ABSTRACT
Dedicator of cytokinesis (DOCK) proteins play a central role in actin cytoskeleton regulation. This is highlighted by the DOCK2 and DOCK8 deficiencies leading to actinopathies and immune deficiencies. DOCK8 and DOCK11 activate CDC42, a Rho-guanosine triphosphate hydrolases involved in actin cytoskeleton dynamics, among many cellular functions. The role of DOCK11 in human immune disease has been long suspected but, to the best of our knowledge, has never been described to date. We studied 8 male patients, from 7 unrelated families, with hemizygous DOCK11 missense variants leading to reduced DOCK11 expression. The patients were presenting with early-onset autoimmunity, including cytopenia, systemic lupus erythematosus, skin, and digestive manifestations. Patients' platelets exhibited abnormal ultrastructural morphology and spreading as well as impaired CDC42 activity. In vitro activated T cells and B-lymphoblastoid cell lines from patients exhibited aberrant protrusions and abnormal migration speed in confined channels concomitant with altered actin polymerization during migration. Knock down of DOCK11 recapitulated these abnormal cellular phenotypes in monocytes-derived dendritic cells and primary activated T cells from healthy controls. Lastly, in line with the patients' autoimmune manifestations, we also observed abnormal regulatory T-cell (Treg) phenotype with profoundly reduced FOXP3 and IKZF2 expression. Moreover, we found reduced T-cell proliferation and impaired STAT5B phosphorylation upon interleukin-2 stimulation of the patients' lymphocytes. In conclusion, DOCK11 deficiency is a new X-linked immune-related actinopathy leading to impaired CDC42 activity and STAT5 activation, and is associated with abnormal actin cytoskeleton remodeling as well as Treg phenotype, culminating in immune dysregulation and severe early-onset autoimmunity.
Subject(s)
Immune System Diseases , Immunologic Deficiency Syndromes , Humans , Male , Actin Cytoskeleton/metabolism , Autoimmunity , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Immune System Diseases/metabolism , Immunologic Deficiency Syndromes/complications , Immunologic Deficiency Syndromes/genetics , T-Lymphocytes, RegulatoryABSTRACT
BACKGROUND INFORMATION: Mitochondria are dynamic organelles playing essential metabolic and signaling functions in cells. Their ultrastructure has largely been investigated with electron microscopy (EM) techniques. However, quantifying protein-protein proximities using EM is extremely challenging. Super-resolution microscopy techniques as direct stochastic optical reconstruction microscopy (dSTORM) now provide a fluorescent-based, quantitative alternative to EM. Recently, super-resolution microscopy approaches including dSTORM led to valuable advances in our knowledge of mitochondrial ultrastructure, and in linking it with new insights in organelle functions. Nevertheless, dSTORM is mostly used to image integral mitochondrial proteins, and there is little or no information on proteins transiently present at this compartment. The cancer-related Aurora kinase A/AURKA is a protein localized at various subcellular locations, including mitochondria. RESULTS: We first demonstrate that dSTORM coupled to GcoPS can resolve protein proximities within individual submitochondrial compartments. Then, we show that dSTORM provides sufficient spatial resolution to visualize and quantify the most abundant pool of endogenous AURKA in the mitochondrial matrix, as previously shown for overexpressed AURKA. In addition, we uncover a smaller pool of AURKA localized at the OMM, which could have a potential functional readout. We conclude by demonstrating that aldehyde-based fixatives are more specific for the OMM pool of the kinase instead. CONCLUSIONS: Our results indicate that dSTORM coupled to GcoPS colocalization analysis is a suitable approach to explore the compartmentalization of non-integral mitochondrial proteins as AURKA, in a qualitative and quantitative manner. This method also opens up the possibility of analyzing the proximity between AURKA and its multiple mitochondrial partners with exquisite spatial resolution, thereby allowing novel insights into the mitochondrial functions controlled by AURKA. SIGNIFICANCE: Probing and quantifying the presence of endogenous AURKA - a cell cycle-related protein localized at mitochondria - in the different organelle subcompartments, using quantitative dSTORM super-resolution microscopy.
Subject(s)
Aurora Kinase A , Microscopy , Mitochondria , Mitochondrial ProteinsABSTRACT
We study the potential of the commercial mounting medium Slowfade diamond as a buffer for STORM microscopy. We show that although it does not work with the popular far-red dyes typically used for STORM imaging, such as Alexa Fluor 647, it performs really well with a wide variety of green-excited dyes such as Alexa Fluor 532, Alexa Fluor 555 or CF 568. Moreover, imaging can be performed several months after the samples are mounted in this environment and kept in the fridge, providing a convenient way to preserve samples for STORM imaging, as well as to keep calibration samples, for example for metrology or teaching in particular in imaging facilities.
ABSTRACT
Variants in the UNC45A cochaperone have been recently associated with a syndrome combining diarrhea, cholestasis, deafness, and bone fragility. Yet the mechanism underlying intestinal failure in UNC45A deficiency remains unclear. Here, biallelic variants in UNC45A were identified by next-generation sequencing in 6 patients with congenital diarrhea. Corroborating in silico prediction, variants either abolished UNC45A expression or altered protein conformation. Myosin VB was identified by mass spectrometry as client of the UNC45A chaperone and was found misfolded in UNC45AKO Caco-2 cells. In keeping with impaired myosin VB function, UNC45AKO Caco-2 cells showed abnormal epithelial morphogenesis that was restored by full-length UNC45A, but not by mutant alleles. Patients and UNC45AKO 3D organoids displayed altered luminal development and microvillus inclusions, while 2D cultures revealed Rab11 and apical transporter mislocalization as well as sparse and disorganized microvilli. All those features resembled the subcellular abnormalities observed in duodenal biopsies from patients with microvillus inclusion disease. Finally, microvillus inclusions and shortened microvilli were evidenced in enterocytes from unc45a-deficient zebrafish. Taken together, our results provide evidence that UNC45A plays an essential role in epithelial morphogenesis through its cochaperone function of myosin VB and that UNC45A loss causes a variant of microvillus inclusion disease.
Subject(s)
Diarrhea, Infantile , Malabsorption Syndromes , Mucolipidoses , Myosin Type V , Animals , Caco-2 Cells , Diarrhea, Infantile/metabolism , Diarrhea, Infantile/pathology , Facies , Fetal Growth Retardation , Hair Diseases , Humans , Infant , Intracellular Signaling Peptides and Proteins/metabolism , Malabsorption Syndromes/metabolism , Microvilli/genetics , Microvilli/pathology , Mucolipidoses/genetics , Mucolipidoses/metabolism , Mucolipidoses/pathology , Myosin Type V/genetics , Myosin Type V/metabolism , Phenotype , Zebrafish/genetics , Zebrafish/metabolismABSTRACT
Hepcidin, a circulating regulatory hormone peptide produced by hepatocytes, functions as the master regulator of cellular iron export by controlling the amount of ferroportin, an iron exporter present on the basolateral surface of intestinal enterocytes and macrophages. Hepcidin binding to ferroportin induces its internalization and degradation, resulting in cellular iron retention and decreased iron export. Whether hepatocytes express ferroportin that could be targeted by hepcidin has remained a subject of debate. Here, we describe a hepatocyte culture system expressing high levels of ferroportin, and demonstrate that both endogenously secreted and synthetic hepcidin are fully active in down-regulating membrane-associated ferroportin. In agreement with this result, ferroportin is stabilized in liver hepatocytes of hepcidin-deficient mice and accumulates in periportal areas, supporting the centrolobular iron deposition observed in these mice. In conclusion, we show that hepcidin can trigger ferroportin degradation in hepatocytes, which must be taken into account when considering hepcidin therapeutics.
Subject(s)
Antimicrobial Cationic Peptides/physiology , Cation Transport Proteins/metabolism , Hepatocytes/metabolism , Iron/metabolism , Animals , Blotting, Western , Cation Transport Proteins/genetics , Female , Hepatocytes/cytology , Hepcidins , Immunoenzyme Techniques , Mice , Mice, Inbred C57BL , Mice, Knockout , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain ReactionABSTRACT
Bacterial virulence factors are attractive targets for the development of therapeutics. Type IV pili, which are associated with a remarkable array of properties including motility, the interaction between bacteria and attachment to biotic and abiotic surfaces, represent particularly appealing virulence factor targets. Type IV pili are present in numerous bacterial species and are critical for their pathogenesis. In this study, we report that trifluoperazine and related phenothiazines block functions associated with Type IV pili in different bacterial pathogens, by affecting piliation within minutes. Using Neisseria meningitidis as a paradigm of Gram-negative bacterial pathogens that require Type IV pili for pathogenesis, we show that piliation is sensitive to altered activity of the Na+ pumping NADH-ubiquinone oxidoreductase (Na+-NQR) complex and that these compounds probably altered the establishment of the sodium gradient. In vivo, these compounds exert a strong protective effect. They reduce meningococcal colonization of the human vessels and prevent subsequent vascular dysfunctions, intravascular coagulation and overwhelming inflammation, the hallmarks of invasive meningococcal infections. Finally, they reduce lethality. This work provides a proof of concept that compounds with activity against bacterial Type IV pili could beneficially participate in the treatment of infections caused by Type IV pilus-expressing bacteria.
Subject(s)
Fimbriae, Bacterial/drug effects , Fimbriae, Bacterial/physiology , Meningococcal Infections/prevention & control , Neisseria meningitidis/drug effects , Virulence Factors , Animals , Anti-Bacterial Agents/pharmacology , Blood Vessels/injuries , Blood Vessels/microbiology , Blood Vessels/pathology , Drug Combinations , Electron Transport Complex I , Female , Fimbriae, Bacterial/genetics , Gene Expression Profiling , Gene Expression Regulation, Bacterial/drug effects , Gram-Negative Bacteria , Humans , Mice , Neisseria meningitidis/genetics , Neisseria meningitidis/growth & development , Phenothiazines/pharmacology , Skin/pathology , Skin Transplantation , Sodium-Potassium-Exchanging ATPase , Trifluoperazine/pharmacologyABSTRACT
We have generated transgenic mouse lines expressing exclusively a human INS transgene on an Ins1/Ins2 double knockout (mIKO) background. The transgene expression was driven by either a 4000 bp or a 353 bp promoter. These transgenic lines, designated mIKO:INS4000 and mIKO:INS353, were viable and fertile. Determination of the amounts of insulin transcripts and total pancreatic insulin content revealed relative insulin underproduction in both lines, from birth to adulthood. Total pancreatic insulin stores in mIKO:INS4000 and mIKO:INS353 mice represented only about 50% and 27%, respectively, as compared to wild-type mice. Morphometric analysis of pancreas did not show any compensatory beta-cell hyperplasia. The majority of animals in both lines remained normoglycemic throughout their lives. Nevertheless, glucose tolerance tests revealed glucose intolerance in nearly half of mIKO:INS4000 male mice, likely due to impaired insulin secretion detected in those animals. In addition, a small fraction (2-4%) of male mice in both lines spontaneously developed diabetes with very distinct pathophysiological features. Diabetes was never seen in female animals. The diabetes developed by mIKO:INS353 mice was rapidly lethal, accompanied by a dramatic depletion of pancreatic insulin stores whereas the mIKO:INS4000 diabetic animals could live for several months. This suggests a possible link between the structure of the human INS gene promoter and the type of diabetes developed in these lines.
Subject(s)
Diabetes Mellitus/genetics , Insulin/genetics , Animals , Animals, Genetically Modified , Blood Glucose/analysis , Diabetes Mellitus/blood , Diabetes Mellitus/pathology , Female , Gene Expression , Glucose Intolerance/genetics , Humans , Insulin/biosynthesis , Insulin/blood , Male , Mice , Pancreas/pathologyABSTRACT
Neisseria meningitidis (meningococcus) is an invasive bacterial pathogen that colonizes human vessels, causing thrombotic lesions and meningitis. Establishment of tight interactions with endothelial cells is crucial for meningococci to resist haemodynamic forces. Two endothelial receptors, CD147 and the ß2-adrenergic receptor (ß2AR), are sequentially engaged by meningococci to adhere and promote signalling events leading to vascular colonization, but their spatiotemporal coordination is unknown. Here we report that CD147 and ß2AR form constitutive hetero-oligomeric complexes. The scaffolding protein α-actinin-4 directly binds to the cytosolic tail of CD147 and governs the assembly of CD147-ß2AR complexes in highly ordered clusters at bacterial adhesion sites. This multimolecular assembly process increases the binding strength of meningococci to endothelial cells under shear stress, and creates molecular platforms for the elongation of membrane protrusions surrounding adherent bacteria. Thus, the specific organization of cellular receptors has major impacts on host-pathogen interaction.
Subject(s)
Actinin/metabolism , Basigin/metabolism , Host-Pathogen Interactions/physiology , Neisseria meningitidis/metabolism , Receptors, Adrenergic, beta-2/metabolism , Bacterial Adhesion/physiology , Basigin/genetics , Endothelial Cells/metabolism , Endothelial Cells/microbiology , Humans , Multiprotein Complexes/metabolism , Neisseria meningitidis/pathogenicity , Receptors, Adrenergic, beta-2/geneticsABSTRACT
Insulin receptor (IR)-deficient mice develop severe diabetes mellitus, diabetic ketoacidosis (DKA) and liver steatosis and die within 1 week after birth. We examined in this work whether the metabolic phenotype of IR(-/-) mutants could be improved by transgenic complementation with IR selectively in the liver. We first generated transgenic mice expressing a human DNA complementary to RNA encoding a truncated constitutively activated form of IR (IRdelta) under the control of liver-specific phenylalanine hydroxylase (PAH) gene promoter. These mice presented more pronounced fasting hypoglycemia and showed slightly improved glucose tolerance as compared to controls. The transgenic mice were crossed with IR(+/-) mutants to generate IR(-/-) mice carrying the PAH-IRDelta transgene. Although such mutants developed glycosuria, DKA was delayed by more than 1 week and survival was prolonged to 8-20 days in approximately 10% of mice. In these partially rescued pups, serum glucose and triglyceride levels were lowered, hepatic glycogen stores were reconstituted and liver steatosis was absent as compared with pups which developed strong DKA and died earlier. Thus, lack of insulin action in the liver is responsible in large part for the metabolic disorders seen in IR(+/-) mice. This study should stimulate interest in therapeutic strategies aimed at improving hepatic function in diabetes.
Subject(s)
Liver/metabolism , Receptor, Insulin/genetics , Animals , Blood Glucose/metabolism , Female , Gene Expression Regulation , Genetic Complementation Test , Genotype , Glucose Tolerance Test , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Transgenic , Mutation , Phenylalanine Hydroxylase/genetics , Receptor, Insulin/metabolism , Recombinant Fusion Proteins/genetics , Survival AnalysisABSTRACT
BACKGROUND/AIMS: The iron-regulatory peptide hepcidin is synthesized in the liver as an 84-aa pre-pro-hormone maturated by proteolysis through a consensus furin cleavage site to generate the bioactive 25-aa peptide secreted in the circulation. This peptide regulates iron export from enterocytes and macrophages by binding the membrane iron exporter, ferroportin, leading to its degradation. Whether pro-hepcidin could be secreted and reflect hepcidin levels remains an open question. However, the activity of the pro-peptide on ferroportin degradation has never been addressed. METHODS: To answer this question, we produced recombinant pro-hepcidin, both the wild-type form and a furin cleavage site mutant, and tested their activity on ferroportin levels in macrophagic J774 cells. Furin activity was also modulated using furin inhibitor or siRNA-mediated furin mRNA knockdown. RESULTS: We found that pro-hepcidin could fully induce ferroportin degradation, but only when processed by furin to generate the mature hepcidin-25 form. Pro-hepcidin activity was abolished in the presence of furin inhibitor and diminished after siRNA-mediated knockdown of furin mRNA. Furthermore, the mutated version of pro-hepcidin was completely inefficient at degrading ferroportin in macrophages. CONCLUSIONS: Our results demonstrate that pro-hepcidin lacks biological activity, unless fully maturated by a furin-dependent process to yield the bioactive 25-aa peptide.
Subject(s)
Antimicrobial Cationic Peptides/physiology , Cation Transport Proteins/metabolism , Furin/physiology , Protein Precursors/physiology , Animals , Cell Line , Hepcidins , Macrophages/metabolism , MiceABSTRACT
The Serum Response Factor (SRF) is widely expressed transcription factor acting at the confluence of multiple signaling pathways and has been implicated in the control of differentiation, growth, and cell death. In the present study, we found that SRF is expressed in the developing and adult pancreas. To explore the possible role of SRF in this organ, we have generated mutant mice with conditional disruption of the Srf gene. Such mutants presented normal development of both the exocrine and endocrine pancreas indicating that SRF is dispensable for pancreas ontogenesis. However, after weaning, these mice developed profound morphological alterations of the exocrine pancreas, which were reminiscent of severe pancreatitis. In these mice, massive acinar injury, Nuclear Factor Kappa B activation and proinflammatory cytokines release led to complete destruction of the exocrine pancreas and its replacement by adipose tissue. Despite these changes, the organization and function of the endocrine islets of Langerhans remained well-preserved. This new animal model of spontaneous pancreatitis could prove a valuable tool to gain further insight into the physiopathology of this disease.
Subject(s)
Pancreas, Exocrine/physiopathology , Pancreatitis/physiopathology , Serum Response Factor/genetics , Serum Response Factor/physiology , Animals , Disease Models, Animal , Islets of Langerhans/physiology , Mice , Mice, Transgenic , NF-kappa B/metabolism , Pancreas, Exocrine/pathology , Pancreatitis/immunology , Pancreatitis/pathologyABSTRACT
The authors have derived a new beta-cell line (betaIns2(-/-lacZ)) from Ins2-/- mice that carry the lacZ reporter gene under control of the Ins2 promoter. betaIns2(-/-lacZ) cells stained positively using anti-insulin antibody, expressed beta-cell-specific genes encoding the transcription factor PDX-1, glucokinase, and Glut-2, retained glucose-responsiveness for insulin secretion, and expressed the lacZ gene. Analysis of Ins1 expression by reverse transcriptase-polymerase chain reaction (RT-PCR) showed that Ins1 transcripts were significantly raised to compensate for the lack of Ins2 transcripts in betaIns2(-/-lacZ) cells, as compared to those found in betaTC1 cells expressing both Ins1/Ins2. Thus, transcriptional up-regulation of the remaining functional insulin gene in Ins2-/- mice could potentially contribute to the beta-cell adaptation exhibited by these mutants, in addition to the increase in beta-cell mass that we previously reported. We have also shown that lacZ expression, as analyzed by determining beta-galactosidase activity, was up-regulated by incubating betaIns2(-/-lacZ) cells with GLP-1 and/or IBMX, 2 known stimulators of insulin gene expression. These cells thus represent a new tool for testing of molecules capable of stimulating Ins2 promoter activity.