Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters

Affiliation country
Publication year range
1.
Cell ; 182(5): 1328-1340.e13, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32814014

ABSTRACT

Among arthropod vectors, ticks transmit the most diverse human and animal pathogens, leading to an increasing number of new challenges worldwide. Here we sequenced and assembled high-quality genomes of six ixodid tick species and further resequenced 678 tick specimens to understand three key aspects of ticks: genetic diversity, population structure, and pathogen distribution. We explored the genetic basis common to ticks, including heme and hemoglobin digestion, iron metabolism, and reactive oxygen species, and unveiled for the first time that genetic structure and pathogen composition in different tick species are mainly shaped by ecological and geographic factors. We further identified species-specific determinants associated with different host ranges, life cycles, and distributions. The findings of this study are an invaluable resource for research and control of ticks and tick-borne diseases.


Subject(s)
Genetic Variation/genetics , Tick-Borne Diseases/microbiology , Ticks/genetics , Animals , Cell Line , Disease Vectors , Host Specificity/genetics
3.
Emerg Infect Dis ; 29(9): 1780-1788, 2023 09.
Article in English | MEDLINE | ID: mdl-37610104

ABSTRACT

Anaplasma capra is an emerging tickborne human pathogen initially recognized in China in 2015; it has been reported in ticks and in a wide range of domestic and wild animals worldwide. We describe whole-genome sequences of 2 A. capra strains from metagenomic sequencing of purified erythrocytes from infected goats in China. The genome of A. capra was the smallest among members of the genus Anaplasma. The genomes of the 2 A. capra strains contained comparable G+C content and numbers of pseudogenes with intraerythrocytic Anaplasma species. The 2 A. capra strains had 54 unique genes. The prevalence of A. capra was high among goats in the 2 endemic areas. Phylogenetic analyses revealed that the A. capra strains detected in this study were basically classified into 2 subclusters with those previously detected in Asia. Our findings clarify details of the genomic characteristics of A. capra and shed light on its genetic diversity.


Subject(s)
Genomics , Goats , Animals , Humans , Prevalence , Phylogeny , Anaplasma/genetics , China/epidemiology
4.
J Med Virol ; 95(6): e28861, 2023 06.
Article in English | MEDLINE | ID: mdl-37310144

ABSTRACT

The seasonal human coronaviruses (HCoVs) have zoonotic origins, repeated infections, and global transmission. The objectives of this study are to elaborate the epidemiological and evolutionary characteristics of HCoVs from patients with acute respiratory illness. We conducted a multicenter surveillance at 36 sentinel hospitals of Beijing Metropolis, China, during 2016-2019. Patients with influenza-like illness (ILI) and severe acute respiratory infection (SARI) were included, and submitted respiratory samples for screening HCoVs by multiplex real-time reverse transcription-polymerase chain reaction assays. All the positive samples were used for metatranscriptomic sequencing to get whole genomes of HCoVs for genetical and evolutionary analyses. Totally, 321 of 15 677 patients with ILI or SARI were found to be positive for HCoVs, with an infection rate of 2.0% (95% confidence interval, 1.8%-2.3%). HCoV-229E, HCoV-NL63, HCoV-OC43, and HCoV-HKU1 infections accounted for 18.7%, 38.3%, 40.5%, and 2.5%, respectively. In comparison to ILI cases, SARI cases were significantly older, more likely caused by HCoV-229E and HCoV-OC43, and more often co-infected with other respiratory pathogens. A total of 179 full genome sequences of HCoVs were obtained from 321 positive patients. The phylogenetical analyses revealed that HCoV-229E, HCoV-NL63 and HCoV-OC43 continuously yielded novel lineages, respectively. The nonsynonymous to synonymous ratio of all key genes in each HCoV was less than one, indicating that all four HCoVs were under negative selection pressure. Multiple substitution modes were observed in spike glycoprotein among the four HCoVs. Our findings highlight the importance of enhancing surveillance on HCoVs, and imply that more variants might occur in the future.


Subject(s)
Coronavirus 229E, Human , Coronavirus NL63, Human , Coronavirus OC43, Human , Humans , Seasons , Betacoronavirus , China , Coronavirus OC43, Human/genetics
5.
Rheumatology (Oxford) ; 60(6): 2979-2989, 2021 06 18.
Article in English | MEDLINE | ID: mdl-33247940

ABSTRACT

OBJECTIVE: To determine the upregulation of IL-21-inducible genes in minor salivary glands (MSGs) in 28 primary SS (pSS) patients and 12 non-pSS subjects and correlate it with disease characteristics. METHODS: RNA sequencing was utilized to compare IL-21-inducible genes expression in the MSGs between pSS and non-pSS subjects. The subgroups were characterized according to the IL-21 score calculated by seven IL-21-inducible genes. Furthermore, the disease characteristics and transcripts implicated in hypoxia and interferon signalling were assessed in two pSS subgroups. RESULTS: We observed that the expression of the IL-21-inducible genes (IL-21, IL-21R, JAK3, STAT1, HLA-B, CCR7 and CXCL10), the so-called IL-21 signature genes, was significantly increased in pSS patients. The upregulation of JAK3 expression may be induced by hypomethylation of the JAK3 promoter in pSS patients and putatively associated with POU2F2. The patients with increased IL-21 signature gene expression showed an increased EULAR Sjögren's Syndrome Disease Activity Index score and increased enrichment of B cells, memory B cells, CD4+ T cells and CD8+ T cells. Furthermore, the IL-21 scores in the anti-SSA+, SSB+, ANA+ and high IgG samples were higher than those in the respective antibody-negative samples and normal IgG. In addition, we found both hypoxia and IFN-relevant genes showed strong correlation with IL-21 signature gene expression, indicating their interaction in pSS. CONCLUSION: IL-21 signature gene was associated with typical disease characteristics in pSS, which provides insight into the contribution of the IL-21 signalling pathway to the pathogenesis of the disease and might provide a novel treatment strategy for this subtype of pSS.


Subject(s)
Interleukins/genetics , Salivary Glands, Minor/pathology , Sjogren's Syndrome/genetics , Adult , Female , Gene Expression , Humans , Male , Middle Aged , Protein Interaction Maps , Up-Regulation
6.
Opt Express ; 29(11): 15980-15994, 2021 May 24.
Article in English | MEDLINE | ID: mdl-34154171

ABSTRACT

A high-energy, high-beam-quality, high-contrast picosecond optical parametric chirped-pulse amplification (ps-OPCPA) laser system was demonstrated. The pulse from a femtosecond oscillator was stretched to 4 ps, after which it was amplified from 140 pJ to 600 µJ by an 8 ps/6 mJ pump laser in two non-collinear OPCPA stages. The total gain was >106, and the root mean square of the energy stability of the laser system was 1.6% in 10 h. The contrasts of the solid and fiber mode-locked femtosecond oscillator-seeded ps-OPCPA systems were compared, and a signal-to-noise ratio of >1011 was achieved. Using this system, the contrast of the front end in high-power picosecond petawatt laser facility was improved by ∼40 dB to >1011, beyond ∼200 ps ahead of the main pulse with an output level of 60 mJ.

7.
Article in English | MEDLINE | ID: mdl-32929885

ABSTRACT

Neurodevelopmental disorders, including autism spectrum disorder (ASD), intellectual disability (ID), developmental disorders (DD) and epileptic encephalopathy (EE), have a strong clinical comorbidity, which indicates a common genetic etiology across various disorders. However, the underlying genetic mechanisms of comorbidity and specificity remain unknown across neurodevelopmental disorders. Based on de novo mutations, we compared systematically the functional characteristics between shared and unique genes under these disorders, as well as the spatiotemporal trajectory of development in brain and common molecular pathways of all shared genes. We observed that shared genes present more constrained against functional rare genetic variation, and harbor more pathogenic rare variants than do unique genes in each disorder. Furthermore, 71 shared genes formed two clusters related to synaptic transmission, transcription regulation and chromatin regulator. Particularly, we also found that two core genes STXBP1 and SCN2A, that were shared by the four neurodevelopmental disorders showed prominent pleiotropy. Our findings shed light on the shared and specific patterns across neurodevelopmental disorders and will enable us to further comprehend the etiology and provide valuable information for the diagnosis of neurodevelopmental disorders.


Subject(s)
Autism Spectrum Disorder/genetics , Brain Diseases/genetics , Developmental Disabilities/genetics , Epilepsy/genetics , Intellectual Disability/genetics , Munc18 Proteins/genetics , NAV1.2 Voltage-Gated Sodium Channel/genetics , Autism Spectrum Disorder/pathology , Brain Diseases/pathology , Case-Control Studies , Developmental Disabilities/pathology , Epilepsy/pathology , Humans , Intellectual Disability/pathology , Neurodevelopmental Disorders/classification , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology
8.
Rheumatology (Oxford) ; 59(9): 2603-2615, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32250392

ABSTRACT

OBJECTIVES: This study aims to characterize the expression profiles of circRNAs in primary Sjogren's Syndrome (pSS) and examine the potential of noninvasive circular RNAs (circRNAs) as biomarkers of pSS. METHODS: We performed RNA sequencing of minor salivary gland (MSG) biopsies from four pSS and four non-pSS individuals (subjects undergoing MSG biopsies but not meeting 2012 or 2016 ACR classification criteria for SS). Differentially expressed circRNAs were identified by DESeq2, and confirmed by quantitative real-time PCR in the MSGs as well as in plasma exosomes in 37 pSS and 14 non-pSS subjects. Discriminatory capacity testing using receiver operating characteristic analysis was used to evaluate the performance of circRNAs as diagnostic biomarkers for pSS. RESULTS: Circ-IQGAP2 and circ-ZC3H6 had significantly upregulated expression in the MSGs of pSS patients, and this elevated expression was confirmed by quantitative real-time PCR of plasma exosome RNA. The expression of these circRNAs also showed significant correlation with both clinical features, serum IgG level and MSG focus scores. Receiver operating characteristic analysis showed that the indices comprised of both the two circRNAs and clinical features were better able to distinguish pSS from non-pSS subjects with high mean areas under the curve of 0.93 in the MSGs and 0.92 in the plasma exosomes. CONCLUSION: This study indicated the potential roles of circ-IQGAP2 and circ-ZC3H6 as noninvasive biomarkers for the diagnosis of pSS.


Subject(s)
Salivary Glands/pathology , Sjogren's Syndrome , Zinc Fingers/genetics , ras GTPase-Activating Proteins/genetics , Biomarkers/analysis , Biopsy/methods , China , Diagnosis, Differential , Exosomes , Female , Humans , Male , Middle Aged , RNA, Circular , RNA-Binding Proteins/genetics , Sequence Analysis, RNA/methods , Sjogren's Syndrome/blood , Sjogren's Syndrome/diagnosis , Sjogren's Syndrome/genetics
10.
Sci Total Environ ; 940: 173589, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-38823715

ABSTRACT

Green hydrogen generated via water electrolysis using photovoltaics or wind has begun to scale up in the process of achieving the global net-zero goal, but there is a lack of research on its impact on the scarcity of water resources and water saving potential. A water resources impact assessment framework for green hydrogen scale-up development is established, integrating the product water footprint and regional water footprint scarcity impacts and advancing the study of the water resources impacts on green hydrogen from water conservation as well as from a sustainable context. The research framework specifies the cradle-to-gate life cycle water consumption of hydrogen production, establishes the water scarcity footprint based on the available water remaining (AWARE) model, quantifies the water saving intensity and potential of the green hydrogen alternative to traditional hydrogen production, and proposes quantitative indicators of the water saving benefit. Taking the regions of 31 provinces in China as a case study, the wind-to­hydrogen scenario and the solar-to­hydrogen scenario will generate approximately 68.86×108 m3 and 126.10×108 m3 water scarcity footprints, respectively. Under the coal-to­hydrogen baseline scenario, approximately 1.68×108 m3 and - 0.57×108 m3 of water saving potential will be generated. In addition, the water saving intensity decreases from west to east. According to the adjusted quantitative indicators of water saving benefits, the wind-to­hydrogen scenario in China can reach 40.22×108 m3eq and the water saving benefit is more obvious in northern regions such as Hebei, Ningxia and Inner Mongolia. The methodological framework can be applied to other countries or regions to assess the sustainable impacts of green hydrogen production on water resources in a given region.

11.
Curr Opin Insect Sci ; 62: 101162, 2024 04.
Article in English | MEDLINE | ID: mdl-38237733

ABSTRACT

Ticks are obligatory hematophagous arachnids, serving as vectors for a wide array of pathogens that can be transmitted to humans or animals. The ability of tick-borne pathogens to maintain within natural reservoirs is intricately influenced by the attractiveness of ticks to their animal hosts, including humans. However, the complex dynamics of tick behavior and host-seeking strategies remain understudied. This review aims to summarize the impact of volatiles or odors on tick behavior and vector competence. Our literature review has identified a selection of compounds, such as 1-octen-3-ol, hexanal, heptanal, nonanal, 6-methyl-5-hepten-2-one, acetone, and octanal, as having the potential to impact both ticks' and mosquitos' behaviors. In addition, carbon dioxide (CO2) is a universal attractant for hematophagous arthropods. Moreover, we have gathered some clues indicating that volatiles emitted by infected animal hosts might play a role in the transmission of tick-borne pathogens. Nonetheless, our understanding of this phenomenon remains largely inadequate, particularly with regarding to whether the tick microbiome or the skin microbiota of the feeding mammals, including humans, can actively modulate tick-host-seeking behavior. Further investigations in this emerging field hold immense promise for the development of innovative strategies aimed at controlling vectors and curtailing the spread of tick-borne diseases.


Subject(s)
Tick-Borne Diseases , Ticks , Animals , Humans , Mosquito Vectors , Skin , Host-Pathogen Interactions , Mammals
12.
Commun Biol ; 7(1): 784, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951577

ABSTRACT

Spotted fever group rickettsiae (SFGR) are obligate intracellular bacteria that cause spotted fever. The limitations of gene manipulation pose great challenges to studying the infection mechanisms of Rickettsia. By combining bioorthogonal metabolism and click chemistry, we developed a method to label R. heilongjiangensis via azide moieties and achieved rapid pathogen localization without complex procedures. Moreover, we constructed a C57BL/6 mice infection model by simulating tick bites and discovered that the stomach is the target organ of R. heilongjiangensis infection through in vivo imaging systems, which explained the occurrence of gastrointestinal symptoms following R. heilongjiangensis infection in some cases. This study offers a unique perspective for subsequent investigations into the pathogenic mechanisms of SFGR and identifies a potential target organ for R. heilongjiangensis.


Subject(s)
Click Chemistry , Mice, Inbred C57BL , Rickettsia , Animals , Rickettsia/genetics , Rickettsia/physiology , Mice , Click Chemistry/methods , Stomach/microbiology , Disease Models, Animal , Spotted Fever Group Rickettsiosis/microbiology , Female , Rickettsia Infections/microbiology , Azides/chemistry
13.
Int J Parasitol Parasites Wildl ; 23: 100907, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38283887

ABSTRACT

Dermacentor nuttalli, a member of family Ixodidae and genus Dermacentor, is predominantly found in North Asia. It transmits various pathogens of human and animal diseases, such as Lymphocytic choriomeningitis mammarenavirus and Brucella ovis, leading to severe symptoms in patients and posing serious hazards to livestock husbandry. To profile pathogen abundances of wild D. nuttalli, metagenomic sequencing was performed of four field-collected tick samples, revealing that Rickettsia, Streptomyces, and Pseudomonas were the most abundant bacterial genera in D. nuttalli. Specifically, four nearly complete Rickettsia genomes were assembled, closely relative to Rickettsia conorii subsp. raoultii. Then, a comprehensive meta-analysis was performed to evaluate its potential threats based on detected pathogens and geographical distribution positions reported in literature, reference books, related websites, and field surveys. At least 48 pathogens were identified, including 20 species of bacteria, seven species of eukaryota, and 21 species of virus. Notably, Rickettsia conorii subsp. raoultii, Coxiella burnetii, and Brucella ovis displayed remarkably high positivity rates, which were known to cause infectious diseases in both humans and livestock. Currently, the primary distribution of D. nuttalli spans China, Mongolia, and Russia. However, an additional 14 countries in Asia and America that may also be affected by D. nuttalli were identified in our niche model, despite no previous reports of its presence in these areas. This study provides comprehensive data and analysis on the pathogens carried by D. nuttalli, along with documented and potential distribution, suggesting an emerging threat to public health and animal husbandry. Therefore, there is a need for heightened surveillance and thorough investigation of D. nuttalli.

14.
Emerg Microbes Infect ; 13(1): 2323153, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38442029

ABSTRACT

The emergence of Anaplasma bovis or A. bovis-like infection in humans from China and the United States of America has raised concern about the public health importance of this pathogen. Although A. bovis has been detected in a wide range of ticks and mammals in the world, no genome of the pathogen is available up to now, which has prohibited us from better understanding the genetic basis for its pathogenicity. Here we describe an A. bovis genome from metagenomic sequencing of an infected goat in China. Anaplasma bovis had the smallest genome of the genus Anaplasma, and relatively lower GC content. Phylogenetic analysis of single-copy orthologue sequence showed that A. bovis was closely related to A. platys and A. phagocytophilum, but relatively far from intraerythrocytic Anaplasma species. Anaplasma bovis had 116 unique orthogroups and lacked 51 orthogroups in comparison to other Anaplasma species. The virulence factors of A. bovis were significantly less than those of A. phagocytophilum, suggesting less pathogenicity of A. bovis. When tested by specific PCR assays, A. bovis was detected in 23 of 29 goats, with an infection rate up to 79.3% (95% CI: 64.6% ∼94.1%). The phylogenetic analyses based on partial 16S rRNA, gltA and groEL genes indicated that A. bovis had high genetic diversity. The findings of this study lay a foundation for further understanding of the biological characteristics and genetic diversity of A. bovis, and will facilitate the formulation of prevention and control strategies.


Subject(s)
Anaplasma , Genomics , Humans , Animals , Phylogeny , RNA, Ribosomal, 16S/genetics , Anaplasma/genetics , China/epidemiology , Goats , Genetic Variation
15.
Emerg Microbes Infect ; 13(1): 2396870, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39193640

ABSTRACT

The continual emergence of tick-borne rickettsioses has garnered widespread global attention. Candidatus Rickettsia barbariae (Candidatus R. barbariae), which emerged in Italy in 2008, has been detected in humans from northwestern China. However, the lack of Candidatus R. barbariae genome and isolated strains limits the understanding of its biological characteristics and genomic features. Here, we isolated the Rickettsia for the first time from eggs of Rhipicephalus turanicus in northwestern China, and assembled its whole genome after next-generation sequencing, so we modified the proposed name to Rickettsia barbariae (R. barbariae) to conform to the International Code of Nomenclature of Prokaryotes. Phylogenetic analysis based on the whole genome revealed that it was most closely related to the pathogenic Rickettsia parkeri and Rickettsia africae. All virulence factors, present in the pathogenic spotted fever group rickettsiae, were identified in the R. barbariae isolate. These findings highlight the pathogenic potential of R. barbariae and the necessity for enhanced surveillance of the emerging Rickettsia in the human population.


Subject(s)
Genome, Bacterial , Phylogeny , Rickettsia , Rickettsia/genetics , Rickettsia/isolation & purification , Rickettsia/classification , Animals , China , Rhipicephalus/microbiology , Humans , Rickettsia Infections/microbiology , Virulence Factors/genetics , Genomics , High-Throughput Nucleotide Sequencing , Whole Genome Sequencing , Ovum/microbiology
16.
Int J Parasitol Parasites Wildl ; 23: 100912, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38375444

ABSTRACT

Soft ticks (Ixodida: Argasidae) are ectoparasites of terrestrial vertebrates with worldwide distributions. As one representative group of Argasidae, the genus Argas has an important vectorial role in transmitting zoonotic diseases. However, our knowledge of the subgenus Argas in China is still limited, as most literature only lists occurrence records or describes specific case reports without providing detailed morphological characteristics and further molecular data. This study aims to characterize Argas vulgaris through complete mitochondrial sequencing and morphological diagnostic techniques based on a batch of adult specimens collected from Ningxia Hui Autonomous Regions (NXHAR), North China. The morphology and microstructures of Ar. vulgaris and other lectotypes of argasid ticks in the subgenus Argas were also observed using a stereomicroscope. Following DNA extraction and sequencing, a complete mitochondrial sequence of Ar. vulgaris was assembled and analyzed within a phylogenetic context. The 14,479 bp mitogenome of Ar. vulgaris consists of 37 genes, including 13 genes for protein coding, two for ribosomal RNA, 22 for transfer RNA, and one for control region (D-loops). Phylogenetic analysis of Ar. vulgaris showed 98.27%-100% nucleotide identity with Ar. japonicus, indicating a close relationship between the two tick species. The morphological diagnostic features to differentiate Ar. vulgaris from other ticks within the subgenus Argas included the location of the anus and setae on the anterior lip of the female genital aperture. This study provided high-resolution scanning electron microscope images of female Ar. vulgaris and corresponding molecular data, representing valuable resources for future accurate species identification.

17.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38747389

ABSTRACT

Spillovers of viruses from animals to humans occur more frequently under warmer conditions, particularly arboviruses. The invasive tick species Haemaphysalis longicornis, the Asian longhorned tick, poses a significant public health threat due to its global expansion and its potential to carry a wide range of pathogens. We analyzed meta-transcriptomic data from 3595 adult H. longicornis ticks collected between 2016 and 2019 in 22 provinces across China encompassing diverse ecological conditions. Generalized additive modeling revealed that climate factors exerted a stronger influence on the virome of H. longicornis than other ecological factors, such as ecotypes, distance to coastline, animal host, tick gender, and antiviral immunity. To understand how climate changes drive the tick virome, we performed a mechanistic investigation using causality inference with emphasis on the significance of this process for public health. Our findings demonstrated that higher temperatures and lower relative humidity/precipitation contribute to variations in animal host diversity, leading to increased diversity of the tick virome, particularly the evenness of vertebrate-associated viruses. These findings may explain the evolution of tick-borne viruses into generalists across multiple hosts, thereby increasing the probability of spillover events involving tick-borne pathogens. Deep learning projections have indicated that the diversity of the H. longicornis virome is expected to increase in 81.9% of regions under the SSP8.5 scenario from 2019 to 2030. Extension of surveillance should be implemented to avert the spread of tick-borne diseases.


Subject(s)
Introduced Species , Virome , Animals , China , Ixodidae/virology , Female , Climate Change , Male , Climate
18.
Microbiome ; 12(1): 35, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38378577

ABSTRACT

BACKGROUND: Haemaphysalis longicornis is drawing attentions for its geographic invasion, extending population, and emerging disease threat. However, there are still substantial gaps in our knowledge of viral composition in relation to genetic diversity of H. longicornis and ecological factors, which are important for us to understand interactions between virus and vector, as well as between vector and ecological elements. RESULTS: We conducted the meta-transcriptomic sequencing of 136 pools of H. longicornis and identified 508 RNA viruses of 48 viral species, 22 of which have never been reported. Phylogenetic analysis of mitochondrion sequences divided the ticks into two genetic clades, each of which was geographically clustered and significantly associated with ecological factors, including altitude, precipitation, and normalized difference vegetation index. The two clades showed significant difference in virome diversity and shared about one fifth number of viral species that might have evolved to "generalists." Notably, Bandavirus dabieense, the pathogen of severe fever with thrombocytopenia syndrome was only detected in ticks of clade 1, and half number of clade 2-specific viruses were aquatic-animal-associated. CONCLUSIONS: These findings highlight that the virome diversity is shaped by internal genetic evolution and external ecological landscape of H. longicornis and provide the new foundation for promoting the studies on virus-vector-ecology interaction and eventually for evaluating the risk of H. longicornis for transmitting the viruses to humans and animals. Video Abstract.


Subject(s)
Ixodidae , Phlebovirus , Ticks , Animals , Humans , Ixodidae/genetics , Haemaphysalis longicornis , Virome/genetics , Phylogeny , Phlebovirus/genetics
19.
Nat Commun ; 14(1): 6786, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37880290

ABSTRACT

There has been increasing global concern about the spillover transmission of pangolin-associated microbes. To assess the risk of these microbes for emergence as human pathogens, we integrated data from multiple sources to describe the distribution and spectrum of microbes harbored by pangolins. Wild and trafficked pangolins have been mainly recorded in Asia and Africa, while captive pangolins have been reported in European and North American countries. A total of 128 microbes, including 92 viruses, 25 bacteria, eight protists, and three uncharacterized microbes, have been identified in five pangolin species. Out of 128 pangolin-associated microbes, 31 (including 13 viruses, 15 bacteria, and three protists) have been reported in humans, and 54 are animal-associated viruses. The phylogenetic analysis of human-associated viruses carried by pangolins reveals that they are genetically close to those naturally circulating among human populations in the world. Pangolins harbor diverse microbes, many of which have been previously reported in humans and animals. Abundant viruses initially detected in pangolins might exhibit risks for spillover transmission.


Subject(s)
Pangolins , Animals , Humans , Phylogeny , Asia , Africa , North America
20.
Microbiome ; 11(1): 50, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36915209

ABSTRACT

BACKGROUND: The impact of host skin microbiome on horizontal transmission of tick-borne pathogens , and of pathogen associated transstadial and transovarial changes in tick microbiome are largely unknown, but are important to control increasingly emerging tick-borne diseases worldwide. METHODS: Focusing on a rickettsiosis pathogen, Rickettsia raoultii, we used R. raoultii-positive and R. raoultii-negative Dermacentor spp. tick colonies to study the involvement of skin microbiota in cutaneous infection with rickettsiae in laboratory mice, and the function of the tick microbiome on maintenance of rickettsiae through all tick developmental stages (eggs, larvae, nymphs, adults) over two generations. RESULTS: We observed changes in the skin bacteria community, such as Chlamydia, not only associated with rickettsial colonization but also with tick feeding on skin. The diversity of skin microbiome differed between paired tick-bitten and un-bitten sites. For vertical transmission, significant differences in the tick microbiota between pathogenic rickettsia-positive and -negative tick chorts was observed across all developmental stages at least over two generations, which appeared to be a common pattern not only for R. raoultii but also for another pathogenic species, Candidatus Rickettsia tarasevichiae. More importantly, bacterial differences were complemented by functional shifts primed for genetic information processing during blood feeding. Specifically, the differences in tick microbiome gene repertoire between pathogenic Rickettsia-positive and -negative progenies were enriched in pathways associated with metabolism and hormone signals during vertical transmission. CONCLUSIONS: We demonstrate that host skin microbiome might be a new factor determining the transmission of rickettsial pathogens through ticks. While pathogenic rickettsiae infect vertebrate hosts during blood-feeding by the tick, they may also manipulate the maturation of the tick through changing the functional potential of its microbiota over the tick's life stages. The findings here might spur the development of new-generation control methods for ticks and tick-borne pathogens. Video Abstract.


Subject(s)
Ixodidae , Rickettsia Infections , Tick-Borne Diseases , Ticks , Animals , Mice , Ixodidae/microbiology , Rickettsia Infections/microbiology , Tick-Borne Diseases/microbiology , Larva/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL