AD in the HIV + ve/MS-ve group was similar to that observed in the HIV-ve/MS + ve group (p > 0.99 all analyses). The HIV + ve/MS + ve group had 32% higher PWV and 30-34% lower AD than the HIV-ve/MS-ve group (all p < 0.001), and 19% higher PWV and up to 31% lower AD than HIV + ve/MS-ve subjects (all p < 0.05). On multivariable regression, age, systolic blood pressure and treated HIV infection were all independent predictors of both PWV and regional AD. CONCLUSION: Across multiple measures, treated HIV infection is associated with increased aortic stiffness and is also an independent predictor of both PWV and regional AD. The magnitude of the effect of treated HIV and MS are similar, with additive detrimental effects on central vascular elasticity.


Subject(s)
Cardiovascular Diseases/physiopathology , HIV Infections/complications , Vascular Stiffness , Adult , Age Factors , Antiretroviral Therapy, Highly Active , Blood Pressure , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/virology , Case-Control Studies , HIV Infections/diagnosis , HIV Infections/drug therapy , HIV Infections/virology , HIV-1/pathogenicity , Humans , Magnetic Resonance Imaging, Cine , Metabolic Syndrome/diagnosis , Metabolic Syndrome/therapy , Metabolic Syndrome/virology , Middle Aged , Multivariate Analysis , Predictive Value of Tests , Pulse Wave Analysis , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL