Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
J Nanobiotechnology ; 22(1): 297, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38812019

ABSTRACT

Chemotherapy, as a conventional strategy for tumor therapy, often leads to unsatisfied therapeutic effect due to the multi-drug resistance and the serious side effects. Herein, we genetically engineered a thermal-responsive murine Ferritin (mHFn) to specifically deliver mitoxantrone (MTO, a chemotherapeutic and photothermal agent) to tumor tissue for the chemotherapy and photothermal combined therapy of colorectal cancer, thanks to the high affinity of mHFn to transferrin receptor that highly expressed on tumor cells. The thermal-sensitive channels on mHFn allowed the effective encapsulation of MTO in vitro and the laser-controlled release of MTO in vivo. Upon irradiation with a 660 nm laser, the raised temperature triggered the opening of the thermal-sensitive channel in mHFn nanocage, resulting in the controlled and rapid release of MTO. Consequently, a significant amount of reactive oxygen species was generated, causing mitochondrial collapse and tumor cell death. The photothermal-sensitive controlled release, low systemic cytotoxicity, and excellent synergistic tumor eradication ability in vivo made mHFn@MTO a promising candidate for chemo-photothermal combination therapy against colorectal cancer.


Subject(s)
Colorectal Neoplasms , Ferritins , Lasers , Mitoxantrone , Photothermal Therapy , Animals , Colorectal Neoplasms/therapy , Colorectal Neoplasms/drug therapy , Mice , Ferritins/chemistry , Ferritins/metabolism , Photothermal Therapy/methods , Humans , Mitoxantrone/pharmacology , Mitoxantrone/chemistry , Mitoxantrone/therapeutic use , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Mice, Inbred BALB C , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Mice, Nude , Female
2.
J Nanobiotechnology ; 22(1): 284, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38790037

ABSTRACT

CRISPR-based gene therapy offers precise targeting and specific editing of disease-related gene sequences, potentially yielding long-lasting treatment effects. However, efficient delivery remains a significant challenge for its widespread application. In this study, we design a novel short peptide-conjugated bioreducible polymer named TSPscp as a safe and effective delivery vector for the CRISPR system. Our results show that TSPscp markedly boosts transcriptional activation and genome editing activities of multiple CRISPR systems as confirmed by decomposition-seq and Deep-seq, which is resulted from its capability in facilitating delivery of plasmid DNA by promoting cellular uptake and lysosomal escape. Additionally, TSPscp further enhances genome editing of CRISPR by delivery of minicircle DNA, a condensed form of regular plasmid DNA. More importantly, TSPscp significantly improves delivery and genome editing of CRISPR system in vivo. In summary, our study highlights TSPscp as a promising delivery tool for CRISPR applications in vivo.


Subject(s)
CRISPR-Cas Systems , Cell-Penetrating Peptides , Gene Editing , Plasmids , Gene Editing/methods , Humans , Animals , Plasmids/genetics , Cell-Penetrating Peptides/chemistry , Polymers/chemistry , Mice , HEK293 Cells , Genetic Therapy/methods
3.
J Nanobiotechnology ; 22(1): 204, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658948

ABSTRACT

As a famous drug delivery system (DDS), mesoporous organosilica nanoparticles (MON) are degraded slowly in vivo and the degraded components are not useful for cell nutrition or cancer theranostics, and superparamagnetic iron oxide nanoparticles (SPION) are not mesoporous with low drug loading content (DLC). To overcome the problems of MON and SPION, we developed mesoporous SPIONs (MSPIONs) with an average diameter of 70 nm and pore size of 3.9 nm. Sorafenib (SFN) and/or brequinar (BQR) were loaded into the mesopores of MSPION, generating SFN@MSPION, BQR@MSPION and SFN/BQR@MSPION with high DLC of 11.5% (SFN), 10.1% (BQR) and 10.0% (SNF + BQR), demonstrating that our MSPION is a generic DDS. SFN/BQR@MSPION can be used for high performance ferroptosis therapy of tumors because: (1) the released Fe2+/3+ in tumor microenvironment (TME) can produce •OH via Fenton reaction; (2) the released SFN in TME can inhibit the cystine/glutamate reverse transporter, decrease the intracellular glutathione (GSH) and GSH peroxidase 4 levels, and thus enhance reactive oxygen species and lipid peroxide levels; (3) the released BQR in TME can further enhance the intracellular oxidative stress via dihydroorotate dehydrogenase inhibition. The ferroptosis therapeutic mechanism, efficacy and biosafety of MSPION-based DDS were verified on tumor cells and tumor-bearing mice.


Subject(s)
Drug Delivery Systems , Ferroptosis , Magnetic Iron Oxide Nanoparticles , Sorafenib , Ferroptosis/drug effects , Animals , Magnetic Iron Oxide Nanoparticles/chemistry , Mice , Humans , Drug Delivery Systems/methods , Sorafenib/pharmacology , Sorafenib/chemistry , Sorafenib/therapeutic use , Cell Line, Tumor , Tumor Microenvironment/drug effects , Neoplasms/drug therapy , Porosity , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Mice, Inbred BALB C
4.
J Nanobiotechnology ; 20(1): 87, 2022 Feb 19.
Article in English | MEDLINE | ID: mdl-35183191

ABSTRACT

BACKGROUND: UV exposure continues to induce many health issues, though commercial sunscreens are available. Novel UV filters with high safety and efficacy are urgently needed. Metal-organic frameworks (MOFs) could be a suitable platform for UV filter development, due to their tunable optical, electrical, and photoelectric properties by precise controlled synthesis. RESULTS: Herein, four zinc-based MOFs with various bandgap energies were chose to investigate their optical behaviors and evaluate their possibility as sunscreens. Zeolitic imidazolate framework-8 (ZIF-8) was found to possess the highest and widest UV reflectance, thereby protecting against sunburn and DNA damage on mouse skin and even achieving a comparable or higher anti-UV efficacy relative to the commercially available UV filters, TiO2 or ZnO, on pig skin, a model that correlates well with human skin. Also, ZIF-8 exerted appealing characteristics for topical skin use with low radical production, low skin penetration, low toxicity, high transparency, and high stability. CONCLUSION: These results confirmed ZIF-8 could potentially be a safe and effective sunscreen surrogate for human, and MOFs could be a novel source to develop more effective and safe UV filters.


Subject(s)
Metal-Organic Frameworks , Zinc Oxide , Animals , Mice , Sunscreening Agents/pharmacology , Swine , Ultraviolet Rays , Zinc
5.
Angew Chem Int Ed Engl ; 58(3): 670-680, 2019 01 14.
Article in English | MEDLINE | ID: mdl-30016571

ABSTRACT

Cancer immunotherapies that train or stimulate the inherent immunological systems to recognize, attack, and eradicate tumor cells with minimal damage to healthy cells have demonstrated promising clinical responses in recent years. However, most of these immunotherapeutic strategies only benefit a small subset of patients and cause systemic autoimmune side effects in some patients. Immunogenic cell death (ICD)-inducing modalities not only directly kill cancer cells but also induce antitumor immune responses against a broad spectrum of solid tumors. Such strategies for generating vaccine-like functions could be used to stimulate a "cold" tumor microenvironment to become an immunogenic, "hot" tumor microenvironment, working in synergy with immunotherapies to increase patient response rates and lead to successful treatment outcomes. This Minireview will focus on nanoparticle-based treatment modalities that can induce and enhance ICD to potentiate cancer immunotherapy.


Subject(s)
Immunogenic Cell Death , Immunotherapy/methods , Nanoparticles/therapeutic use , Neoplasms/therapy , Animals , Antineoplastic Agents/therapeutic use , Humans , Hyperthermia, Induced/methods , Immunogenic Cell Death/drug effects , Nanomedicine/methods , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/radiotherapy , Photochemotherapy/methods
6.
J Am Chem Soc ; 138(51): 16686-16695, 2016 12 28.
Article in English | MEDLINE | ID: mdl-27976881

ABSTRACT

An effective, nontoxic, tumor-specific immunotherapy is the ultimate goal in the battle against cancer, especially the metastatic disease. Checkpoint blockade-based immunotherapies have been shown to be extraordinarily effective but benefit only the minority of patients whose tumors have been pre-infiltrated by T cells. Here, we show that Zn-pyrophosphate (ZnP) nanoparticles loaded with the photosensitizer pyrolipid (ZnP@pyro) can kill tumor cells upon irradiation with light directly by inducing apoptosis and/or necrosis and indirectly by disrupting tumor vasculature and increasing tumor immunogenicity. Furthermore, immunogenic ZnP@pyro photodynamic therapy (PDT) treatment sensitizes tumors to checkpoint inhibition mediated by a PD-L1 antibody, not only eradicating the primary 4T1 breast tumor but also significantly preventing metastasis to the lung. The abscopal effects on both 4T1 and TUBO bilateral syngeneic mouse models further demonstrate that ZnP@pyro PDT treatment combined with anti-PD-L1 results in the eradication of light-irradiated primary tumors and the complete inhibition of untreated distant tumors by generating a systemic tumor-specific cytotoxic T cell response. These findings indicate that nanoparticle-mediated PDT can potentiate the systemic efficacy of checkpoint blockade immunotherapies by activating the innate and adaptive immune systems in tumor microenvironment.


Subject(s)
Breast Neoplasms/immunology , Breast Neoplasms/therapy , Diphosphates/chemistry , Immunotherapy , Nanoparticles/chemistry , Photochemotherapy , Animals , Apoptosis/drug effects , Apoptosis/radiation effects , Breast Neoplasms/pathology , Cell Line, Tumor , Chlorophyll/analogs & derivatives , Chlorophyll/chemistry , Combined Modality Therapy , Humans , Light , Lipids/chemistry , Lung Neoplasms/prevention & control , Lung Neoplasms/secondary , Mice , Necrosis , Neoplasm Metastasis , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Zinc/chemistry
7.
J Am Chem Soc ; 138(7): 2158-61, 2016 Feb 24.
Article in English | MEDLINE | ID: mdl-26864385

ABSTRACT

We report the design of a phosphorescence/fluorescence dual-emissive nanoscale metal-organic framework (NMOF), R-UiO, as an intracellular oxygen (O2) sensor. R-UiO contains a Pt(II)-porphyrin ligand as an O2-sensitive probe and a Rhodamine-B isothiocyanate ligand as an O2-insensitive reference probe. It exhibits good crystallinity, high stability, and excellent ratiometric luminescence response to O2 partial pressure. In vitro experiments confirmed the applicability of R-UiO as an intracellular O2 biosensor. This work is the first report of a NMOF-based intracellular oxygen sensor and should inspire the design of ratiometric NMOF sensors for other important analytes in biological systems.


Subject(s)
Biosensing Techniques , Metalloporphyrins/chemistry , Nanostructures/chemistry , Oxygen/analysis , Animals , Biocompatible Materials/chemical synthesis , Biocompatible Materials/chemistry , Cell Line, Tumor , Cell Survival , Metalloporphyrins/chemical synthesis , Mice
8.
Mol Pharm ; 13(11): 3665-3675, 2016 11 07.
Article in English | MEDLINE | ID: mdl-27712076

ABSTRACT

Due to the ability of ovarian cancer (OCa) to acquire drug resistance, it has been difficult to develop efficient and safe chemotherapy for OCa. Here, we examined the therapeutic use of a new self-assembled core-shell nanoscale coordination polymer nanoparticle (NCP-Carbo/GMP) that delivers high loadings of carboplatin (28.0 ± 2.6 wt %) and gemcitabine monophosphate (8.6 ± 1.5 wt %). A strong synergistic effect was observed between carboplatin and gemcitabine against platinum-resistant OCa cells, SKOV-3 and A2780/CDPP, in vitro. The coadministration of carboplatin and gemcitabine in the NCP led to prolonged blood circulation half-life (11.8 ± 4.8 h) and improved tumor uptake of the drugs (10.2 ± 4.4% ID/g at 24 h), resulting in 71% regression and 80% growth inhibition of SKOV-3 and A2780/CDDP tumors, respectively. Our findings demonstrate that NCP particles provide great potential for the codelivery of multiple chemotherapeutics for treating drug-resistant cancer.


Subject(s)
Carboplatin/chemistry , Carboplatin/pharmacology , Deoxycytidine/analogs & derivatives , Platinum/pharmacology , Polymers/chemistry , Antineoplastic Combined Chemotherapy Protocols/chemistry , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Line, Tumor , Deoxycytidine/chemistry , Deoxycytidine/pharmacology , Drug Resistance, Neoplasm , Female , Humans , Nanoparticles/chemistry , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Treatment Outcome , Gemcitabine
9.
Small ; 11(32): 3962-72, 2015 Aug 26.
Article in English | MEDLINE | ID: mdl-25963931

ABSTRACT

Three half-sandwich iridium and ruthenium organometallic complexes with high cytotoxicity are synthesized, and their anticancer mechanisms are elucidated. The organometallic complexes can interact with DNA through coordination or intercalation, thereby inducing apoptosis and inhibiting proliferation of resistant cancer cells. The organometallic complexes are then incorporated into polymeric micelles through the polymer-metal coordination between poly(ethylene glycol)-b-poly(glutamic acid) [PEG-b-P(Glu)] and organometallic complexes to further enhance their anticancer effects as a result of the enhanced permeability and retention effect. The micelles with particle sizes of ≈60 nm are more efficiently internalized by cancer cells than the corresponding complexes, and selectively dissociate and release organometallic anticancer agents within late endosomes and lysosomes, thereby enhancing drug delivery to the nuclei of cancer cells and facilitating their interactions with DNA. Thus, the micelles display higher antitumor activity than the organometallic complexes alone with a lack of the systemic toxicity in a mouse xenograft model of cisplatin-resistant human ovarian cancer. These results suggest that the polymeric micelles carrying anticancer organometallic complexes provide a promising platform for the treatment of resistant ovarian cancer and other hard-to-treat solid tumors.


Subject(s)
DNA/metabolism , Drug Resistance, Neoplasm , Micelles , Organometallic Compounds/chemistry , Ovarian Neoplasms/drug therapy , Polymers/chemistry , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Body Weight/drug effects , Cell Death/drug effects , Cell Line, Tumor , Female , Humans , Inhibitory Concentration 50 , Mice, Nude , Organometallic Compounds/chemical synthesis , Ovarian Neoplasms/pathology
10.
Nanotechnology ; 25(12): 125102, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24576956

ABSTRACT

Metastasis, the main cause of cancer related deaths, remains the greatest challenge in cancer treatment. Disulfiram (DSF), which has multi-targeted anti-tumor activity, was encapsulated into redox-sensitive shell crosslinked micelles to achieve intracellular targeted delivery and finally inhibit tumor growth and metastasis. The crosslinked micelles demonstrated good stability in circulation and specifically released DSF under a reductive environment that mimicked the intracellular conditions of tumor cells. As a result, the DSF-loaded redox-sensitive shell crosslinked micelles (DCMs) dramatically inhibited cell proliferation, induced cell apoptosis and suppressed cell invasion, as well as impairing tube formation of HMEC-1 cells. In addition, the DCMs could accumulate in tumor tissue and stay there for a long time, thereby causing significant inhibition of 4T1 tumor growth and marked prevention in lung metastasis of 4T1 tumors. These results suggested that DCMs could be a promising delivery system in inhibiting the growth and metastasis of breast cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/pathology , Disulfiram/pharmacology , Drug Delivery Systems/methods , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Maleates/administration & dosage , Oxidation-Reduction/drug effects , Polystyrenes/administration & dosage , Animals , Apoptosis/drug effects , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation/drug effects , Endothelial Cells/drug effects , Female , Humans , Lung Neoplasms/drug therapy , Mice , Mice, Inbred BALB C , Micelles
11.
Adv Healthc Mater ; : e2401126, 2024 Sep 29.
Article in English | MEDLINE | ID: mdl-39344216

ABSTRACT

The immunosuppressive microenvironment severely limits the responsiveness of colorectal cancer (CRC) to immunotherapy. Herein, a pH and reactive oxygen species (ROS) dual-responsive autocatalytic release system (TPDM/PGA) is constructed to reverse the immunosuppressive microenvironment and potentiate CRC immunotherapy. Dihydroartemisinin (DHA) and mitoxantrone (MTO) are conjugated to ROS-responsive polyethylenimine (TP) via a ROS-cleavable linker, respectively, and then coated with polyglutamic acid (PGA) to endow pH and ROS dual-responsiveness. The dissociation of PGA within the acidic TME facilitates its deep penetration and cell internalization, while the intracellular released DHA and MTO in response to high levels of H2O2 further produced a large amount of ROS, forming positive feedback to accelerate drug release and exacerbate oxidative stress. TPDM/PGA collaboratively reversed the immunosuppressive microenvironment and induced a strong anti-tumor immune response when combined with anti-PD-L1 antibody, significantly inhibiting tumor growth and prolonging the survival time of CT26 and MC38 tumor-bearing mice. The excellent therapeutic effect, together with the good tolerance, make TPDM/PGA a promising candidate for enhanced immunotherapy of colorectal cancer.

12.
ACS Nano ; 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39363419

ABSTRACT

The low permeability and heterogeneous distribution of drugs (including nanomedicines) have limited their deep penetration into solid tumors. Herein we report the design of gold nanoparticles with virus-like spikes (AuNVs) to mimic viral shapes and facilitate tumor penetration. Mechanistic studies revealed that AuNVs mainly entered cells through macropinocytosis, then transported to the Golgi/endoplasmic reticulum system via Rab11-regulated pathway, and finally exocytosed through recycling endosomes, leading to high cellular uptake, effective transcytosis, and deep tumor penetration compared to gold nanospheres (AuNPs) and gold nanostars (AuNSs). The high tumor accumulation and deep tumor penetration of mitoxantrone (MTO) facilitated by AuNVs endowed effective chemophotothermal therapy when exposed to a near-infrared II laser, significantly reducing tumor sizes in a mouse model of colorectal cancer. This study reveals a potent mechanism of viral-like structures in tissue penetration and highlights their potential as effective drug delivery carriers.

13.
Acta Biomater ; 185: 456-466, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39004329

ABSTRACT

Calcium ions (Ca2+) participate in the regulation of cellular apoptosis as a second messenger. Calcium overload, which refers to the abnormal elevation of intracellular Ca2+ concentration, is a factor that can lead to cell death. Here, based on the unique biological effects of Ca2+, hollow mesoporous calcium peroxide nanoparticles (HMCPN) were developed by a facile hydrolysis-precipitation method for drug-free tumor calcicoptosis therapy. The average pore size of the optimized HMCPN17 is 6.4 nm, and the surface area is 81.3 m2/g, which enables HMCPN17 with high drug loading capability. The Ca2+ release from HMCPN17 is much faster at pH 6.8 than that at pH 7.4, which can be ascribed to the acid-triggered conversion of HMCPN17 to Ca2+ and H2O2, indicating a pH-responsive decomposition behavior of HMCPN17. The high drug loading contents of doxorubicin (DOX) and/or sorafenib (SFN) indicate that HMCPN17 can be employed as a generic drug delivery system (DDS). The in vitro and in vivo results reinforce the high calcicoptosis therapeutic efficacy of tumors by our HMCPN17 without drug loading, which can be attributed to the efficient accumulation in tumors and the ability of H2O2 and Ca2+ production at acidic TME. Our HMCPN17 has broad application prospect for construction of multi-drug-loaded composite nanomaterials with diversified functions for the treatment of tumors. STATEMENT OF SIGNIFICANCE: The combination of hollow mesoporous nanomaterials and calcium peroxide nanoparticles has a wide range of applications in the synergistic treatment of tumors. In this study, hollow mesoporous calcium peroxide nanoparticles (HMCPN) were developed based on a simple hydrolysis-precipitation method for tumor calcicoptosis therapy without drug loading. The high drug loading contents of DOX and/or SFN indicate that our HMCPN can serve as a generic DDS. The experimental results demonstrated the high calcicoptosis therapeutic efficacy of HMCPN on tumors even without drug loading.


Subject(s)
Apoptosis , Nanoparticles , Neoplasms , Peroxides , Apoptosis/drug effects , Peroxides/pharmacology , Animals , Mice , Mice, Inbred BALB C , Neoplasms/drug therapy , Calcium/metabolism
14.
Small ; 9(9-10): 1521-32, 2013 May 27.
Article in English | MEDLINE | ID: mdl-23019091

ABSTRACT

Nanoparticles have many potential applications in tumor therapy. Systemically administered nanoparticles should remain in circulation for a long time to increase their accumulation in targeted tissues before being cleared by the reticuloendothelial system, and be effectively internalized by the targeted cells, which can be influenced significantly by the physicochemical characteristics of nanoparticles, such as particle size, surface properties, and particle shape. This review highlights the impact of the main affects of physicochemical properties on nanoparticle transport behavior in blood, their uptake and clearance by macrophages and their consequent biodistribution, as well as their interaction with targeted cells.


Subject(s)
Biological Transport , Blood Circulation , Endocytosis , Nanoparticles , Tissue Distribution , Humans , Surface Properties
15.
Article in English | MEDLINE | ID: mdl-36897565

ABSTRACT

The internalization of antigens by dendritic cells (DCs) is the initial critical step for vaccines to activate the immune response; however, the systemic delivery of antigens into DCs is hampered by various technical challenges. Here we show that a virus-like gold nanostructure (AuNV) can effectively bind to and be internalized by DCs due to its biomimetic topological morphology, thereby significantly promoting the maturation of DCs and the cross-presentation of the model antigen ovalbumin (OVA). In vivo experiments demonstrate that AuNV efficiently delivers OVA to draining lymph nodes and significantly inhibits the growth of MC38-OVA tumors, generating a ∼80% decrease in tumor volume. Mechanistic studies reveal that the AuNV-OVA vaccine induces a remarkable increase in the rate of maturation of DCs, OVA presentation, and CD4+ and CD8+ T lymphocyte populations in both lymph node and tumor and an obvious decrease in myeloid-derived suppressor cells and regulatory T cell populations in spleen. The good biocompatibility, strong adjuvant activity, enhanced uptake of DCs, and improved T cell activation make AuNV a promising antigen delivery platform for vaccine development.

16.
Adv Mater ; 35(52): e2307193, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37951210

ABSTRACT

The immune response in cancer reflects a series of carefully regulated events; however, current tumor immunotherapies typically address a single key aspect to enhance anti-tumor immunity. In the present study, a nanoplatform (Fe3 O4 @IR820@CpG)-based immunotherapy strategy that targets the multiple key steps in cancer-immunity cycle is developed: 1) promotes the release of tumor-derived proteins (TDPs), including tumor-associated antigens and pro-immunostimulatory factors), in addition to the direct killing effect, by photothermal (PTT) and photodynamic therapy (PDT); 2) captures the released TDPs and delivers them, together with CpG (a Toll-like receptor 9 agonist) to antigen-presenting cells (APCs) to promote antigen presentation and T cell activation; 3) enhances the tumor-killing ability of T cells by combining with anti-programmed death ligand 1 antibody (α-PD-L1), which collectively advances the outstanding of the anti-tumor effects on colorectal, liver and breast cancers. The broad-spectrum anti-tumor activity of Fe3 O4 @IR820@CpG with α-PD-L1 demonstrates that optimally manipulating anti-cancer immunity not singly but as a group provides promising clinical strategies.


Subject(s)
Breast Neoplasms , Vaccines , Humans , Female , B7-H1 Antigen/metabolism , T-Lymphocytes , Immunotherapy/methods , Lasers , Cell Line, Tumor
17.
Adv Mater ; 35(45): e2305932, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37717205

ABSTRACT

To improve the magnetic resonance imaging (MRI) efficiency and ferroptosis therapy efficacy of exceedingly small magnetic iron oxide nanoparticles (IO, <5 nm) for tumors via enhancing the sensitivity of tumor microenvironment (TME) responsiveness, inspired by molecular logic gates, a self-assembled IO with an AND logic gate function is designed and constructed. Typically, cystamine (CA) is conjugated onto the end of poly(2-methylthio-ethanol methacrylate) (PMEMA) to generate PMEMA-CA. The PMEMA-CA is grafted onto the surface of brequinar (BQR)-loaded IO to form IO-BQR@PMEMA. The self-assembled IO-BQR@PMEMA (SA-IO-BQR@PMEMA) is obtained due to the hydrophobicity of PMEMA. The carbon-sulfur single bond of PMEMA-CA can be oxidized by reactive oxygen species (ROS) in the TME to a thio-oxygen double bond, resulting in the conversion from being hydrophobic to hydrophilic. The disulfide bond of PMEMA-CA can be broken by the glutathione (GSH) in the TME, leading to the shedding of PMEMA from the IO surface. Under the dual actions of ROS and GSH in TME (i.e., AND logic gate), SA-IO-BQR@PMEMA can be disassembled to release IO, Fe2+/3+ , and BQR. In vitro and in vivo results demonstrate the AND logic gate function and mechanism, the high T1 MRI performance and exceptional ferroptosis therapy efficacy for tumors, and the excellent biosafety of SA-IO-BQR@PMEMA.


Subject(s)
Ferroptosis , Nanoparticles , Neoplasms , Humans , Reactive Oxygen Species , Magnetic Resonance Imaging , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Glutathione/chemistry , Cell Line, Tumor , Nanoparticles/chemistry , Tumor Microenvironment
18.
Bioconjug Chem ; 23(2): 222-31, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22168476

ABSTRACT

The development of safe and efficient gene delivery systems is still a challenge for successful gene therapy. In this work, low molecular weight polyethylenimine (PEI 2K) was modified by Tween 85, which bears three oleate chains. Tween 85 modified PEI 2K (TP) could condense DNA efficiently, and TP/DNA complexes (TPCs) showed high resistance to salt-induced aggregation and enzymatic degradation. In addition, TP did not show the obvious cytotoxicity. The introduction of Tween 85 led to a significant increase in the cellular uptake of complexes with higher transfection efficiency, which was strongly inhibited by the addition of free Tween 85 in MCF-7/ADR cells, but not in MCF-7 cells. These results indicated that TP could be a potentially safe and effective copolymer for gene delivery, and TPCs could be taken up mainly by Tween 85-mediated endocytosis in MCF-7/ADR cells.


Subject(s)
Gene Transfer Techniques , Polyethyleneimine/pharmacokinetics , Polysorbates/pharmacokinetics , Cell Line, Tumor , Dose-Response Relationship, Drug , Endocytosis/drug effects , Humans , Molecular Structure , Molecular Weight , Polyethyleneimine/chemistry , Polysorbates/chemical synthesis , Polysorbates/chemistry
19.
Biomaterials ; 280: 121315, 2022 01.
Article in English | MEDLINE | ID: mdl-34920370

ABSTRACT

Dihydroartemisinin (DHA) has shown cytotoxicity against various tumor cells in vitro in an iron-dependent manner, but its in vivo antitumor efficacy is compromised by its rapid degradation and clearance. Here we show the induction of ferroptosis by DHA in an immunogenic fashion and the maximization of in vivo antitumor efficacy of DHA by co-delivering a cholesterol derivative of DHA (Chol-DHA) and Pyropheophorbide-iron (Pyro-Fe) in ZnP@DHA/Pyro-Fe core-shell nanoparticles. ZnP@DHA/Pyro-Fe particles stabilize DHA against hydrolysis and prolong blood circulation of Chol-DHA and Pyro-Fe for their enhanced uptake in tumors. Co-delivery of an exogenous iron complex and DHA induces more ROS production and causes significant tumor inhibition in vivo. By increasing tumor immunogenicity, the combination of DHA and Pyro-Fe sensitizes non-immunogenic colorectal tumors to anti-PD-L1 checkpoint blockade immunotherapy. These findings suggest the potential of using nanotechnology to repurpose DHA and other drugs with excellent safety profiles for combination with immune checkpoint blockade to treat cancers.


Subject(s)
Ferroptosis , Neoplasms , Artemisinins , Cell Line, Tumor , Immunotherapy , Iron
20.
Nanoscale ; 13(15): 7389-7402, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33889904

ABSTRACT

Metal-organic frameworks (MOFs) as promising materials have been widely used in drug delivery, disease diagnosis and therapy; however, their effects on the reproductive system remain unknown, which hinders their further clinical applications. Here we show that repeated subcutaneous injections of copper MOFs (HKUST-1) induce higher toxicity into the male reproductive system relative to the female reproductive system, with disrupted seminiferous tubule histology, sperm generation disorder, irreversible sperm morphological abnormities and reduced pregnancy rate but only slight follicle dysfunction and pregnancy complications in female mice. Interestingly, the modification of HKUST-1 with folic acid attenuates the reproductive toxicity and even improves pregnancy and fetus development. This study confirms the gender-dependent toxicity of HKUST-1 to the reproductive system, and that folic acid modification could relieve the reproductive toxicity, thus providing us a deep understanding of reproductive toxicity of copper MOFs, and also a guideline and feasible way to improve the biocompatibility of copper MOFs for potential medical use.


Subject(s)
Metal-Organic Frameworks , Animals , Copper , Drug Delivery Systems , Female , Folic Acid , Male , Mice
SELECTION OF CITATIONS
SEARCH DETAIL