Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 129
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 120(50): e2310666120, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38048459

ABSTRACT

Autoantibodies directed against complement component C1q are commonly associated with autoimmune diseases, especially systemic lupus erythematosus. Importantly, these anti-C1q autoantibodies are specific for ligand-bound, solid-phase C1q and do not bind to fluid-phase C1q. In patients with anti-C1q, C1q levels are in the normal range, and the autoantibodies are thus not depleting. To study these human anti-C1q autoantibodies at the molecular level, we isolated C1q-reactive B cells and recombinantly produced nine monoclonal antibodies (mAbs) from four different healthy individuals. The isolated mAbs were of the IgG isotype, contained extensively mutated variable domains, and showed high affinity to the collagen-like region of C1q. The anti-C1q mAbs exclusively bound solid-phase C1q in complex with its natural ligands, including immobilized or antigen-bound IgG, IgM or CRP, and necrotic cells. Competition experiments reveal that at least 2 epitopes, also targeted by anti-C1q antibodies in sera from SLE patients, are recognized. Electron microscopy with hexameric IgG-C1q immune complexes demonstrated that multiple mAbs can interact with a single C1q molecule and identified the region of C1q targeted by these mAbs. The opsonization of immune complexes with anti-C1q greatly enhanced Fc-receptor-mediated phagocytosis but did not increase complement activation. We conclude that human anti-C1q autoantibodies specifically bind neo-epitopes on solid-phase C1q, which results in an increase in Fc-receptor-mediated effector functions that may potentially contribute to autoimmune disease immunopathology.


Subject(s)
Autoimmune Diseases , Lupus Erythematosus, Systemic , Humans , Autoantibodies , Complement C1q , Antigen-Antibody Complex , Complement Activation , Phagocytosis , Epitopes , Immunoglobulin G
2.
Proc Natl Acad Sci U S A ; 119(49): e2214331119, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36442096

ABSTRACT

Human leukocyte antigen (HLA) molecules present small peptide antigens to T cells, thereby allowing them to recognize pathogen-infected and cancer cells. A central dogma over the last 50+ y is that peptide binding to HLA molecules is mediated by the docking of side chains of particular amino acids in the peptide into pockets in the HLA molecules in a conserved N- to C-terminal orientation. Whether peptides can be presented in a reversed C- to N-terminal orientation remains unclear. Here, we performed large-scale identification of peptides bound to HLA-DP molecules and observed that in addition to peptide binding in an N- to C-terminal orientation, in 9 out of 14 HLA-DP allotypes, reverse motifs are found, compatible with C- to N-terminal peptide binding. Moreover, we isolated high-avidity human cytomegalovirus (CMV)-specific HLA-DP-restricted CD4+ T cells from the memory repertoire of healthy donors and demonstrate that such T cells recognized CMV-derived peptides bound to HLA-DPB1*01:01 or *05:01 in a reverse C- to N-terminal manner. Finally, we obtained a high-resolution HLA-DPB1*01:01-CMVpp65(142-158) peptide crystal structure, which is the molecular basis for C- to N-terminal peptide binding to HLA-DP. Our results point to unique features of HLA-DP molecules that substantially broaden the HLA class II bound peptide repertoire to combat pathogens and eliminate cancer cells.


Subject(s)
Cytomegalovirus Infections , Peptides , Humans , Amino Acids , Cytomegalovirus , Histocompatibility Antigens Class II , HLA-DP Antigens/immunology , T-Lymphocytes/immunology
3.
Nat Immunol ; 13(3): 283-9, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22245737

ABSTRACT

The structural characteristics of the engagement of major histocompatibility complex (MHC) class II-restricted self antigens by autoreactive T cell antigen receptors (TCRs) is established, but how autoimmune TCRs interact with complexes of self peptide and MHC class I has been unclear. Here we examined how CD8(+) T cells kill human islet beta cells in type 1 diabetes via recognition of a human leukocyte antigen HLA-A*0201-restricted glucose-sensitive preproinsulin peptide by the autoreactive TCR 1E6. Rigid 'lock-and-key' binding underpinned the 1E6-HLA-A*0201-peptide interaction, whereby 1E6 docked similarly to most MHC class I-restricted TCRs. However, this interaction was extraordinarily weak because of limited contacts with MHC class I. TCR binding was highly peptide centric, dominated by two residues of the complementarity-determining region 3 (CDR3) loops that acted as an 'aromatic-cap' over the complex of peptide and MHC class I (pMHCI). Thus, highly focused peptide-centric interactions associated with suboptimal TCR-pMHCI binding affinities might lead to thymic escape and potential CD8(+) T cell-mediated autoreactivity.


Subject(s)
Apoptosis , CD8-Positive T-Lymphocytes/immunology , Diabetes Mellitus, Type 1/immunology , Insulin-Secreting Cells/immunology , CD8-Positive T-Lymphocytes/chemistry , Histocompatibility Antigens/immunology , Humans , Insulin-Secreting Cells/pathology , Models, Molecular , Protein Structure, Tertiary , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/immunology
4.
Anal Chem ; 95(31): 11621-11631, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37495545

ABSTRACT

Proteases comprise the class of enzymes that catalyzes the hydrolysis of peptide bonds, thereby playing a pivotal role in many aspects of life. The amino acids surrounding the scissile bond determine the susceptibility toward protease-mediated hydrolysis. A detailed understanding of the cleavage specificity of a protease can lead to the identification of its endogenous substrates, while it is also essential for the design of inhibitors. Although many methods for protease activity and specificity profiling exist, none of these combine the advantages of combinatorial synthetic libraries, i.e., high diversity, equimolar concentration, custom design regarding peptide length, and randomization, with the sensitivity and detection power of mass spectrometry. Here, we developed such a method and applied it to study a group of bacterial metalloproteases that have the unique specificity to cleave between two prolines, i.e., Pro-Pro endopeptidases (PPEPs). We not only confirmed the prime-side specificity of PPEP-1 and PPEP-2, but also revealed some new unexpected peptide substrates. Moreover, we have characterized a new PPEP (PPEP-3) that has a prime-side specificity that is very different from that of the other two PPEPs. Importantly, the approach that we present in this study is generic and can be extended to investigate the specificity of other proteases.


Subject(s)
Endopeptidases , Peptide Library , Endopeptidases/chemistry , Peptides/chemistry , Peptide Hydrolases/metabolism , Tandem Mass Spectrometry , Substrate Specificity
5.
Nat Immunol ; 12(1): 45-53, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21151101

ABSTRACT

Cytotoxic T lymphocytes (CTLs) recognize peptides presented by HLA class I molecules on the cell surface. The C terminus of these CTL epitopes is considered to be produced by the proteasome. Here we demonstrate that the cytosolic endopeptidases nardilysin and thimet oligopeptidase (TOP) complemented proteasome activity. Nardilysin and TOP were required, either together or alone, for the generation of a tumor-specific CTL epitope from PRAME, an immunodominant CTL epitope from Epstein-Barr virus protein EBNA3C, and a clinically important epitope from the melanoma protein MART-1. TOP functioned as C-terminal trimming peptidase in antigen processing, and nardilysin contributed to both the C-terminal and N-terminal generation of CTL epitopes. By broadening the antigenic peptide repertoire, nardilysin and TOP strengthen the immune defense against intracellular pathogens and cancer.


Subject(s)
Antigens, Neoplasm/metabolism , Epitopes, T-Lymphocyte/metabolism , Metalloendopeptidases/metabolism , T-Lymphocytes, Cytotoxic/metabolism , Antigen Presentation/genetics , Antigens, Neoplasm/chemistry , Antigens, Neoplasm/immunology , Cytotoxicity, Immunologic/genetics , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , HLA-A3 Antigen/metabolism , Humans , K562 Cells , Metalloendopeptidases/genetics , Metalloendopeptidases/immunology , Peptide Fragments/chemistry , Peptide Fragments/immunology , Peptide Fragments/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Binding , RNA, Small Interfering/genetics , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/pathology , Transgenes/genetics
6.
Clin Exp Rheumatol ; 39(3): 570-577, 2021.
Article in English | MEDLINE | ID: mdl-32896247

ABSTRACT

OBJECTIVES: Antibodies targeting post-translationally modified proteins, such as anti-carbamylated protein antibodies (anti-CarP antibodies) are present in the sera of rheumatoid arthritis (RA) patients. These autoantibodies associate with increased risk of RA development and with severity of joint destruction. It is not known which proteins in the RA joint are recognised by anti-CarP antibodies. Therefore, we investigated the presence and identity of carbamylated proteins in the human (inflamed) joint. METHODS: We obtained synovium, cartilage and synovial fluid from RA joints. Cartilage and synovium were obtained from controls. Samples were processed and used for immunohistochemistry or mass-spectrometric analysis to investigate the presence of carbamylated proteins. Anti-CarP antibody reactivity towards identified carbamylated proteins was tested by ELISA. RESULTS: Immunohistochemistry showed extensive staining of RA and control synovial tissue. Whole proteome analyses of the joint tissues revealed a large number of carbamylated peptidyllysine residues. We identified many carbamylated proteins in cartilage and were also able to detect carbamylation in synovial tissue and synovial fluid. Carbamylation was not exclusive to the RA joint and was also present in the joints of controls. Anti-CarP antibodies in the sera of RA patients were able to recognise the identified carbamylated proteins. CONCLUSIONS: We conclude that numerous carbamylated proteins are present in the RA joint. These carbamylated proteins can be recognised by anti-CarP antibodies, substantiating the notion that anti-CarP antibodies may play a role in the pathogenesis of RA.


Subject(s)
Arthritis, Rheumatoid , Autoantibodies , Enzyme-Linked Immunosorbent Assay , Humans , Mass Spectrometry , Synovial Membrane
7.
Immunol Rev ; 280(1): 165-174, 2017 11.
Article in English | MEDLINE | ID: mdl-29027230

ABSTRACT

Cancer cells are subjected to constant selection by the immune system, meaning that tumors that become clinically manifest have managed to subvert or hide from immunosurveillance. Immune control can be facilitated by induction of autophagy, as well as by polyploidization of cancer cells. While autophagy causes the release of ATP, a chemotactic signal for myeloid cells, polyploidization can trigger endoplasmic reticulum stress with consequent exposure of the "eat-me" signal calreticulin on the cell surface, thereby facilitating the transfer of tumor antigens into dendritic cells. Hence, both autophagy and polyploidization cause the emission of adjuvant signals that ultimately elicit immune control by CD8+ T lymphocytes. We investigated the possibility that autophagy and polyploidization might also affect the antigenicity of cancer cells by altering the immunopeptidome. Mass spectrometry led to the identification of peptides that were presented on major histocompatibility complex (MHC) class I molecules in an autophagy-dependent fashion or that were specifically exposed on the surface of polyploid cells, yet lost upon passage of such cells through immunocompetent (but not immunodeficient) mice. However, the preferential recognition of autophagy-competent and polyploid cells by the innate and cellular immune systems did not correlate with the preferential recognition of such peptides in vivo. Moreover, vaccination with such peptides was unable to elicit tumor growth-inhibitory responses in vivo. We conclude that autophagy and polyploidy increase the immunogenicity of cancer cells mostly by affecting their adjuvanticity rather than their antigenicity.


Subject(s)
Adjuvants, Immunologic , Antigens, Neoplasm/immunology , Cell Death , Immunologic Surveillance , Neoplasms/immunology , Adenosine Triphosphate/metabolism , Animals , Endoplasmic Reticulum Stress , Humans , Mice , Monitoring, Immunologic , Signal Transduction
8.
Anal Chem ; 92(8): 5871-5881, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32212639

ABSTRACT

Comprehensive determination of primary sequence and identification of post-translational modifications (PTMs) are key elements in protein structural analysis. Various mass spectrometry (MS) based fragmentation techniques are powerful approaches for mapping both the amino acid sequence and PTMs; one of these techniques is matrix-assisted laser desorption/ionization (MALDI), combined with in-source decay (ISD) fragmentation and Fourier-transform ion cyclotron resonance (FT-ICR) MS. MALDI-ISD MS protein analysis involves only minimal sample preparation and does not require spectral deconvolution. The resulting MALDI-ISD MS data is complementary to electrospray ionization-based MS/MS sequencing readouts, providing knowledge on the types of fragment ions is available. In this study, we evaluate the isotopic distributions of z' ions in protein top-down MALDI-ISD FT-ICR mass spectra and show why these distributions can deviate from theoretical profiles as a result of co-occurring and isomeric z and y-NH3 ions. Two synthetic peptides, containing either normal or deuterated alanine residues, were used to confirm the presence and unravel the identity of isomeric z and y-NH3 fragment ions ("twins"). Furthermore, two reducing MALDI matrices, namely 1,5-diaminonaphthalene and N-phenyl-p-phenylenediamine were applied that yield ISD mass spectra with different fragment ion distributions. This study demonstrates that the relative abundance of isomeric z and y-NH3 ions requires consideration for accurate and confident assignments of z' ions in MALDI-ISD FT-ICR mass spectra.


Subject(s)
Ammonia/chemistry , Insulin/analysis , Myoglobin/analysis , 2-Naphthylamine/analogs & derivatives , 2-Naphthylamine/chemistry , 2-Naphthylamine/metabolism , Ammonia/metabolism , Animals , Horses , Humans , Insulin/metabolism , Ions/chemistry , Ions/metabolism , Molecular Structure , Myoglobin/metabolism , Phenylenediamines/chemistry , Phenylenediamines/metabolism , Protein Processing, Post-Translational , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tandem Mass Spectrometry
9.
J Biol Chem ; 293(28): 11154-11165, 2018 07 13.
Article in English | MEDLINE | ID: mdl-29794027

ABSTRACT

Pro-Pro endopeptidases (PPEPs) belong to a recently discovered family of proteases capable of hydrolyzing a Pro-Pro bond. The first member from the bacterial pathogen Clostridium difficile (PPEP-1) cleaves two C. difficile cell-surface proteins involved in adhesion, one of which is encoded by the gene adjacent to the ppep-1 gene. However, related PPEPs may exist in other bacteria and may shed light on substrate specificity in this enzyme family. Here, we report on the homolog of PPEP-1 in Paenibacillus alvei, which we denoted PPEP-2. We found that PPEP-2 is a secreted metalloprotease, which likewise cleaved a cell-surface protein encoded by an adjacent gene. However, the cleavage motif of PPEP-2, PLP↓PVP, is distinct from that of PPEP-1 (VNP↓PVP). As a result, an optimal substrate peptide for PPEP-2 was not cleaved by PPEP-1 and vice versa. To gain insight into the specificity mechanism of PPEP-2, we determined its crystal structure at 1.75 Å resolution and further confirmed the structure in solution using small-angle X-ray scattering (SAXS). We show that a four-amino-acid loop, which is distinct in PPEP-1 and -2 (GGST in PPEP-1 and SERV in PPEP-2), plays a crucial role in substrate specificity. A PPEP-2 variant, in which the four loop residues had been swapped for those from PPEP-1, displayed a shift in substrate specificity toward PPEP-1 substrates. Our results provide detailed insights into the PPEP-2 structure and the structural determinants of substrate specificity in this new family of PPEP proteases.


Subject(s)
Bacterial Proteins/metabolism , Dipeptides/metabolism , Endopeptidases/metabolism , Paenibacillus/enzymology , Amino Acid Sequence , Bacterial Proteins/chemistry , Crystallography, X-Ray , Dipeptides/chemistry , Endopeptidases/chemistry , Models, Molecular , Paenibacillus/growth & development , Protein Conformation , Sequence Homology , Substrate Specificity
10.
J Immunol ; 199(10): 3679-3690, 2017 11 15.
Article in English | MEDLINE | ID: mdl-29021373

ABSTRACT

In different macaque species, the MHC A2*05 gene is present in abundance, and its gene products are characterized by low cell-surface expression and a highly conserved peptide-binding cleft. We have characterized the peptide-binding motif of Mamu-A2*05:01, and elucidated the binding capacity for virus-derived peptides. The macaque A2*05 allotype prefers the basic amino acid arginine at the second position of the peptide, and hydrophobic and polar amino acids at the C-terminal end. These preferences are shared with HLA-B*27 and Mamu-B*008, molecules shown to be involved in elite control in human HIV type 1 and macaque SIV infections, respectively. In contrast, however, Mamu-A2*05 preferentially binds 8-mer peptides. Retention in the endoplasmic reticulum seems to be the cause of the lower cell-surface expression. Subsequent peptide-binding studies have illustrated that Mamu-A2*05:01 is able to bind SIV-epitopes known to evoke a strong CD8+ T cell response in the context of the Mamu-B*008 allotype in SIV-infected rhesus macaques. Thus, the macaque A2*05 gene encodes a specialized MHC class I molecule, and is most likely transported to the cell surface only when suitable peptides become available.


Subject(s)
Epitopes, T-Lymphocyte/metabolism , HIV Infections/immunology , HIV/physiology , Histocompatibility Antigens Class I/metabolism , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/physiology , T-Lymphocytes, Cytotoxic/immunology , Animals , Antigen Presentation , Cell Line , Epitopes, T-Lymphocyte/genetics , Genetic Predisposition to Disease , HIV Antigens/metabolism , HIV Infections/genetics , HLA-B27 Antigen/genetics , Histocompatibility Antigens Class I/genetics , Humans , Immunity, Cellular , Macaca , Peptides/metabolism , Protein Binding , Simian Acquired Immunodeficiency Syndrome/genetics , Viral Load , Virus Replication
11.
Ann Clin Microbiol Antimicrob ; 18(1): 38, 2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31796055

ABSTRACT

BACKGROUND: We investigated the efficacy of a synthetic antimicrobial peptide SAAP-148, which was shown to be effective against Methicillin-resistant Staphylococcus aureus (MRSA) on tape-stripped mice skin. Unexpectedly, SAAP-148 was not effective against MRSA in our pilot study using rats with excision wounds. Therefore, we investigated factors that might have contributed to the poor efficacy of SAAP-148. Subsequently, we optimised the protocol and assessed the efficacy of SAAP-148 in an adapted rat study. METHODS: We incubated 100 µL of SAAP-148 with 1 cm2 of a wound dressing for 1 h and determined the unabsorbed volume of peptide solution. Furthermore, 105 colony forming units (CFU)/mL MRSA were exposed to increasing dosages of SAAP-148 in 50% (v/v) human plasma, eschar- or skin extract or PBS. After 30 min incubation, the number of viable bacteria was determined. Next, ex vivo skin models were inoculated with MRSA for 1 h and exposed to SAAP-148. Finally, excision wounds on the back of rats were inoculated with 107 CFU MRSA overnight and treated with SAAP-148 for 4 h or 24 h. Subsequently, the number of viable bacteria was determined. RESULTS: Contrary to Cuticell, Parafilm and Tegaderm film, < 20% of peptide solution was recovered after incubation with gauze, Mepilex border and Opsite Post-op. Furthermore, in plasma, eschar- or skin extract > 20-fold higher dosages of SAAP-148 were required to achieve a 2-log reduction (LR) of MRSA versus SAAP-148 in PBS. Exposure of ex vivo models to SAAP-148 for 24 h resulted in a 4-fold lower LR than a 1 h or 4 h exposure period. Additionally, SAAP-148 caused a 1.3-fold lower mean LR at a load of 107 CFU compared to 105 CFU MRSA. Moreover, exposure of ex vivo excision wound models to SAAP-148 resulted in a 1.5-fold lower LR than for tape-stripped skin. Finally, SAAP-148 failed to reduce the bacterial counts in an adapted rat study. CONCLUSIONS: Several factors, such as absorption of SAAP-148 by wound dressings, components within wound exudates, re-colonisation during the exposure of SAAP-148, and a high bacterial load may contribute to the poor antimicrobial effect of SAAP-148 against MRSA in the rat model.


Subject(s)
Staphylococcal Infections/drug therapy , Staphylococcus aureus/drug effects , Synthetic Drugs/pharmacology , Wound Infection , Administration, Topical , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Pilot Projects , Rats , Skin/microbiology , Staphylococcal Infections/microbiology , Synthetic Drugs/administration & dosage , Wound Infection/drug therapy , Wound Infection/microbiology
12.
Immunol Cell Biol ; 96(2): 137-148, 2018 02.
Article in English | MEDLINE | ID: mdl-29363167

ABSTRACT

Viruses may interfere with the MHC class I antigen presentation pathway in order to avoid CD8+ T cell-mediated immunity. A key target within this pathway is the peptide transporter TAP. This transporter plays a central role in MHC class I-mediated peptide presentation of endogenous antigens. In addition, TAP plays a role in antigen cross-presentation of exogenously derived antigens by dendritic cells (DCs). In this study, a soluble form of the cowpox virus TAP inhibitor CPXV012 is synthesized for exogenous delivery into the antigen cross-presentation route of human monocyte-derived (mo)DCs. We show that soluble CPXV012 localizes to TAP+ compartments that carry internalized antigen and is a potent inhibitor of antigen cross-presentation. CPXV012 stimulates the prolonged deposition of antigen fragments in storage compartments of moDCs, as a result of reduced endosomal acidification and reduced antigen proteolysis when soluble CPXV012 is present. Thus, a dual function can be proposed for CPXV012: inhibition of TAP-mediated peptide transport and inhibition of endosomal antigen degradation. We propose this second function for soluble CPXV012 can serve to interfere with antigen cross-presentation in a peptide transport-independent manner.


Subject(s)
Antigen Presentation/immunology , Cowpox virus/metabolism , Cross-Priming/immunology , Dendritic Cells/immunology , Endocytosis , Monocytes/cytology , Viral Proteins/metabolism , Amino Acid Sequence , Endosomes/metabolism , Humans , Lysosomal-Associated Membrane Protein 1/metabolism , Peptides/metabolism , Protein Domains , Solubility , Viral Proteins/chemistry
13.
J Immunol ; 196(8): 3253-63, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26944932

ABSTRACT

Identifying T cell epitopes of islet autoantigens is important for understanding type 1 diabetes (T1D) immunopathogenesis and to design immune monitoring and intervention strategies in relationship to disease progression. Naturally processed T cell epitopes have been discovered by elution from HLA-DR4 of pulsed B lymphocytes. The designated professional APC directing immune responses is the dendritic cell (DC). To identify naturally processed epitopes, monocyte-derived DC were pulsed with preproinsulin (PPI), glutamic acid decarboxylase (65-kDa isoform; GAD65), and insulinoma-associated Ag-2 (IA-2), and peptides were eluted of HLA-DR3 and -DR4, which are associated with highest risk for T1D development. Proteome analysis confirmed uptake and processing of islet Ags by DC. PPI peptides generated by DC differed from those processed by B lymphocytes; PPI signal-sequence peptides were eluted from HLA-DR4 and -DR3/4 that proved completely identical to a primary target epitope of diabetogenic HLA-A2-restricted CD8 T cells. HLA-DR4 binding was confirmed. GAD65 peptides, eluted from HLA-DR3 and -DR4, encompassed two core regions overlapping the two most immunodominant and frequently studied CD4 T cell targets. GAD65 peptides bound to HLA-DR3. Strikingly, the IA-2 ligandome of HLA-DR was exclusively generated from the extracellular part of IA-2, whereas most previous immune studies have focused on intracellular IA-2 epitopes. The newly identified IA-2 peptides bound to HLA-DR3 and -DR4. Differential T cell responses were detected against the newly identified IA-2 epitopes in blood from T1D patients. The core regions to which DC may draw attention from autoreactive T cells are largely distinct and more restricted than are those of B cells. GAD65 peptides presented by DC focus on highly immunogenic T cell targets, whereas HLA-DR-binding peptides derived from IA-2 are distinct from the target regions of IA-2 autoantibodies.


Subject(s)
Autoimmunity/immunology , Dendritic Cells/immunology , Diabetes Mellitus, Type 1/immunology , HLA-DR3 Antigen/immunology , HLA-DR4 Antigen/immunology , Islets of Langerhans/immunology , Autoantigens/immunology , B-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cells, Cultured , Epitopes, T-Lymphocyte/immunology , Glutamate Decarboxylase/metabolism , Humans , Insulin/metabolism , Lymphocyte Activation/immunology , Protein Binding/immunology , Protein Precursors/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 8/metabolism
14.
J Autoimmun ; 80: 77-84, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28291659

ABSTRACT

In 2011 a novel autoantibody system, anti-carbamylated protein (anti-CarP) antibodies, was described in rheumatoid arthritis (RA) patients. Anti-CarP antibody positivity associates with a more severe disease course, is observed years before disease onset, and may predict the development of RA in arthralgia patients. Although many clinical observations have been carried out, information on the antigenic targets of anti-CarP antibodies is limited. Most studies on anti-CarP antibodies utilize an ELISA-based assay with carbamylated fetal calf serum (Ca-FCS) as antigen, a complex mixture of proteins. Therefore, we analysed the molecular identity of proteins within Ca-FCS that are recognized by anti-CarP antibodies. Ca-FCS was fractionated using ion exchange chromatography, selecting one of the fractions for further investigation. Using mass-spectrometry, carbamylated alpha-1-antitrypsin (Ca-A1AT) was identified as a potential antigenic target of anti-CarP antibodies in RA patients. A1AT contains several lysines on the protein surface that can readily be carbamylated. A large proportion of the RA patients harbour antibodies that bind human Ca-A1AT in ELISA, indicating that Ca-A1AT is indeed an autoantigen for anti-CarP antibodies. Next to the Ca-A1AT protein, several homocitrulline-containing peptides of A1AT were recognized by RA sera. Moreover, we identified a carbamylated peptide of A1AT in the synovial fluid of an RA patient using mass spectrometry. We conclude that Ca-A1AT is not only a target of anti-CarP antibodies but is also present in the synovial compartment, suggesting that Ca-A1AT recognized by anti-CarP antibodies in the joint may contribute to synovial inflammation in anti-CarP-positive RA.


Subject(s)
Arthralgia/immunology , Arthritis, Rheumatoid/immunology , Autoantigens/immunology , Synovial Membrane/immunology , alpha 1-Antitrypsin/immunology , Autoantibodies/metabolism , Autoantigens/isolation & purification , Chromatography, Ion Exchange , Citrulline/analogs & derivatives , Citrulline/immunology , Citrulline/isolation & purification , Computational Biology , Enzyme-Linked Immunosorbent Assay , Humans , Mass Spectrometry , Peptide Fragments/immunology , Peptide Fragments/isolation & purification , Protein Conformation , Protein Processing, Post-Translational , alpha 1-Antitrypsin/chemistry , alpha 1-Antitrypsin/isolation & purification
15.
Biochemistry ; 55(1): 29-37, 2016 Jan 12.
Article in English | MEDLINE | ID: mdl-26645346

ABSTRACT

SH3 binding peptides contain polyproline helices and are classified according to their binding orientations as N-to-C-terminal or C-to-N-terminal. We have tested the hypothesis that such a peptide binds in both orientations but with different populations. A focal adhesion kinase (FAK)-derived peptide was tested for its binding orientation on the Src SH3 domain. Paramagnetic tags were introduced at several positions on the SH3 domain, and on the basis of the paramagnetic relaxation enhancements (PREs) of the amide protons, the positions of the paramagnetic centers were determined. Two peptides were synthesized with (13)C-enriched Ala or Pro, at the N-terminal or C-terminal side of the peptide, and the intermolecular PREs were measured. The results provide compelling evidence that the FAK-derived peptide binds the SH3 domain in two orientations. In the major state, the SH3 domain binds the peptide in the N-C orientation, whereas 20% of the time, the peptide binds in the C-N orientation. We conclude that the distinction between N-C and C-N orientations, which is based on crystal structures, might be artificial. The pseudosymmetric nature of the polyproline helix might allow for binding in both orientations in the solution state.


Subject(s)
Focal Adhesion Protein-Tyrosine Kinases/metabolism , Peptides/metabolism , src Homology Domains , Amino Acid Sequence , Animals , Chickens , Focal Adhesion Protein-Tyrosine Kinases/chemistry , Ligands , Models, Molecular , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Peptides/chemistry , Protein Binding
16.
J Biol Chem ; 290(5): 2593-603, 2015 Jan 30.
Article in English | MEDLINE | ID: mdl-25505266

ABSTRACT

Human leukocyte antigen (HLA) class I molecules generally present peptides (p) of 8 to 11 amino acids (aa) in length. Although an increasing number of examples with lengthy (>11 aa) peptides, presented mostly by HLA-B alleles, have been reported. Here we characterize HLA-A*02:01 restricted, in addition to the HLA-B*0702 and HLA-B*4402 restricted, lengthy peptides (>11 aa) arising from the B-cell ligandome. We analyzed a number of 15-mer peptides presented by HLA-A*02:01, and confirmed pHLA-I formation by HLA folding and thermal stability assays. Surprisingly the binding affinity and stability of the 15-mer epitopes in complex with HLA-A*02:01 were comparable with the values observed for canonical length (8 to 11 aa) HLA-A*02:01-restricted peptides. We solved the structures of two 15-mer epitopes in complex with HLA-A*02:01, within which the peptides adopted distinct super-bulged conformations. Moreover, we demonstrate that T-cells can recognize the 15-mer peptides in the context of HLA-A*02:01, indicating that these 15-mer peptides represent immunogenic ligands. Collectively, our data expand our understanding of longer epitopes in the context of HLA-I, highlighting that they are not limited to the HLA-B family, but can bind the ubiquitous HLA-A*02:01 molecule, and play an important role in T-cell immunity.


Subject(s)
HLA-A2 Antigen/chemistry , Cell Line , Crystallography, X-Ray , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , Flow Cytometry , HLA-A2 Antigen/immunology , HLA-B7 Antigen/chemistry , HLA-B7 Antigen/immunology , Humans , Mass Spectrometry , Peptides , Protein Conformation
17.
Biochim Biophys Acta ; 1848(10 Pt A): 2437-47, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26210299

ABSTRACT

OP-145, a synthetic antimicrobial peptide developed from a screen of the human cathelicidin LL-37, displays strong antibacterial activities and is--at considerably higher concentrations--lytic to human cells. To obtain more insight into its actions, we investigated the interactions between OP-145 and liposomes composed of phosphatidylglycerol (PG) and phosphatidylcholine (PC), resembling bacterial and mammalian membranes, respectively. Circular dichroism analyses of OP-145 demonstrated a predominant α-helical conformation in the presence of both membrane mimics, indicating that the different membrane-perturbation mechanisms are not due to different secondary structures. Membrane thinning and formation of quasi-interdigitated lipid-peptide structures was observed in PG bilayers, while OP-145 led to disintegration of PC liposomes into disk-like micelles and bilayer sheets. Although OP-145 was capable of binding lipoteichoic acid and peptidoglycan, the presence of these bacterial cell wall components did not retain OP-145 and hence did not interfere with the activity of the peptide toward PG membranes. Furthermore, physiological Ca++ concentrations did neither influence the membrane activity of OP-145 in model systems nor the killing of Staphylococcus aureus. However, addition of OP-145 at physiological Ca++-concentrations to PG membranes, but not PC membranes, resulted in the formation of elongated enrolled structures similar to cochleate-like structures. In summary, phospholipid-driven differences in incorporation of OP-145 into the lipid bilayers govern the membrane activity of the peptide on bacterial and mammalian membrane mimics.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Cell Membrane Permeability/physiology , Lipid Bilayers/chemistry , Phospholipids/metabolism , Staphylococcus aureus/physiology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Cell Membrane Permeability/drug effects , Cell Survival/drug effects , Cell Survival/physiology , Humans , Phospholipids/chemistry , Staphylococcus aureus/drug effects
18.
Clin Chem ; 62(1): 188-97, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26585923

ABSTRACT

BACKGROUND: Direct and calculated measures of lipoprotein fractions for cardiovascular risk assessment suffer from analytical inaccuracy in certain dyslipidemic and pathological states, most commonly hypertriglyceridemia. LC-MS/MS has proven suitable for multiplexed quantification and phenotyping of apolipoproteins. We developed and provisionally validated an automated assay for quantification of apolipoprotein (apo) A-I, B, C-I, C-II, C-III, and E and simultaneous qualitative assessment of apoE phenotypes. METHODS: We used 5 value-assigned human serum pools for external calibration. Serum proteins were denatured, reduced, and alkylated according to standard mass spectrometry-based proteomics procedures. After trypsin digestion, peptides were analyzed by LC-MS/MS. For each peptide, we measured 2 transitions. We compared LC-MS/MS results to those obtained by an immunoturbidimetric assay or ELISA. RESULTS: Intraassay CVs were 2.3%-5.5%, and total CVs were 2.5%-5.9%. The LC-MS/MS assay correlated (R = 0.975-0.995) with immunoturbidimetric assays with Conformité Européenne marking for apoA-I, apoB, apoC-II, apoC-III, and apoE in normotriglyceridemic (n = 54) and hypertriglyceridemic (n = 46) sera. Results were interchangeable for apoA-I ≤3.0 g/L (Deming slope 1.014) and for apoB-100 ≤1.8 g/L (Deming slope 1.016) and were traceable to higher-order standards. CONCLUSIONS: The multiplex format provides an opportunity for new diagnostic and pathophysiologic insights into types of dyslipidemia and allows a more personalized approach for diagnosis and treatment of lipid abnormalities.


Subject(s)
Apolipoproteins/blood , Automation , Dyslipidemias/blood , Dyslipidemias/diagnosis , Phenotype , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Enzyme-Linked Immunosorbent Assay , Humans , Nephelometry and Turbidimetry , Proteomics
19.
J Immunol ; 193(4): 1578-89, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25024387

ABSTRACT

CD8(+) CTLs detect virus-infected cells through recognition of virus-derived peptides presented at the cell surface by MHC class I molecules. The cowpox virus protein CPXV012 deprives the endoplasmic reticulum (ER) lumen of peptides for loading onto newly synthesized MHC class I molecules by inhibiting the transporter associated with Ag processing (TAP). This evasion strategy allows the virus to avoid detection by the immune system. In this article, we show that CPXV012, a 9-kDa type II transmembrane protein, prevents peptide transport by inhibiting ATP binding to TAP. We identified a segment within the ER-luminal domain of CPXV012 that imposes the block in peptide transport by TAP. Biophysical studies show that this domain has a strong affinity for phospholipids that are also abundant in the ER membrane. We discuss these findings in an evolutionary context and show that a frameshift deletion in the CPXV012 gene in an ancestral cowpox virus created the current form of CPXV012 that is capable of inhibiting TAP. In conclusion, our findings indicate that the ER-luminal domain of CPXV012 inserts into the ER membrane, where it interacts with TAP. CPXV012 presumably induces a conformational arrest that precludes ATP binding to TAP and, thus, activity of TAP, thereby preventing the presentation of viral peptides to CTLs.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Adenosine Triphosphate/metabolism , Cowpox virus/immunology , Immune Evasion/immunology , T-Lymphocytes, Cytotoxic/immunology , Viral Proteins/immunology , ATP-Binding Cassette Transporters/antagonists & inhibitors , Antigen Presentation/genetics , Antigen Presentation/immunology , Cell Line, Tumor , Cell Membrane/metabolism , Cowpox virus/genetics , Endoplasmic Reticulum/immunology , Frameshift Mutation , HEK293 Cells , Histocompatibility Antigens Class I/immunology , Humans , Protein Binding/immunology , Protein Transport/immunology , Viral Proteins/genetics
20.
Mol Cell Proteomics ; 13(5): 1231-44, 2014 May.
Article in English | MEDLINE | ID: mdl-24623589

ABSTRACT

Bacterial secreted proteins constitute a biologically important subset of proteins involved in key processes related to infection such as adhesion, colonization, and dissemination. Bacterial extracellular proteases, in particular, have attracted considerable attention, as they have been shown to be indispensable for bacterial virulence. Here, we analyzed the extracellular subproteome of Clostridium difficile and identified a hypothetical protein, CD2830, as a novel secreted metalloprotease. Following the identification of a CD2830 cleavage site in human HSP90ß, a series of synthetic peptide substrates was used to identify the favorable CD2830 cleavage motif. This motif was characterized by a high prevalence of proline residues. Intriguingly, CD2830 has a preference for cleaving Pro-Pro bonds, unique among all hitherto described proteases. Strikingly, within the C. difficile proteome two putative adhesion molecules, CD2831 and CD3246, were identified that contain multiple CD2830 cleavage sites (13 in total). We subsequently found that CD2830 efficiently cleaves CD2831 between two prolines at all predicted cleavage sites. Moreover, native CD2830, secreted by live cells, cleaves endogenous CD2831 and CD3246. These findings highlight CD2830 as a highly specific endoproteinase with a preference for proline residues surrounding the scissile bond. Moreover, the efficient cleavage of two putative surface adhesion proteins points to a possible role of CD2830 in the regulation of C. difficile adhesion.


Subject(s)
Bacterial Proteins/metabolism , Clostridioides difficile/enzymology , Membrane Proteins/genetics , Metalloproteases/metabolism , Proline/metabolism , Protein Sorting Signals , Bacterial Proteins/genetics , Catalytic Domain , Clostridium Infections/parasitology , Evolution, Molecular , HSP90 Heat-Shock Proteins/metabolism , Humans , Metalloproteases/chemistry , Metalloproteases/genetics , Models, Molecular , Phylogeny , Proteome/analysis
SELECTION OF CITATIONS
SEARCH DETAIL