Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Mol Cell ; 84(11): 2087-2103.e8, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38815579

ABSTRACT

RNA splicing is pivotal in post-transcriptional gene regulation, yet the exponential expansion of intron length in humans poses a challenge for accurate splicing. Here, we identify hnRNPM as an essential RNA-binding protein that suppresses cryptic splicing through binding to deep introns, maintaining human transcriptome integrity. Long interspersed nuclear elements (LINEs) in introns harbor numerous pseudo splice sites. hnRNPM preferentially binds at intronic LINEs to repress pseudo splice site usage for cryptic splicing. Remarkably, cryptic exons can generate long dsRNAs through base-pairing of inverted ALU transposable elements interspersed among LINEs and consequently trigger an interferon response, a well-known antiviral defense mechanism. Significantly, hnRNPM-deficient tumors show upregulated interferon-associated pathways and elevated immune cell infiltration. These findings unveil hnRNPM as a guardian of transcriptome integrity by repressing cryptic splicing and suggest that targeting hnRNPM in tumors may be used to trigger an inflammatory immune response, thereby boosting cancer surveillance.


Subject(s)
Heterogeneous-Nuclear Ribonucleoprotein Group M , Introns , Long Interspersed Nucleotide Elements , RNA Splicing , RNA, Double-Stranded , Humans , Heterogeneous-Nuclear Ribonucleoprotein Group M/genetics , Heterogeneous-Nuclear Ribonucleoprotein Group M/metabolism , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , Long Interspersed Nucleotide Elements/genetics , Interferons/metabolism , Interferons/genetics , Animals , HEK293 Cells , Mice , Transcriptome , Exons , RNA Splice Sites , Alu Elements/genetics
2.
RNA ; 26(9): 1257-1267, 2020 09.
Article in English | MEDLINE | ID: mdl-32467311

ABSTRACT

During breast cancer metastasis, the developmental process epithelial-mesenchymal transition (EMT) is abnormally activated. Transcriptional regulatory networks controlling EMT are well-studied; however, alternative RNA splicing also plays a critical regulatory role during this process. A comprehensive understanding of alternative splicing (AS) and the RNA binding proteins (RBPs) that regulate it during EMT and their impact on breast cancer remains largely unknown. In this study, we annotated AS in the breast cancer TCGA data set and identified an AS signature that is capable of distinguishing epithelial and mesenchymal states of the tumors. This AS signature contains 25 AS events, among which nine showed increased exon inclusion and 16 showed exon skipping during EMT. This AS signature accurately assigns the EMT status of cells in the CCLE data set and robustly predicts patient survival. We further developed an effective computational method using bipartite networks to identify RBP-AS networks during EMT. This network analysis revealed the complexity of RBP regulation and nominated previously unknown RBPs that regulate EMT-associated AS events. This study highlights the importance of global AS regulation during EMT in cancer progression and paves the way for further investigation into RNA regulation in EMT and metastasis.


Subject(s)
Alternative Splicing/genetics , Breast Neoplasms/genetics , Epithelial-Mesenchymal Transition/genetics , RNA/genetics , Cell Line, Tumor , Exons/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Gene Regulatory Networks/genetics , Humans , MCF-7 Cells , RNA-Binding Proteins/genetics
3.
bioRxiv ; 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36865202

ABSTRACT

RNA splicing plays a critical role in post-transcriptional gene regulation. Exponential expansion of intron length poses a challenge for accurate splicing. Little is known about how cells prevent inadvertent and often deleterious expression of intronic elements due to cryptic splicing. In this study, we identify hnRNPM as an essential RNA binding protein that suppresses cryptic splicing through binding to deep introns, preserving transcriptome integrity. Long interspersed nuclear elements (LINEs) harbor large amounts of pseudo splice sites in introns. hnRNPM preferentially binds at intronic LINEs and represses LINE-containing pseudo splice site usage for cryptic splicing. Remarkably, a subgroup of the cryptic exons can form long dsRNAs through base-pairing of inverted Alu transposable elements scattered in between LINEs and trigger interferon immune response, a well-known antiviral defense mechanism. Notably, these interferon-associated pathways are found to be upregulated in hnRNPM-deficient tumors, which also exhibit elevated immune cell infiltration. These findings unveil hnRNPM as a guardian of transcriptome integrity. Targeting hnRNPM in tumors may be used to trigger an inflammatory immune response thereby boosting cancer surveillance.

SELECTION OF CITATIONS
SEARCH DETAIL