Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Bioorg Med Chem Lett ; 27(11): 2634-2640, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28416131

ABSTRACT

Hepatitis C virus (HCV) NS5B RNA-dependent RNA polymerase (RdRp) plays a central role in virus replication. NS5B has no functional equivalent in mammalian cells, and as a consequence is an attractive target for selective inhibition. This paper describes the discovery of a novel family of HCV NS5B non-nucleoside inhibitors inspired by the bioisosterism between sulfonamide and phosphonamide. Systematic structural optimization in this new series led to the identification of IDX375, a potent non-nucleoside inhibitor that is selective for genotypes 1a and 1b. The structure and binding domain of IDX375 were confirmed by X-ray co-crystalisation study.


Subject(s)
Antiviral Agents/chemistry , Hepacivirus/enzymology , Lactams/chemistry , Organophosphorus Compounds/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Allosteric Regulation , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Binding Sites , Crystallography, X-Ray , Genotype , Half-Life , Haplorhini , Hepacivirus/genetics , Hepacivirus/physiology , Humans , Lactams/pharmacology , Mice , Molecular Dynamics Simulation , Organophosphorus Compounds/pharmacology , Protein Structure, Tertiary , Rats , Structure-Activity Relationship , Sulfonamides/chemistry , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
2.
Bioorg Med Chem Lett ; 27(18): 4323-4330, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28835346

ABSTRACT

Herein we describe the discovery of IDX21437 35b, a novel RPd-aminoacid-based phosphoramidate prodrug of 2'-α-chloro-2'-ß-C-methyluridine monophosphate. Its corresponding triphosphate 6 is a potent inhibitor of the HCV NS5B RNA-dependent RNA polymerase (RdRp). Despite showing very weak activity in the in vitro Huh-7 cell based HCV replicon assay, 35b demonstrated high levels of active triphosphate 6 in mouse liver and human hepatocytes. A biochemical study revealed that the metabolism of 35b was mainly attributed to carboxyesterase 1 (CES1), an enzyme which is underexpressed in HCV Huh-7-derived replicon cells. Furthermore, due to its metabolic activation, 35b was efficiently processed in liver cells compared to other cell types, including human cardiomyocytes. The selected RP diastereoisomeric configuration of 35b was assigned by X-ray structural determination. 35b is currently in Phase II clinical trials for the treatment of HCV infection.


Subject(s)
Antiviral Agents/pharmacology , DNA-Directed RNA Polymerases/antagonists & inhibitors , Drug Discovery , Enzyme Inhibitors/pharmacology , Hepacivirus/drug effects , Uridine Monophosphate/analogs & derivatives , Uridine/pharmacology , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , DNA-Directed RNA Polymerases/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Hepacivirus/enzymology , Hepatocytes/drug effects , Hepatocytes/virology , Humans , Liver/drug effects , Liver/virology , Mice , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship , Uridine/chemical synthesis , Uridine/chemistry , Uridine Monophosphate/chemical synthesis , Uridine Monophosphate/chemistry , Uridine Monophosphate/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism
4.
Bioorg Med Chem Lett ; 26(18): 4536-4541, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27520942

ABSTRACT

The hepatitis C virus (HCV) NS5B RNA-dependent RNA polymerase (RdRp) plays a central role in virus replication. NS5B has no functional equivalent in mammalian cells and, as a consequence, is an attractive target for selective inhibition. This Letter describes the discovery of a new family of HCV NS5B non-nucleoside inhibitors, based on the bioisosterism between amide and phosphonamidate functions. As part of this program, SAR in this new series led to the identification of IDX17119, a potent non-nucleoside inhibitor, active on the genotypes 1b, 2a, 3a and 4a. The structure and binding domain of IDX17119 were confirmed by X-ray co-crystallization study.


Subject(s)
Antiviral Agents/pharmacology , Genotype , Hepacivirus/drug effects , Viral Nonstructural Proteins/antagonists & inhibitors , Allosteric Site , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Crystallography, X-Ray , Structure-Activity Relationship , Viral Nonstructural Proteins/metabolism
5.
Antiviral Res ; 179: 104815, 2020 07.
Article in English | MEDLINE | ID: mdl-32380149

ABSTRACT

Chronic Hepatitis B Virus infections afflict >250 million people and kill nearly 1 million annually. Current non-curative therapies are dominated by nucleos(t)ide analogs (NAs) that profoundly but incompletely suppress DNA synthesis by the viral reverse transcriptase. Residual HBV replication during NA therapy contributes to maintenance of the critical nuclear reservoir of the HBV genome, the covalently-closed circular DNA, and to ongoing infection of naive cells. Identification of next-generation NAs with improved efficacy and safety profiles, often through novel prodrug approaches, is the primary thrust of ongoing efforts to improve HBV replication inhibitors. Inhibitors of the HBV ribonuclease H, the other viral enzymatic activity essential for viral genomic replication, are in preclinical development. The complexity of HBV's reverse transcription pathway offers many other potential targets. HBV's protein-priming of reverse transcription has been briefly explored as a potential target, as have the host chaperones necessary for function of the HBV reverse transcriptase. Improved inhibitors of HBV reverse transcription would reduce HBV's replication-dependent persistence mechanisms and are therefore expected to become a backbone of future curative combination anti-HBV therapies.


Subject(s)
Antiviral Agents/pharmacology , Hepatitis B virus/drug effects , Hepatitis B virus/physiology , Nucleic Acid Synthesis Inhibitors/pharmacology , Virus Replication/drug effects , Animals , Clinical Trials as Topic , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/virology , Humans , Mice , Nucleosides/pharmacology , Ribonuclease H/antagonists & inhibitors
6.
Antivir Chem Chemother ; 26: 2040206618756430, 2018.
Article in English | MEDLINE | ID: mdl-29463095

ABSTRACT

This review describes the current state of discovery of past most important nucleoside and nucleotide prodrugs in the treatment of hepatitis C virus infection as well as future potential drugs currently in discovery or clinical evaluation. I highlight first generation landmark prodrug compounds which have been the foundations of incremental improvements toward the discovery and approval milestone of Sofosbuvir. Sofosbuvir is the first nucleotide prodrug marketed for hepatitis C virus treatment and the backbone of current combination therapies. Since this approval, new nucleotide prodrugs using the same design of Sofosbuvir McGuigan prodrug have emerged, some of them progressing through advanced clinical trials and may become available as new incremental alternative hepatitis C virus treatments in the future. Although since Sofosbuvir success, only minimal design efforts have been invested in finding better liver targeted prodrugs, a few novel prodrugs are being studied and their different modes of activation may prove beneficial over the heart/liver targeting ratio to reduce potential drug-drug interaction in combination therapies and yield safer treatment to patients. Prodrugs have long been avoided as much as possible in the past by development teams due to their metabolism and kinetic characterization complexity, but with their current success in hepatitis C virus treatment, and the knowledge gained in this endeavor, should become a first choice in future tissue targeting drug discovery programs beyond the particular case of nucleos(t)ide analogs.


Subject(s)
Antiviral Agents/pharmacology , Hepacivirus/drug effects , Hepatitis C/drug therapy , Nucleosides/pharmacology , Prodrugs/pharmacology , Antiviral Agents/chemistry , Humans , Microbial Sensitivity Tests , Molecular Structure , Nucleosides/chemistry , Prodrugs/chemistry
7.
J Med Chem ; 61(20): 9218-9228, 2018 10 25.
Article in English | MEDLINE | ID: mdl-30265808

ABSTRACT

MK-8591 (4'-ethynyl-2-fluoro-2'-deoxyadenosine) is a novel nucleoside analog that displays a differentiated mechanism of action as a nucleoside reverse transcriptase translocation inhibitor (NRTTI) compared to approved NRTIs. Herein, we describe our recent efforts to explore the impact of structural changes to the properties of MK-8591 through the synthesis and antiviral evaluation of carbocyclic derivatives. Synthesized analogs were evaluated for their antiviral activity, and the corresponding triphosphates were synthesized and evaluated in a biochemical assay. 4'-Ethynyl-G derivative (±)-29 displayed a promising IC50 of 33 nM in a hPBMC cell-based antiviral assay, and its triphosphate (TP), (±)-29-TP, displayed an IC50 of 324 nM in a biochemical RT-polymerase assay. Improved TP anabolite delivery resulting in improved in vitro potency was achieved by preparing the corresponding phosphoramidate prodrug of single enantiomer 29b, with 6-ethoxy G derivative 34b displaying a significantly improved IC50 of 3.0 nM, paving the way for new directions for this novel class of nucleoside analogs.


Subject(s)
Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Deoxyadenosines/chemical synthesis , Deoxyadenosines/pharmacology , Reverse Transcriptase Inhibitors/chemical synthesis , Reverse Transcriptase Inhibitors/pharmacology , Animals , Antiviral Agents/metabolism , Antiviral Agents/pharmacokinetics , Cell Line , Chemistry Techniques, Synthetic , Deoxyadenosines/metabolism , Deoxyadenosines/pharmacokinetics , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/chemistry , HIV Reverse Transcriptase/metabolism , HIV-1/drug effects , HIV-1/enzymology , Humans , Inhibitory Concentration 50 , Molecular Docking Simulation , Protein Conformation , Rats , Reverse Transcriptase Inhibitors/metabolism , Reverse Transcriptase Inhibitors/pharmacokinetics , Tissue Distribution
8.
J Med Chem ; 50(9): 2213-24, 2007 May 03.
Article in English | MEDLINE | ID: mdl-17373783

ABSTRACT

The Aurora kinases have been the subject of considerable interest as targets for the development of new anticancer agents. While evidence suggests inhibition of Aurora B kinase gives rise to the more pronounced antiproliferative phenotype, the most clinically advanced agents reported to date typically inhibit both Aurora A and B. We have discovered a series of pyrazoloquinazolines, some of which show greater than 1000-fold selectivity for Aurora B over Aurora A kinase activity, in recombinant enzyme assays. These compounds have been designed for parenteral administration and achieve high levels of solubility by virtue of their ability to be delivered as readily activated phosphate derivatives. The prodrugs are comprehensively converted to the des-phosphate form in vivo, and the active species have advantageous pharmacokinetic properties and safety pharmacology profiles. The compounds display striking in vivo activity, and compound 5 (AZD1152) has been selected for clinical evaluation and is currently in phase 1 clinical trials.


Subject(s)
Antineoplastic Agents/chemical synthesis , Organophosphates/chemical synthesis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrazoles/chemical synthesis , Quinazolines/chemical synthesis , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Aurora Kinase A , Aurora Kinase B , Aurora Kinases , Cell Division/drug effects , Cell Line, Tumor , Cytochrome P-450 Enzyme Inhibitors , Drug Screening Assays, Antitumor , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/drug effects , Female , Histones/metabolism , Humans , Male , Mice , Mice, Nude , Organophosphates/pharmacokinetics , Organophosphates/pharmacology , Phosphorylation , Prodrugs/chemical synthesis , Prodrugs/pharmacokinetics , Prodrugs/pharmacology , Protein Binding , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Quinazolines/pharmacokinetics , Quinazolines/pharmacology , Rats , Recombinant Proteins/antagonists & inhibitors , Structure-Activity Relationship , Transplantation, Heterologous
9.
J Med Chem ; 49(3): 955-70, 2006 Feb 09.
Article in English | MEDLINE | ID: mdl-16451062

ABSTRACT

The synthesis of a novel series of quinazolines substituted at C4 by five-membered ring aminoheterocycles is reported. Their in vitro structure-activity relationships versus Aurora A and B serine-threonine kinases is discussed. Our results demonstrate that quinazolines with a substituted aminothiazole at C4 possess potent Aurora A and B inhibitory activity and excellent selectivity against a panel of various serine-threonine and tyrosine kinases, as exemplified by compound 46. We found also that the position and nature of the substituent on the thiazole play key roles in cellular potency. Compounds with an acetanilide substituent at C5' have the greatest cellular activity. The importance of the C5' position for substitution has been rationalized by ab initio molecular orbital calculations. Results show that the planar conformation with the sulfur of the thiazole next to the quinazoline N-3 is strongly favored over the other possible planar conformation. Compound 46 is a potent suppressor of the expression of phospho-histone H3 in tumor cells in vitro as well as in vivo, where 46, administered as its phosphate prodrug 54, suppresses the expression of phospho-histone H3 in subcutaneously implanted tumors in nude mice.


Subject(s)
Antineoplastic Agents/chemical synthesis , Organophosphates/chemical synthesis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Quinazolines/chemical synthesis , Thiazoles/chemical synthesis , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Aurora Kinase A , Aurora Kinases , Cell Line, Tumor , Histones/antagonists & inhibitors , Histones/biosynthesis , Humans , Mice , Mice, Nude , Models, Molecular , Molecular Structure , Neoplasm Transplantation , Organophosphates/chemistry , Organophosphates/pharmacology , Phosphoproteins/antagonists & inhibitors , Phosphoproteins/biosynthesis , Prodrugs/chemical synthesis , Prodrugs/chemistry , Prodrugs/pharmacology , Protein Serine-Threonine Kinases/chemistry , Quantum Theory , Quinazolines/chemistry , Quinazolines/pharmacology , Structure-Activity Relationship , Thiazoles/chemistry , Thiazoles/pharmacology , Xenograft Model Antitumor Assays
10.
J Med Chem ; 59(5): 1891-8, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26804933

ABSTRACT

Here, we describe the design, synthesis, biological evaluation, and identification of a clinical candidate non-nucleoside reverse transcriptase inhibitors (NNRTIs) with a novel aryl-phospho-indole (APhI) scaffold. NNRTIs are recommended components of highly active antiretroviral therapy (HAART) for the treatment of HIV-1. Since a major problem associated with NNRTI treatment is the emergence of drug resistant virus, this work focused on optimization of the APhI against clinically relevant HIV-1 Y181C and K103N mutants and the Y181C/K103N double mutant. Optimization of the phosphinate aryl substituent led to the discovery of the 3-Me,5-acrylonitrile-phenyl analogue RP-13s (IDX899) having an EC50 of 11 nM against the Y181C/K103N double mutant.


Subject(s)
Anti-HIV Agents/pharmacology , Drug Discovery , HIV Reverse Transcriptase/antagonists & inhibitors , HIV-1/drug effects , HIV-1/enzymology , Indoles/pharmacology , Phosphinic Acids/pharmacology , Reverse Transcriptase Inhibitors/pharmacology , Animals , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/chemistry , Cell Line , Crystallography, X-Ray , Dogs , Dose-Response Relationship, Drug , HIV Reverse Transcriptase/metabolism , Hepatocytes/chemistry , Hepatocytes/metabolism , Humans , Indoles/chemical synthesis , Indoles/chemistry , Macaca fascicularis , Male , Models, Molecular , Molecular Structure , Phosphinic Acids/chemical synthesis , Phosphinic Acids/chemistry , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Inhibitors/chemical synthesis , Reverse Transcriptase Inhibitors/chemistry , Structure-Activity Relationship
11.
J Med Chem ; 54(1): 392-5, 2011 Jan 13.
Article in English | MEDLINE | ID: mdl-21142105

ABSTRACT

A novel series of 3-aryl-phospho-indole (API) non-nucleoside reverse transcriptase inhibitors of HIV-1 was developed. Chemical variation in the phosphorus linker led to the discovery of 3-phenyl-methyl-phosphinate-2-carboxamide 14, which possessed excellent potency against wild-type HIV-1 as well as viruses bearing K103N and Y181C single mutants in the reverse transcriptase gene. Chiral separation of the enantiomers showed that only R enantiomer retained the activity. The pharmacokinetic, solubility, and metabolic properties of 14 were assessed.


Subject(s)
Anti-HIV Agents/chemical synthesis , HIV Reverse Transcriptase/metabolism , Indoles/chemical synthesis , Phosphinic Acids/chemical synthesis , Reverse Transcriptase Inhibitors/chemical synthesis , Animals , Anti-HIV Agents/pharmacokinetics , Anti-HIV Agents/pharmacology , Cell Line , Dogs , Drug Resistance, Viral , HIV Reverse Transcriptase/genetics , Haplorhini , Hepatocytes/metabolism , Humans , Indoles/pharmacokinetics , Indoles/pharmacology , Models, Molecular , Mutation , Phosphinic Acids/pharmacokinetics , Phosphinic Acids/pharmacology , Rats , Reverse Transcriptase Inhibitors/pharmacokinetics , Reverse Transcriptase Inhibitors/pharmacology , Solubility , Stereoisomerism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL