Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Small ; 20(22): e2309448, 2024 May.
Article in English | MEDLINE | ID: mdl-38362699

ABSTRACT

Hydrogen peroxide (H2O2) is a highly value-added and environmental-friendly chemical with various applications. The production of H2O2 by electrocatalytic 2e- oxygen reduction reaction (ORR) has emerged as a promising alternative to the energy-intensive anthraquinone process. High selectivity Catalysts combining with superior activity are critical for the efficient electrosynthesis of H2O2. Earth-abundant transition metal selenides (TMSs) being discovered as a classic of stable, low-cost, highly active and selective catalysts for electrochemical 2e- ORR. These features come from the relatively large atomic radius of selenium element, the metal-like properties and the abundant reserves. Moreover, compared with the advanced noble metal or single-atom catalysts, the kinetic current density of TMSs for H2O2 generation is higher in acidic solution, which enable them to become suitable catalyst candidates. Herein, the recent progress of TMSs for ORR to H2O2 is systematically reviewed. The effects of TMSs electrocatalysts on the activity, selectivity and stability of ORR to H2O2 are summarized. It is intended to provide an insight from catalyst design and corresponding reaction mechanisms to the device setup, and to discuss the relationship between structure and activity.

2.
Materials (Basel) ; 16(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37834633

ABSTRACT

Titanium alloys are crucial lightweight materials; however, they are susceptible to spontaneous combustion under high-temperature and high-pressure conditions, limiting their widespread use in aerospace engines. Improving the burn resistance of Ti alloys is essential for the structural safety and lightweight of aerospace equipment. Burn-resistant Ti alloys, such as Ti-V-Cr and Ti-Cu, however, face limitations such as high cost and low specific strength. Surface coatings provide a cost-effective solution while maintaining the high specific strength and good processability of the base material. Conventional surface treatments, such as laser cladding, result in defects and deformation of thin-walled parts. Cold spray technology offers a promising solution, as it uses kinetic energy to deposit coatings at low temperatures, avoiding defects and deformation. In this paper, we review the current research on burn-resistant surface technologies of Ti alloys and propose a new method of bimetallic coating by cold spraying and low-temperature heat treatment, which has the potential to solve the problem of spontaneous combustion of aerospace engine parts. The strategy presented can also guide the development of high-performance intermetallic compound-strengthened metal matrix composite coatings.

3.
Chemosphere ; 243: 125439, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31995887

ABSTRACT

This paper introduces a novel method for ethylenediaminetetraacetic acid (EDTA)-enhanced electrokinetic (EK) remediation by combining dual cation-exchange membranes and circulation methods for an aged electroplating soil contaminated by chrome (Cr), copper (Cu), and nickel (Ni). Three laboratory-scale EK experiments were carried out, including T1, the traditional EK process; T2, the traditional EDTA-enhanced EK process; and T3, the assisted EDTA-enhanced EK process. The results obtained show that removal of Cu and Ni in T3 was 3-10 times higher than after T1 and T2. However, the removal of Cr (total) was small in all experiments because of the high content of Cr(III). T3 eliminated the metal accumulation problem that existed for T1 and T2. Simultaneously, the highly acidified area (pH < 4) was reduced from 80% in T1 and T2 to only 20% in T3. The results obtained in T3 indicate that the chelating effect of EDTA has a greater ability to dissolve oxidizable Cu and Ni in the soil than the acidification effect. Toxicity evaluation confirmed that the soil treated by T3 presented a lower effect on a luminescent bacterium (Photobacterium phosphoreum T3) because soil pH tended to be more neutral after this treatment. This research provides a novel method for removing heavy metals from soil in a more environmentally friendly way and clarifies the cause of the existing problems of low removal efficiency and high accumulation in the traditional EK process.


Subject(s)
Electrochemical Techniques/methods , Environmental Restoration and Remediation/methods , Cation Exchange Resins , Chromium Compounds/isolation & purification , Copper/chemistry , Copper/isolation & purification , Edetic Acid/chemistry , Electroplating , Metals, Heavy/isolation & purification , Nickel/isolation & purification , Soil/chemistry , Soil Pollutants/isolation & purification
4.
Appl Biochem Biotechnol ; 180(7): 1372-1385, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27557903

ABSTRACT

This study investigated a system which simultaneously produced electricity and stored energy in the MFC integrated MnO2-modified capacitive bioanode. Compared to the noncapacitive anode, the maximum power density of MFC with MnO2-modified bioanode reached 16.47 W m-3, which was 3.5 times higher than that of the bare anode (4.71 W m-3). During the charging-discharging experiment, the MFC with a capacitance bioanode has a higher average peak current density of 5.06 mA cm-2 and 36 times larger than that with the bare bioanode. With the capacitive electrode, it is possible to let the MFC at the same time for production and storage of renewable electricity. Then two different operations (intermittent operation and continuous operation) of the MFC with a capacitive bioanode were studied to degrade Cr (VI) in cathode chamber. Results showed that the Cr (VI) removal rates of intermittent operation are much higher than that of continuous operation under the same time in the closed circuit state. This is due to the good ability of storing and releasing electron of the biological capacitor with MnO2 modified material. And this study showed that MFC with a capacitive bioanode is better adapted to treat heavy metal pollutants by intermittent mode.


Subject(s)
Bioelectric Energy Sources , Chromium/isolation & purification , Electric Capacitance , Electricity , Carbon/chemistry , Carbon Fiber , Electrodes , Manganese Compounds/chemistry , Oxides/chemistry
5.
J Hazard Mater ; 280: 304-14, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25179102

ABSTRACT

An efficient Ti/Sb-SnO2 electrode modified with nitrogen-doped graphene nanosheets (NGNS) was successfully fabricated by the sol-gel and dip coating method. Compared with Ti/Sb-SnO2 electrode, the NGNS-modified electrode possesses smaller unite crystalline volume (71.11Å(3) vs. 71.32Å(3)), smaller electrical resistivity (13Ωm vs. 34Ωm), and lower charge transfer resistance (10.91Ω vs. 21.01Ω). The accelerated lifetime of Ti/Sb-SnO2-NGNS electrode is prolonged significantly, which is 4.45 times as long as that of Ti/Sb-SnO2 electrode. The results of X-ray photoelectron spectroscopy measurement and voltammetric charge analysis indicate that introducing NGNS into the active coating can increase more reaction active sites to enhance the electrocatalytic efficiency. The electrochemical dye decolorization analysis demonstrates that Ti/Sb-SnO2-NGNS presents efficient electrocatalytic performance for methylene blue and orange II decolorization. And its pseudo-first order kinetic rate constants for methylene blue and orange II decolorization are 36.6 and 44.0 min(-1), respectively, which are 6.0 and 7.1 times as efficient as those of Ti/Sb-SnO2, respectively. Considering the significant electrocatalytic activity and low resistivity of Ti/Sb-SnO2-NGNS electrode, the cost of wastewater treatment can be expected to be reduced obviously and the application prospect is broad.


Subject(s)
Antimony/chemistry , Electrolysis , Graphite/chemistry , Tin Compounds/chemistry , Water Purification , Azo Compounds , Benzenesulfonates , Electrodes , Methylene Blue
SELECTION OF CITATIONS
SEARCH DETAIL