Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Mol Biol Rep ; 51(1): 905, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39133347

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is a highly aggressive cancer with limited therapeutic options. Hypoxia is a common feature of the tumor microenvironment that reportedly promotes tumorigenesis. Long non-coding RNAs (lncRNAs) are a class of regulatory molecules with diverse functions in cancer biology. This study aimed to identify hypoxia-induced lncRNAs associated with HCC and evaluate their potential as prognostic and therapeutic biomarkers. METHODS: We employed microarray and The Cancer Genome Atlas (TCGA) data to identify hypoxia-induced lncRNAs in HCC. Subsequently, we focused on CTD-2510F5.4, a candidate lncRNA, and predicted its functional roles in HCC using Gene Ontology (GO) and Guilt-by-Association (GBA) analyses. We validated its expression under hypoxia in Huh7 and HepG2 cells using RT-PCR. Functional assays, including CCK8, wound-healing, and transwell assays, were performed to assess the effects of CTD-2510F5.4 overexpression on HCC cell proliferation, invasion, and metastasis potential. Furthermore, we investigated the association between CTD-2510F5.4 expression and patient prognosis, tumor mutation signature, immune microenvironment characteristics, and therapeutic response to different treatment modalities. RESULTS: Our data demonstrated a significant upregulation of CTD-2510F5.4 expression in response to hypoxia. Functional enrichment analyses revealed the involvement of CTD-2510F5.4 in cell cycle regulation, E2F targets, G2M checkpoint control, and MYC signaling pathways. Functionally, CTD-2510F5.4 overexpression promoted HCC cell proliferation, invasion, and metastasis. Patients with high CTD-2510F5.4 expression exhibited a worse prognosis, a higher prevalence of TP53 mutations, increased infiltration by immunosuppressive regulatory T cells, elevated expression of immune checkpoint molecules, and higher TIDE scores indicative of immune dysfunction and exclusion. Notably, patients with low CTD-2510F5.4 expression displayed greater sensitivity to immunotherapy and antiangiogenic therapy, while those with high expression responded better to chemotherapy. CONCLUSION: Our findings suggest that CTD-2510F5.4 plays a critical role in HCC progression and immune modulation. Its potential as a prognostic biomarker and a predictor of therapeutic response warrants further investigation for personalized treatment strategies in HCC patients.


Subject(s)
Biomarkers, Tumor , Carcinoma, Hepatocellular , Cell Proliferation , Gene Expression Regulation, Neoplastic , Liver Neoplasms , RNA, Long Noncoding , Tumor Microenvironment , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Tumor Microenvironment/genetics , RNA, Long Noncoding/genetics , Prognosis , Cell Proliferation/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Hep G2 Cells , Hypoxia/genetics , Cell Movement/genetics
SELECTION OF CITATIONS
SEARCH DETAIL