Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Eco Environ Health ; 3(1): 1-10, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38187015

ABSTRACT

The wide application of plastics has led to the ubiquitous presence of nanoplastics and microplastics in terrestrial environments. However, few studies have focused on the mechanism underlying the effects of plastic particles on soil microbiomes and resistomes, especially the differences between nanoplastics and microplastics. This study investigated the microbiome and resistome in soil exposed to polystyrene microplastics (mPS) or nanoplastics (nPS) through 16S rRNA and shotgun metagenomic sequencing. Distinct microbial communities were observed between mPS and nPS exposure groups, and nPS exposure significantly changed the bacterial composition even at the lowest amended rate (0.01%, w/w). The abundance of antibiotic resistance genes (ARGs) in nPS exposure (1%) was 0.26 copies per cell, significantly higher than that in control (0.21 copies per cell) and mPS exposure groups (0.21 copies per cell). It was observed that nanoplastics, bacterial community, and mobile genetic elements (MGEs) directly affected the ARG abundance in nPS exposure groups, while in mPS exposure groups, only MGEs directly induced the change of ARGs. Streptomyces was the predominant host for multidrug in the control and mPS exposure, whereas the primary host was changed to Bacillus in nPS exposure. Additionally, exposure to nPS induced several bacterial hosts to exhibit possible multi-antibiotic resistance characteristics. Our results indicated that the effects of plastic particles on the soil microbial community were size-dependent, and nano-sized plastic particles exhibited more substantial impacts. Both microplastics and nanoplastics promoted ARG transfer and diversified their bacterial hosts. These findings bear implications for the regulation of plastic waste and ARGs.

2.
Sci Total Environ ; 922: 171276, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38417500

ABSTRACT

The agricultural sector faces severe challenges owing to heavy metal (HM) contamination of farmlands, requiring urgent preventive measures. To address this, we investigated the impact of the synergistic application of Azospirillum brasilense, a growth-promoting rhizobacterium producing abscisic acid (ABA), and biochar to minimize HM accumulation in pak choi, using three distinct expression levels of the ABA transporter NRT1.2 in pak choi and three different types of contaminated soils as experimental materials. The results revealed that pak choi with low, medium, and high NRT1.2 expression intensity, when subjected to bacterial strain-biochar treatment, exhibited an increasing trend in ABA content compared to the control. Correspondingly, the aboveground HM content decreased by 1-49 %, 22-52 %, and 15-96 %, whereas the fresh weight increased by 12-38 %, 88-126 %, and 152-340 %, respectively, showing a significant correlation with NRT1.2 expression. Pearson correlation analysis demonstrated that NRT1.2 expression intensity was inversely associated with the combined treatment's reduction in HM accumulation and positively correlated with the promotional effect. Simultaneously, soil discrepancies significantly affected the combined treatment, which was likely associated with variations in the active forms of HM in each soil. Consequently, when employing ABA-producing bacteria for mitigating crop HM accumulation, selecting plants with higher relative NRT1.2 expression intensity, combined with biochar, is recommended.


Subject(s)
Charcoal , Metals, Heavy , Soil Pollutants , Abscisic Acid/analysis , Abscisic Acid/metabolism , Soil Pollutants/analysis , Metals, Heavy/analysis , Bacteria/metabolism , Soil , Cadmium/analysis
3.
J Agric Food Chem ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842427

ABSTRACT

Heavy metal contamination in soils poses a significant environmental threat to human health. This study examines the effects of the chiral herbicide napropamide (NAP) on Arabidopsis thaliana, focusing on growth metrics and cadmium (Cd) accumulation. R-NAP does not adversely affect plant growth compared to the control, whereas S-NAP significantly reduces root length and fresh weight. Notably, R-NAP markedly increases Cd accumulation in the shoots, exceeding levels observed in the control and S-NAP. This increase coincides with reduced photosynthetic efficiency. Noninvasive electrode techniques reveal a higher net Cd absorption flux in the root mature zone under R-NAP than S-NAP, although similar to the control. Transcriptomic analysis highlights significant stereoisomer differences in Cd transporters, predominantly under R-NAP treatment. SEM and molecular docking simulations support that R-NAP primarily upregulates transporters such as HMA4. The results suggest careful management of herbicides like R-NAP in contaminated fields to avoid excessive heavy metal buildup in crops.

4.
J Hazard Mater ; 473: 134718, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38797079

ABSTRACT

Exogenous abscisic acid (ABA) presents a novel approach to mitigate heavy metal (HM) accumulation in plants, yet its efficacy against multiple HMs and potential enhancement methods remain underexplored. In this study, we demonstrated that the exogenous ABA application simultaneously decreased Zn, Cd and Ni accumulation by 22-25 %, 27-39 % and 60-62 %, respectively, in wild-type (WT) Arabidopsis. Conversely, ABA reduced Pb in shoots but increased its root concentration. ABA application also modulated the expression of HM uptake genes, inhibiting IRT1, NRAMP1, NRAMP4, and HMA3, and increasing ZIP1 and ZIP4 expressions. Further analysis revealed that overexpressing the ABA-importing transporter (AIT1) in plants intensified the reduction of Cd, Zn, and Ni, compared to WT. However, the inhibitory effect of exogenous ABA on Pb accumulation was mitigated in shoots with higher AIT1 expression. Furthermore, HMs-induced growth inhibition and the damage to photosynthesis were also alleviated with ABA treatment. Conclusively, AIT1's synergistic effect with ABA effectively reduces Cd, Zn and Ni accumulation, offering a synergistic approach to mitigate HM stress in plants.


Subject(s)
Abscisic Acid , Arabidopsis Proteins , Arabidopsis , Metals, Heavy , Abscisic Acid/metabolism , Arabidopsis/drug effects , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/drug effects , Metals, Heavy/metabolism , Metals, Heavy/toxicity , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Plant Roots/metabolism , Plant Roots/drug effects , Plant Shoots/metabolism , Plant Shoots/drug effects , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/genetics , Soil Pollutants/toxicity , Soil Pollutants/metabolism
5.
J Hazard Mater ; 473: 134670, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38781858

ABSTRACT

Benzotriazole ultraviolet (UV) stabilizers (BUVs) have emerged as significant environmental contaminants, frequently detected in various ecosystems. While the toxicity of BUVs to aquatic organisms is well-documented, studies on their impact on plant life are scarce. Plants are crucial as they provide the primary source of energy and organic matter in ecosystems through photosynthesis. This study investigated the effects of UV-328 (2-(2-hydroxy-4',6'-di-tert-amylphenyl) benzotriazole) on plant growth indices and photosynthesis processes, employing conventional physiological experiments, RNA sequencing (RNA-seq) analysis, and computational methods. Results demonstrated a biphasic response in plant biomass and the maximum quantum yield of PS II (Fv/Fm), showing improvement at a 50 µM UV-328 treatment but reduction under 150 µM UV-328 exposure. Additionally, disruption in thylakoid morphology was observed at the higher concentration. RNA-seq and qRT-PCR analysis identified key differentially expressed genes (light-harvesting chlorophyll-protein complex Ⅰ subunit A4, light-harvesting chlorophyll b-binding protein 3, UVR8, and curvature thylakoid 1 A) related to photosynthetic light harvesting, UV-B sensing, and chloroplast structure pathways, suggesting they may contribute to the observed alterations in photosynthesis activity induced by UV-328 exposure. Molecular docking analyses further supported the binding affinity between these proteins and UV-328. Overall, this study provided comprehensive physiological and molecular insights, contributing valuable information to the evaluation of the potential risks posed by UV-328 to critical plant physiological processes.


Subject(s)
Photosynthesis , Triazoles , Ultraviolet Rays , Photosynthesis/drug effects , Photosynthesis/radiation effects , Triazoles/toxicity , Molecular Docking Simulation , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/radiation effects , Arabidopsis/radiation effects , Arabidopsis/drug effects , Arabidopsis/metabolism , Arabidopsis/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL