Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Adv Funct Mater ; 33(52)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38525448

ABSTRACT

Although increasing efforts have been devoted to the development of non-invasive wearable or stretchable electrochemical sweat sensors for monitoring physiological and metabolic information, most of them still suffer from poor stability and specificity over time and fluctuating temperatures. This study reports the design and fabrication of a long-term stable and highly sensitive flexible electrochemical sensor based on nanocomposite-modified porous graphene by simple and facile laser treatment for detecting biomarkers such as glucose in sweat. The laser-reduced and patterned stable conductive nanocomposite on the porous graphene electrode provides the resulting glucose sensor with an excellent sensitivity of 1317.69 µAmM-1cm-2 with an ultra-low limit of detection (LOD) of 0.079 µM. The sensor can also detect pH and exhibit extraordinary stability to maintain more than 91% sensitivity over 21 days in ambient conditions. Taken together with a temperature sensor based on the same material system, the dual glucose and pH sensor integrated with a flexible microfluidic sweat sampling network further results in accurate continuous on-body glucose detection calibrated by the simultaneously measured pH and temperature. The low-cost, highly sensitive, and long-term stable platform could facilitate and pave the way for the early identification and continuous monitoring of different biomarkers for non-invasive disease diagnosis and treatment evaluation.

2.
Adv Sci (Weinh) ; 11(15): e2303403, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38348559

ABSTRACT

Communication with hand gestures plays a significant role in human-computer interaction by providing an intuitive and natural way for humans to communicate with machines. Ultrasound-based devices have shown promising results in contactless hand gesture recognition without requiring physical contact. However, it is challenging to fabricate a densely packed wearable ultrasound array. Here, a stretchable ultrasound array is demonstrated with closely packed transducer elements fabricated using surface charge engineering between pre-charged 1-3 Lead Zirconate Titanate (PZT) composite and thin polyimide film without using a microscope. The array exhibits excellent ultrasound properties with a wide bandwidth (≈57.1%) and high electromechanical coefficient (≈0.75). The ultrasound array can decipher gestures up to 10 cm in distance by using a contactless triboelectric module and identify materials from the time constant of the exponentially decaying impedance based on their triboelectric properties by utilizing the electrostatic induction phase. The newly proposed metric of the areal-time constant is material-specific and decreases monotonically from a highly positive human body (1.13 m2 s) to negatively charged polydimethylsiloxane (PDMS) (0.02 m2 s) in the triboelectric series. The capability of the closely packed ultrasound array to detect material along with hand gesture interpretation provides an additional dimension in the next-generation human-robot interaction.


Subject(s)
Engineering , Gestures , Humans , Ultrasonography , Electric Impedance
3.
Biosens Bioelectron ; 260: 116446, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38820722

ABSTRACT

Understanding brain function is essential for advancing our comprehension of human cognition, behavior, and neurological disorders. Magnetic resonance imaging (MRI) stands out as a powerful tool for exploring brain function, providing detailed insights into its structure and physiology. Combining MRI technology with electrophysiological recording system can enhance the comprehension of brain functionality through synergistic effects. However, the integration of neural implants with MRI technology presents challenges because of its strong electromagnetic (EM) energy during MRI scans. Therefore, MRI-compatible neural implants should facilitate detailed investigation of neural activities and brain functions in real-time in high resolution, without compromising patient safety and imaging quality. Here, we introduce the fully MRI-compatible monolayer open-mesh pristine PEDOT:PSS neural interface. This approach addresses the challenges encountered while using traditional metal-based electrodes in the MRI environment such as induced heat or imaging artifacts. PEDOT:PSS has a diamagnetic property with low electrical conductivity and negative magnetic susceptibility similar to human tissues. Furthermore, by adopting the optimized open-mesh structure, the induced currents generated by EM energy are significantly diminished, leading to optimized MRI compatibility. Through simulations and experiments, our PEDOT:PSS-based open-mesh electrodes showed improved performance in reducing heat generation and eliminating imaging artifacts in an MRI environment. The electrophysiological recording capability was also validated by measuring the local field potential (LFP) from the somatosensory cortex with an in vivo experiment. The development of neural implants with maximized MRI compatibility indicates the possibility of potential tools for future neural diagnostics.


Subject(s)
Brain , Magnetic Resonance Imaging , Polymers , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/physiology , Humans , Animals , Polymers/chemistry , Biosensing Techniques/methods , Polystyrenes/chemistry , Electrodes, Implanted , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Thiophenes/chemistry , Equipment Design , Electric Conductivity
SELECTION OF CITATIONS
SEARCH DETAIL