Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters

Publication year range
1.
Ann Neurol ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39230499

ABSTRACT

OBJECTIVE: Mitochondrial DNA (mtDNA) depletion/deletions syndrome (MDDS) comprises a group of diseases caused by primary autosomal defects of mtDNA maintenance. Our objective was to study the etiology of MDDS in 4 patients who lack pathogenic variants in known genetic causes. METHODS: Whole exome sequencing of the probands was performed to identify pathogenic variants. We validated the mitochondrial defect by analyzing mtDNA, mitochondrial dNTP pools, respiratory chain activities, and GUK1 activity. To confirm pathogenicity of GUK1 deficiency, we expressed 2 GUK1 isoforms in patient cells. RESULTS: We identified biallelic GUK1 pathogenic variants in all 4 probands who presented with ptosis, ophthalmoparesis, and myopathic proximal limb weakness, as well as variable hepatopathy and altered T-lymphocyte profiles. Muscle biopsies from all probands showed mtDNA depletion, deletions, or both, as well as reduced activities of mitochondrial respiratory chain enzymes. GUK1 encodes guanylate kinase, originally identified as a cytosolic enzyme. Long and short isoforms of GUK1 exist. We observed that the long isoform is intramitochondrial and the short is cytosolic. In probands' fibroblasts, we noted decreased GUK1 activity causing unbalanced mitochondrial dNTP pools and mtDNA depletion in both replicating and quiescent fibroblasts indicating that GUK1 deficiency impairs de novo and salvage nucleotide pathways. Proband fibroblasts treated with deoxyguanosine and/or forodesine, a purine phosphatase inhibitor, ameliorated mtDNA depletion, indicating potential pharmacological therapies. INTERPRETATION: Primary GUK1 deficiency is a new and potentially treatable cause of MDDS. The cytosolic isoform of GUK1 may contribute to the T-lymphocyte abnormality, which has not been observed in other MDDS disorders. ANN NEUROL 2024.

2.
Am J Hum Genet ; 107(5): 932-941, 2020 11 05.
Article in English | MEDLINE | ID: mdl-33108757

ABSTRACT

Harmonization of variant pathogenicity classification across laboratories is important for advancing clinical genomics. The two CLIA-accredited Electronic Medical Record and Genomics Network sequencing centers and the six CLIA-accredited laboratories and one research laboratory performing genome or exome sequencing in the Clinical Sequencing Evidence-Generating Research Consortium collaborated to explore current sources of discordance in classification. Eight laboratories each submitted 20 classified variants in the ACMG secondary finding v.2.0 genes. After removing duplicates, each of the 158 variants was annotated and independently classified by two additional laboratories using the ACMG-AMP guidelines. Overall concordance across three laboratories was assessed and discordant variants were reviewed via teleconference and email. The submitted variant set included 28 P/LP variants, 96 VUS, and 34 LB/B variants, mostly in cancer (40%) and cardiac (27%) risk genes. Eighty-six (54%) variants reached complete five-category (i.e., P, LP, VUS, LB, B) concordance, and 17 (11%) had a discordance that could affect clinical recommendations (P/LP versus VUS/LB/B). 21% and 63% of variants submitted as P and LP, respectively, were discordant with VUS. Of the 54 originally discordant variants that underwent further review, 32 reached agreement, for a post-review concordance rate of 84% (118/140 variants). This project provides an updated estimate of variant concordance, identifies considerations for LP classified variants, and highlights ongoing sources of discordance. Continued and increased sharing of variant classifications and evidence across laboratories, and the ongoing work of ClinGen to provide general as well as gene- and disease-specific guidance, will lead to continued increases in concordance.


Subject(s)
Cardiovascular Diseases/genetics , Genetic Variation , Genomics/standards , Laboratories/standards , Neoplasms/genetics , Cardiovascular Diseases/diagnosis , Computational Biology/methods , Genetic Testing , Genetics, Medical/methods , Genome, Human , High-Throughput Nucleotide Sequencing , Humans , Laboratory Proficiency Testing/statistics & numerical data , Neoplasms/diagnosis , Sequence Analysis, DNA , Software , Terminology as Topic
3.
Am J Hum Genet ; 104(5): 968-976, 2019 05 02.
Article in English | MEDLINE | ID: mdl-31031011

ABSTRACT

The role of somatic genetic variants in the pathogenesis of intracranial-aneurysm formation is unknown. We identified a 23-year-old man with progressive, right-sided intracranial aneurysms, ipsilateral to an impressive cutaneous phenotype. The index individual underwent a series of genetic evaluations for known connective-tissue disorders, but the evaluations were unrevealing. Paired-sample exome sequencing between blood and fibroblasts derived from the diseased areas detected a single novel variant predicted to cause a p.Tyr562Cys (g.149505130T>C [GRCh37/hg19]; c.1685A>G) change within the platelet-derived growth factor receptor ß gene (PDGFRB), a juxtamembrane-coding region. Variant-allele fractions ranged from 18.75% to 53.33% within histologically abnormal tissue, suggesting post-zygotic or somatic mosaicism. In an independent cohort of aneurysm specimens, we detected somatic-activating PDGFRB variants in the juxtamembrane domain or the kinase activation loop in 4/6 fusiform aneurysms (and 0/38 saccular aneurysms; Fisher's exact test, p < 0.001). PDGFRB-variant, but not wild-type, patient cells were found to have overactive auto-phosphorylation with downstream activation of ERK, SRC, and AKT. The expression of discovered variants demonstrated non-ligand-dependent auto-phosphorylation, responsive to the kinase inhibitor sunitinib. Somatic gain-of-function variants in PDGFRB are a novel mechanism in the pathophysiology of fusiform cerebral aneurysms and suggest a potential role for targeted therapy with kinase inhibitors.


Subject(s)
Aneurysm/genetics , Intracranial Aneurysm/genetics , Mutation , Receptor, Platelet-Derived Growth Factor beta/genetics , Adolescent , Adult , Amino Acid Sequence , Aneurysm/pathology , Child , Cohort Studies , Female , Humans , Intracranial Aneurysm/pathology , Male , Sequence Homology , Young Adult
4.
Am J Hum Genet ; 105(3): 526-533, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31422818

ABSTRACT

As clinical testing for Mendelian causes of colorectal cancer (CRC) is largely driven by recognition of family history and early age of onset, the rates of such findings among individuals with prevalent CRC not recognized to have these features is largely unknown. We evaluated actionable genomic findings in community-based participants ascertained by three phenotypes: (1) CRC, (2) one or more adenomatous colon polyps, and (3) control participants over age 59 years without CRC or colon polyps. These participants underwent sequencing for a panel of genes that included colorectal cancer/polyp (CRC/P)-associated and actionable incidental findings genes. Those with CRC had a 3.8% rate of positive results (pathogenic or likely pathogenic) for a CRC-associated gene variant, despite generally being older at CRC onset (mean 72 years). Those ascertained for polyps had a 0.8% positive rate and those with no CRC/P had a positive rate of 0.2%. Though incidental finding rates unrelated to colon cancer were similar for all groups, our positive rate for cardiovascular findings exceeds disease prevalence, suggesting that variant interpretation challenges or low penetrance in these genes. The rate of HFE c.845G>A (p.Cys282Tyr) homozygotes in the CRC group reinforces a previously reported, but relatively unexplored, association between hemochromatosis and CRC. These results in a general clinical population suggest that current testing strategies could be improved in order to better detect Mendelian CRC-associated conditions. These data also underscore the need for additional functional and familial evidence to clarify the pathogenicity and penetrance of variants deemed pathogenic or likely pathogenic, particularly among the actionable genes associated with cardiovascular disease.


Subject(s)
Colonic Polyps/genetics , Colorectal Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged
5.
Genet Med ; 24(8): 1664-1674, 2022 08.
Article in English | MEDLINE | ID: mdl-35522237

ABSTRACT

PURPOSE: Individuals having genomic sequencing can choose to be notified about pathogenic variants in genes unrelated to the testing indication. A decision aid can facilitate weighing one's values before making a choice about these additional results. METHODS: We conducted a randomized trial (N = 231) comparing informed values-choice congruence among adults at risk for a hereditary cancer syndrome who viewed either the Optional Results Choice Aid (ORCA) or web-based additional findings information alone. ORCA is values-focused with a low-literacy design. RESULTS: Individuals in both arms had informed values-choice congruence (75% and 73% in the decision aid and web-based groups, respectively; odds ratio [OR] = 1.10, 95% CI = 0.58-2.08). Most participants had adequate knowledge (79% and 76% in the decision aid and web-based groups, respectively; OR = 1.20, 95% CI = 0.61-2.34), with no significant difference between groups. Most had information-seeking values (97% and 98% in the decision aid and web-based groups, respectively; OR = 0.59, 95% CI = 0.10-3.61) and chose to receive additional findings. CONCLUSION: The ORCA decision aid did not significantly improve informed values-choice congruence over web-based information in this cohort of adults deciding about genomic results. Both web-based approaches may be effective for adults to decide about receiving medically actionable additional results.


Subject(s)
Decision Support Techniques , Genomics , Adult , Base Sequence , Chromosome Mapping , Decision Making , Humans
6.
Genet Med ; 24(11): 2228-2239, 2022 11.
Article in English | MEDLINE | ID: mdl-36053287

ABSTRACT

PURPOSE: Effective approaches to communicate genomic information are needed to ensure equitable care. In a randomized controlled superiority trial, we tested a novel practice model that aims to make genetic counseling inclusive, by making the communication accessible, relational, and actionable (ARIA). METHODS: In total, 696 English- and Spanish-speaking patients aged 18 to 49 years, enriched for individuals from historically underserved backgrounds, were randomized in 1:1 ratio to ARIA or usual care. Primary outcomes were accuracy of recall, communication satisfaction, and perceived understanding. In total, 33 participants completed qualitative interviews. RESULTS: Recall and understanding were high for all participants. ARIA participants scored higher on the relationship scale of communication satisfaction (mean difference = 0.09, 95% CI = <0.01 to 0.17). Moderator analyses of communication satisfaction showed that those with lower health literacy reported less communication difficulty in ARIA and those using medical interpreters reported greater communication ease in ARIA. No significant difference was found on other primary and secondary outcomes. Qualitative data enhanced understanding of how and why ARIA can be effective. CONCLUSION: This study provides evidence that a genetic counseling intervention that focuses on specific communication skills to enhance relationship-building, patient engagement, and comprehension can be effective with all patients and may be especially valuable for patients of lower health literacy and Spanish-speakers who use a medical interpreter.


Subject(s)
Communication , Genetic Counseling , Health Literacy , Humans , Data Collection , Genetic Counseling/methods , Hispanic or Latino
7.
Genet Med ; 24(6): 1196-1205, 2022 06.
Article in English | MEDLINE | ID: mdl-35305866

ABSTRACT

PURPOSE: This study aimed to evaluate the laboratory-related outcomes of participants who were offered genomic testing based on cancer family history risk assessment tools. METHODS: Patients from clinics that serve populations with access barriers, who are screened at risk for a hereditary cancer syndrome based on adapted family history collection tools (the Breast Cancer Genetics Referral Screening Tool and PREMM5), were offered exome-based panel testing for cancer risk and medically actionable secondary findings. We used descriptive statistics, electronic health record review, and inferential statistics to explore participant characteristics and results, consultations and actions related to pathogenic/likely pathogenic variants identified, and variables predicting category of findings, respectively. RESULTS: Of all the participants, 87% successfully returned a saliva kit. Overall, 5% had a pathogenic/likely pathogenic cancer risk variant and 1% had a secondary finding. Almost all (14/15, 93%) participants completed recommended consultations with nongenetics providers after an average of 17 months. The recommended actions (eg, breast magnetic resonance imaging) were completed by 17 of 25 participants. Participant personal history of cancer and PREMM5 score were each associated with the category of findings (history and colon cancer finding, Fisher's exact P = .02; history and breast cancer finding, Fisher's exact P = .01; PREMM5TM score; and colon cancer finding, Fisher's exact P < .001). CONCLUSION: This accessible model of hereditary cancer risk assessment and genetic testing yielded results that were often acted upon by patients and physicians.


Subject(s)
Breast Neoplasms , Colonic Neoplasms , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Colonic Neoplasms/genetics , Female , Genetic Predisposition to Disease , Genetic Testing/methods , Humans , Risk Assessment
8.
Mov Disord ; 37(12): 2345-2354, 2022 12.
Article in English | MEDLINE | ID: mdl-36086934

ABSTRACT

BACKGROUND: Several genetic models that recapitulate neurodegenerative features of Parkinson's disease (PD) exist, which have been largely based on genes discovered in monogenic PD families. However, spontaneous genetic mutations have not been linked to the pathological hallmarks of PD in non-human vertebrates. OBJECTIVE: To describe the genetic and pathological findings of three Yellow-crowned parrot (Amazona ochrocepahala) siblings with a severe and rapidly progressive neurological phenotype. METHODS: The phenotype of the three parrots included severe ataxia, rigidity, and tremor, while their parents were phenotypically normal. Tests to identify avian viral infections and brain imaging studies were all negative. Due to their severe impairment, they were all euthanized at age 3 months and their brains underwent neuropathological examination and proteasome activity assays. Whole genome sequencing (WGS) was performed on the three affected parrots and their parents. RESULTS: The brains of affected parrots exhibited neuronal loss, spongiosis, and widespread Lewy body-like inclusions in many regions including the midbrain, basal ganglia, and neocortex. Proteasome activity was significantly reduced in these animals compared to a control (P < 0.05). WGS identified a single homozygous missense mutation (p.V559L) in a highly conserved amino acid within the pleckstrin homology (PH) domain of the calcium-dependent secretion activator 2 (CADPS2) gene. CONCLUSIONS: Our data suggest that a homozygous mutation in the CADPS2 gene causes a severe neurodegenerative phenotype with Lewy body-like pathology in parrots. Although CADPS2 variants have not been reported to cause PD, further investigation of the gene might provide important insights into the pathophysiology of Lewy body disorders. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Parrots , Animals , Lewy Bodies/pathology , Neurodegenerative Diseases/genetics , Parrots/genetics , Parrots/metabolism , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Parkinson Disease/genetics , Parkinson Disease/pathology , Mutation/genetics , Carrier Proteins/genetics , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
9.
Am J Hum Genet ; 102(6): 1078-1089, 2018 06 07.
Article in English | MEDLINE | ID: mdl-29754767

ABSTRACT

Advances in sequencing technologies permit the analysis of a larger selection of genes for preconception carrier screening. The study was designed as a sequential carrier screen using genome sequencing to analyze 728 gene-disorder pairs for carrier and medically actionable conditions in 131 women and their partners (n = 71) who were planning a pregnancy. We report here on the clinical laboratory results from this expanded carrier screening program. Variants were filtered and classified using the latest American College of Medical Genetics and Genomics (ACMG) guideline; only pathogenic and likely pathogenic variants were confirmed by orthologous methods before being reported. Novel missense variants were classified as variants of uncertain significance. We reported 304 variants in 202 participants. Twelve carrier couples (12/71 couples tested) were identified for common conditions; eight were carriers for hereditary hemochromatosis. Although both known and novel variants were reported, 48% of all reported variants were missense. For novel splice-site variants, RNA-splicing assays were performed to aid in classification. We reported ten copy-number variants and five variants in non-coding regions. One novel variant was reported in F8, associated with hemophilia A; prenatal testing showed that the male fetus harbored this variant and the neonate suffered a life-threatening hemorrhage which was anticipated and appropriately managed. Moreover, 3% of participants had variants that were medically actionable. Compared with targeted mutation screening, genome sequencing improves the sensitivity of detecting clinically significant variants. While certain novel variant interpretation remains challenging, the ACMG guidelines are useful to classify variants in a healthy population.


Subject(s)
Clinical Laboratory Techniques , Genetic Testing/methods , Preconception Care , Whole Genome Sequencing , DNA Copy Number Variations/genetics , Disease/genetics , Female , Genetic Predisposition to Disease , Haplotypes/genetics , Heterozygote , Humans , Introns/genetics , Male , Mutation/genetics , Pregnancy , RNA Splicing/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
10.
Am J Hum Genet ; 102(6): 1143-1157, 2018 06 07.
Article in English | MEDLINE | ID: mdl-29805042

ABSTRACT

Non-syndromic cleft lip with or without cleft palate (NS-CL/P) is one of the most common human birth defects and is generally considered a complex trait. Despite numerous loci identified by genome-wide association studies, the effect sizes of common variants are relatively small, with much of the presumed genetic contribution remaining elusive. We report exome-sequencing results in 209 people from 72 multi-affected families with pedigree structures consistent with autosomal-dominant inheritance and variable penetrance. Herein, pathogenic variants are described in four genes encoding components of the p120-catenin complex (CTNND1, PLEKHA7, PLEKHA5) and an epithelial splicing regulator (ESRP2), in addition to the known CL/P-associated gene, CDH1, which encodes E-cadherin. The findings were also validated in a second cohort of 497 people with NS-CL/P, comprising small families and singletons with pathogenic variants in these genes identified in 14% of multi-affected families and 2% of the replication cohort of smaller families. Enriched expression of each gene/protein in human and mouse embryonic oro-palatal epithelia, demonstration of functional impact of CTNND1 and ESRP2 variants, and recapitulation of the CL/P spectrum in Ctnnd1 knockout mice support a causative role in CL/P pathogenesis. These data show that primary defects in regulators of epithelial cell adhesion are the most significant contributors to NS-CL/P identified to date and that inherited and de novo single gene variants explain a substantial proportion of NS-CL/P.


Subject(s)
Cadherins/genetics , Catenins/genetics , Cleft Lip/genetics , Cleft Palate/genetics , Genetic Predisposition to Disease , Mutation/genetics , Alleles , Amino Acid Sequence , Animals , Biotinylation , Epithelium/metabolism , Epithelium/pathology , Female , Gene Deletion , Humans , Infant , Infant, Newborn , Male , Mice , Palate/pathology , Pedigree , Syndrome , Exome Sequencing , Delta Catenin
11.
Neuropediatrics ; 52(3): 186-191, 2021 06.
Article in English | MEDLINE | ID: mdl-33445191

ABSTRACT

We describe two novel missense variants in CACNA1A segregating in a family with variable severity of ataxia/oculomotor dysfunction, neurobehavioral impairments, and epilepsy. The most severe outcome occurred in a compound heterozygous proband, which could represent variable expression of the paternal allele or biallelic modulation of calcium channel function. Acetazolamide and lamotrigine were effective for seizure control.


Subject(s)
Cerebellar Ataxia , Epilepsy , Anticonvulsants/therapeutic use , Ataxia , Calcium Channels/genetics , Humans , Mutation, Missense
12.
J Genet Couns ; 30(3): 793-802, 2021 06.
Article in English | MEDLINE | ID: mdl-33393146

ABSTRACT

Genetic testing has become routine for many inherited conditions; however, little is known about the unique issues that arise when offering genetic testing for inherited forms of dementia. To better understand the patient perspective, we surveyed study participants about their experiences as they underwent genetic counseling and genetic testing for dementia. We recruited 50 pairs of subjects. Each pair was comprised of one person with cognitive impairment and a cognitively intact co-participant. Study participants received pre- and post-test genetic counseling and comprehensive genetic testing for dementia. During the study, participant pairs completed four surveys which asked about their experience. Testing began with a 38 gene dementia panel. Participants with negative panel results or variants of uncertain significance (VUS) were reflexed to exome sequencing (ES). Twenty-nine participants (58%) reported that their primary motivation to join the study was for the benefit to their families. Fifty-two percent of participants initially planned to use their test results to make health and wellness changes, but, six months after disclosure, only 31% had done so. Six months after result disclosure, approximately 90% of participant pairs accurately recalled their genetic test results. Overall satisfaction with testing was high, and decision regret was negligible. This observational study describes the experiences of study participants undergoing genetic counseling and genetic testing for dementia and found that most participant pairs accurately recalled their results up to six months following disclosure while also maintaining high levels of satisfaction without decision regret. These findings suggest that, in the context of genetic counseling, genetic testing can be effectively used in this population.


Subject(s)
Dementia , Genetic Counseling , Dementia/genetics , Exome , Genetic Testing , Humans , Exome Sequencing
13.
Am J Hum Genet ; 101(2): 291-299, 2017 Aug 03.
Article in English | MEDLINE | ID: mdl-28777934

ABSTRACT

Progressive childhood encephalopathy is an etiologically heterogeneous condition characterized by progressive central nervous system dysfunction in association with a broad range of morbidity and mortality. The causes of encephalopathy can be either non-genetic or genetic. Identifying the genetic causes and dissecting the underlying mechanisms are critical to understanding brain development and improving treatments. Here, we report that variants in TRAPPC12 result in progressive childhood encephalopathy. Three individuals from two unrelated families have either a homozygous deleterious variant (c.145delG [p.Glu49Argfs∗14]) or compound-heterozygous variants (c.360dupC [p.Glu121Argfs∗7] and c.1880C>T [p. Ala627Val]). The clinical phenotypes of the three individuals are strikingly similar: severe disability, microcephaly, hearing loss, spasticity, and characteristic brain imaging findings. Fibroblasts derived from all three individuals showed a fragmented Golgi that could be rescued by expression of wild-type TRAPPC12. Protein transport from the endoplasmic reticulum to and through the Golgi was delayed. TRAPPC12 is a member of the TRAPP protein complex, which functions in membrane trafficking. Variants in several other genes encoding members of the TRAPP complex have been associated with overlapping clinical presentations, indicating shared and distinct functions for each complex member. Detailed understanding of the TRAPP-opathies will illuminate the role of membrane protein transport in human disease.


Subject(s)
Brain Diseases/genetics , Endoplasmic Reticulum/metabolism , Golgi Apparatus/pathology , Membrane Transport Proteins/genetics , Protein Transport/genetics , Transcription Factors/genetics , Atrophy/pathology , Base Sequence , Brain/pathology , Brain Diseases/pathology , Cells, Cultured , Child, Preschool , Exome/genetics , Female , Genetic Predisposition to Disease , Humans , Infant , Magnetic Resonance Imaging , Male , Protein Transport/physiology , Sequence Analysis, DNA
14.
Am J Hum Genet ; 98(6): 1067-1076, 2016 06 02.
Article in English | MEDLINE | ID: mdl-27181684

ABSTRACT

Evaluating the pathogenicity of a variant is challenging given the plethora of types of genetic evidence that laboratories consider. Deciding how to weigh each type of evidence is difficult, and standards have been needed. In 2015, the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) published guidelines for the assessment of variants in genes associated with Mendelian diseases. Nine molecular diagnostic laboratories involved in the Clinical Sequencing Exploratory Research (CSER) consortium piloted these guidelines on 99 variants spanning all categories (pathogenic, likely pathogenic, uncertain significance, likely benign, and benign). Nine variants were distributed to all laboratories, and the remaining 90 were evaluated by three laboratories. The laboratories classified each variant by using both the laboratory's own method and the ACMG-AMP criteria. The agreement between the two methods used within laboratories was high (K-alpha = 0.91) with 79% concordance. However, there was only 34% concordance for either classification system across laboratories. After consensus discussions and detailed review of the ACMG-AMP criteria, concordance increased to 71%. Causes of initial discordance in ACMG-AMP classifications were identified, and recommendations on clarification and increased specification of the ACMG-AMP criteria were made. In summary, although an initial pilot of the ACMG-AMP guidelines did not lead to increased concordance in variant interpretation, comparing variant interpretations to identify differences and having a common framework to facilitate resolution of those differences were beneficial for improving agreement, allowing iterative movement toward increased reporting consistency for variants in genes associated with monogenic disease.


Subject(s)
Biomedical Research , Genetic Testing/standards , Genetic Variation/genetics , Genomics/methods , Laboratories/standards , Mutation/genetics , Sequence Analysis, DNA/standards , Data Interpretation, Statistical , Evidence-Based Practice , Exome/genetics , Genome, Human , Guidelines as Topic , High-Throughput Nucleotide Sequencing/methods , Humans , Incidental Findings , Software , United States
15.
Hum Genet ; 137(10): 795-806, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30267214

ABSTRACT

Although ~ 25% of colorectal cancer or polyp (CRC/P) cases show familial aggregation, current germline genetic testing identifies a causal genotype in the 16 major genes associated with high penetrance CRC/P in only 20% of these cases. As there are likely other genes underlying heritable CRC/P, we evaluated the association of variation at novel loci with CRC/P. We evaluated 158 a priori selected candidate genes by comparing the number of rare potentially disruptive variants (PDVs) found in 84 CRC/P cases without an identified CRC/P risk-associated variant and 2440 controls. We repeated this analysis using an additional 73 CRC/P cases. We also compared the frequency of PDVs in select genes among CRC/P cases with two publicly available data sets. We found a significant enrichment of PDVs in cases vs. controls: 20% of cases vs. 11.5% of controls with ≥ 1 PDV (OR = 1.9, p = 0.01) in the original set of cases. Among the second cohort of CRC/P cases, 18% had a PDV, significantly different from 11.5% (p = 0.02). Logistic regression, adjusting for ancestry and multiple testing, indicated association between CRC/P and PDVs in NTHL1 (p = 0.0001), BRCA2 (p = 0.01) and BRIP1 (p = 0.04). However, there was no significant difference in the frequency of PDVs at each of these genes between all 157 CRC/P cases and two publicly available data sets. These results suggest an increased presence of PDVs in CRC/P cases and support further investigation of the association of NTHL1, BRCA2 and BRIP1 variation with CRC/P.


Subject(s)
BRCA2 Protein/genetics , Colorectal Neoplasms/genetics , Deoxyribonuclease (Pyrimidine Dimer)/genetics , Fanconi Anemia Complementation Group Proteins/genetics , Genetic Loci , Genetic Variation , RNA Helicases/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Risk Factors
16.
Genome Res ; 25(3): 305-15, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25637381

ABSTRACT

Recommendations for laboratories to report incidental findings from genomic tests have stimulated interest in such results. In order to investigate the criteria and processes for assigning the pathogenicity of specific variants and to estimate the frequency of such incidental findings in patients of European and African ancestry, we classified potentially actionable pathogenic single-nucleotide variants (SNVs) in all 4300 European- and 2203 African-ancestry participants sequenced by the NHLBI Exome Sequencing Project (ESP). We considered 112 gene-disease pairs selected by an expert panel as associated with medically actionable genetic disorders that may be undiagnosed in adults. The resulting classifications were compared to classifications from other clinical and research genetic testing laboratories, as well as with in silico pathogenicity scores. Among European-ancestry participants, 30 of 4300 (0.7%) had a pathogenic SNV and six (0.1%) had a disruptive variant that was expected to be pathogenic, whereas 52 (1.2%) had likely pathogenic SNVs. For African-ancestry participants, six of 2203 (0.3%) had a pathogenic SNV and six (0.3%) had an expected pathogenic disruptive variant, whereas 13 (0.6%) had likely pathogenic SNVs. Genomic Evolutionary Rate Profiling mammalian conservation score and the Combined Annotation Dependent Depletion summary score of conservation, substitution, regulation, and other evidence were compared across pathogenicity assignments and appear to have utility in variant classification. This work provides a refined estimate of the burden of adult onset, medically actionable incidental findings expected from exome sequencing, highlights challenges in variant classification, and demonstrates the need for a better curated variant interpretation knowledge base.


Subject(s)
Exome , Genomics , Incidental Findings , Adult , Black People/genetics , Female , Gene Frequency , Genes, Dominant , Genetic Association Studies , Genetic Testing , Genome, Human , Genomics/methods , High-Throughput Nucleotide Sequencing , Humans , Male , Phenotype , Polymorphism, Single Nucleotide , White People/genetics
17.
Genet Med ; 20(8): 855-866, 2018 08.
Article in English | MEDLINE | ID: mdl-29144510

ABSTRACT

PURPOSE: As massively parallel sequencing is increasingly being used for clinical decision making, it has become critical to understand parameters that affect sequencing quality and to establish methods for measuring and reporting clinical sequencing standards. In this report, we propose a definition for reduced coverage regions and describe a set of standards for variant calling in clinical sequencing applications. METHODS: To enable sequencing centers to assess the regions of poor sequencing quality in their own data, we optimized and used a tool (ExCID) to identify reduced coverage loci within genes or regions of particular interest. We used this framework to examine sequencing data from 500 patients generated in 10 projects at sequencing centers in the National Human Genome Research Institute/National Cancer Institute Clinical Sequencing Exploratory Research Consortium. RESULTS: This approach identified reduced coverage regions in clinically relevant genes, including known clinically relevant loci that were uniquely missed at individual centers, in multiple centers, and in all centers. CONCLUSION: This report provides a process road map for clinical sequencing centers looking to perform similar analyses on their data.


Subject(s)
Exome Sequencing/methods , Sequence Analysis, DNA/methods , Whole Genome Sequencing/methods , Base Sequence , Chromosome Mapping , Exome , Genome, Human , High-Throughput Nucleotide Sequencing/methods , Humans , Sequence Analysis, DNA/standards , Software
18.
Am J Kidney Dis ; 72(2): 296-301, 2018 08.
Article in English | MEDLINE | ID: mdl-29246420

ABSTRACT

Variants in the LMX1B gene cause nail-patella syndrome, a rare autosomal dominant disorder characterized by dysplasia of nails, patella and elbow abnormalities, iliac "horns," and glaucoma. We describe an adult man with nephrotic syndrome and no systemic manifestations of nail-patella syndrome at the time of his initial kidney biopsy. His kidney biopsy was initially interpreted as a form of segmental sclerosis with unusual fibrillar deposits. At the time of consideration for kidney transplantation, a family history was notable for end-stage renal disease in 3 generations. Subsequent reanalysis of the initial biopsy showed infiltration of the lamina densa by type III collagen fibrils, and molecular studies identified a pathogenic variant in one allele of LMX1B (a guanine to adenine substitution at nucleoide 737 of the coding sequence [c.737G>A], predicted to result in an arginine to glutamine substitution at amino acid 246 [p.Arg246Gln]). This variant has been described previously in multiple unrelated families who presented with autosomal dominant nephropathy without nail and patellar abnormalities.


Subject(s)
Basement Membrane/pathology , Collagen Type III/analysis , Kidney Tubules/pathology , LIM-Homeodomain Proteins/genetics , Nail-Patella Syndrome/genetics , Renal Insufficiency, Chronic/genetics , Transcription Factors/genetics , Adult , Humans , Male , Nail-Patella Syndrome/complications , Nail-Patella Syndrome/diagnosis , Pedigree , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/diagnosis
19.
Immunity ; 31(4): 551-64, 2009 Oct 16.
Article in English | MEDLINE | ID: mdl-19818655

ABSTRACT

How cell type-specific differences in chromatin conformation are achieved and their contribution to gene expression are incompletely understood. Here we identify a cryptic upstream orchestrator of interferon-gamma (IFNG) transcription, which is embedded within the human IL26 gene, compromised of a single CCCTC-binding factor (CTCF) binding site and retained in all mammals, even surviving near-complete evolutionary deletion of the equivalent gene encoding IL-26 in rodents. CTCF and cohesins occupy this element in vivo in a cell type-nonspecific manner. This element is juxtaposed to two other sites located within the first intron and downstream of Ifng, where CTCF, cohesins, and the transcription factor T-bet bind in a T helper 1 (Th1) cell-specific manner. These interactions, close proximity of other elements within the locus to each other and to the gene encoding interferon-gamma, and robust murine Ifng expression are dependent on CTCF and T-bet. The results demonstrate that cooperation between architectural (CTCF) and transcriptional enhancing (T-bet) factors and the elements to which they bind is required for proper Th1 cell-specific expression of Ifng.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Interferon-gamma/metabolism , Repressor Proteins/metabolism , T-Box Domain Proteins/metabolism , Th1 Cells/immunology , Animals , CCCTC-Binding Factor , CD4-Positive T-Lymphocytes/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/immunology , Cell Cycle Proteins/metabolism , Cells, Cultured , Chromatin/immunology , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/immunology , Chromosomal Proteins, Non-Histone/metabolism , Humans , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukins/genetics , Interleukins/immunology , Interleukins/metabolism , Introns/genetics , Introns/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Rats , Repressor Proteins/genetics , Repressor Proteins/immunology , T-Box Domain Proteins/genetics , T-Box Domain Proteins/immunology , Th1 Cells/metabolism , Cohesins
20.
Muscle Nerve ; 57(5): 859-862, 2018 05.
Article in English | MEDLINE | ID: mdl-29236290

ABSTRACT

INTRODUCTION: Mutations in gap junction protein beta 1 (GJB1) on the X chromosome represent one of the most common causes of hereditary neuropathy. We assessed manifestations associated with a rare 3' untranslated region mutation (UTR) of GJB1 in a large family with X-linked Charcot-Marie-Tooth disease (CMTX). METHODS: Clinical, electrophysiological, and molecular genetic analyses were performed on an 8-generation family with CMTX. RESULTS: There were 22 affected males and 19 symptomatic females, including an 83-year-old woman followed for 40 years. Electrophysiological studies showed a primarily axonal neuropathy. The c.*15C>T mutation in the GJB1 3' UTR was identified in 4 branches of the family with a log of odds (LOD) of 4.91. This created a BstE II enzyme recognition site that enabled detection by restriction digestion. DISCUSSION: The c.*15C>T mutation in the GJB1 3' UTR segregates with CMTX1 in 8 generations. Penetrance in males and females is essentially complete. A straightforward genetic method to detect this mutation is described. Muscle Nerve 57: 859-862, 2018.


Subject(s)
3' Untranslated Regions/genetics , Charcot-Marie-Tooth Disease/genetics , Connexins/genetics , Family Health , Mutation/genetics , Adolescent , Adult , Charcot-Marie-Tooth Disease/physiopathology , Child , Female , Gene Expression Profiling , Genetic Testing , Genotype , Humans , Longitudinal Studies , Male , Middle Aged , Oligonucleotide Array Sequence Analysis , Gap Junction beta-1 Protein
SELECTION OF CITATIONS
SEARCH DETAIL