Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Blood ; 141(22): 2713-2726, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36952639

ABSTRACT

Dedicator of cytokinesis (DOCK) proteins play a central role in actin cytoskeleton regulation. This is highlighted by the DOCK2 and DOCK8 deficiencies leading to actinopathies and immune deficiencies. DOCK8 and DOCK11 activate CDC42, a Rho-guanosine triphosphate hydrolases involved in actin cytoskeleton dynamics, among many cellular functions. The role of DOCK11 in human immune disease has been long suspected but, to the best of our knowledge, has never been described to date. We studied 8 male patients, from 7 unrelated families, with hemizygous DOCK11 missense variants leading to reduced DOCK11 expression. The patients were presenting with early-onset autoimmunity, including cytopenia, systemic lupus erythematosus, skin, and digestive manifestations. Patients' platelets exhibited abnormal ultrastructural morphology and spreading as well as impaired CDC42 activity. In vitro activated T cells and B-lymphoblastoid cell lines from patients exhibited aberrant protrusions and abnormal migration speed in confined channels concomitant with altered actin polymerization during migration. Knock down of DOCK11 recapitulated these abnormal cellular phenotypes in monocytes-derived dendritic cells and primary activated T cells from healthy controls. Lastly, in line with the patients' autoimmune manifestations, we also observed abnormal regulatory T-cell (Treg) phenotype with profoundly reduced FOXP3 and IKZF2 expression. Moreover, we found reduced T-cell proliferation and impaired STAT5B phosphorylation upon interleukin-2 stimulation of the patients' lymphocytes. In conclusion, DOCK11 deficiency is a new X-linked immune-related actinopathy leading to impaired CDC42 activity and STAT5 activation, and is associated with abnormal actin cytoskeleton remodeling as well as Treg phenotype, culminating in immune dysregulation and severe early-onset autoimmunity.


Subject(s)
Immune System Diseases , Immunologic Deficiency Syndromes , Humans , Male , Actin Cytoskeleton/metabolism , Autoimmunity , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Immune System Diseases/metabolism , Immunologic Deficiency Syndromes/complications , Immunologic Deficiency Syndromes/genetics , T-Lymphocytes, Regulatory
2.
iScience ; 26(4): 106286, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-36942053

ABSTRACT

Animal models for studying human pathogens are crucially lacking. We describe the implantation in mice of engineered human mature microvasculature consisting of endothelial and perivascular cells embedded in collagen hydrogel that allows investigation of pathogen interactions with the endothelium, including in vivo functional studies. Using Neisseria meningitidis as a paradigm of human-restricted infection, we demonstrated the strength and opportunities associated with the use of this approach.

3.
J Vis Exp ; (181)2022 03 25.
Article in English | MEDLINE | ID: mdl-35389978

ABSTRACT

Primary cilia (PC) are non-motile dynamic microtubule-based organelles that protrude from the surface of most mammalian cells. They emerge from the older centriole during the G1/G0 phase of the cell cycle, while they disassemble as the cells re-enter the cell cycle at the G2/M phase boundary. They function as signal hubs, by detecting and transducing extracellular signals crucial for many cell processes. Similar to most cell types, all neocortical neural stem and progenitor cells (NSPCs) have been shown harboring a PC allowing them to sense and transduce specific signals required for the normal cerebral cortical development. Here, we provide detailed protocols to generate and characterize two-dimensional (2D) and three-dimensional (3D) cell-based models from human induced pluripotent stem cells (hIPSCs) to further dissect the involvement of PC during neocortical development. In particular, we present protocols to study the PC biogenesis and function in 2D neural rosette-derived NSPCs including the transduction of the Sonic Hedgehog (SHH) pathway. To take advantage of the three-dimensional (3D) organization of cerebral organoids, we describe a simple method for 3D imaging of in toto immunostained cerebral organoids. After optical clearing, rapid acquisition of entire organoids allows detection of both centrosomes and PC on neocortical progenitors and neurons of the whole organoid. Finally, we detail the procedure for immunostaining and clearing of thick free-floating organoid sections preserving a significant degree of 3D spatial information and allowing for the high-resolution acquisition required for the detailed qualitative and quantitative analysis of PC biogenesis and function.


Subject(s)
Induced Pluripotent Stem Cells , Neocortex , Animals , Cell Differentiation/physiology , Cilia/metabolism , Hedgehog Proteins/metabolism , Humans , Mammals/metabolism , Organoids/metabolism
4.
iScience ; 24(6): 102519, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34142033

ABSTRACT

During inflammatory diseases, cancer, and infection, the cGAS/STING pathway is known to recognize foreign or self-DNA in the cytosol and activate an innate immune response. Here, we report that negative-strand RNA paramyxoviruses, Nipah virus (NiV), and measles virus (MeV), can also trigger the cGAS/STING axis. Although mice deficient for MyD88, TRIF, and MAVS still moderately control NiV infection when compared with wild-type mice, additional STING deficiency resulted in 100% lethality, suggesting synergistic roles of these pathways in host protection. Moreover, deletion of cGAS or STING resulted in decreased type I interferon production with enhanced paramyxoviral infection in both human and murine cells. Finally, the phosphorylation and ubiquitination of STING, observed during viral infections, confirmed the activation of cGAS/STING pathway by NiV and MeV. Our data suggest that cGAS/STING activation is critical in controlling paramyxovirus infection and possibly represents attractive targets to develop countermeasures against severe disease induced by these pathogens.

SELECTION OF CITATIONS
SEARCH DETAIL