Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Cell ; 69(3): 438-450.e5, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29358077

ABSTRACT

S-nitrosation, commonly referred to as S-nitrosylation, is widely regarded as a ubiquitous, stable post-translational modification that directly regulates many proteins. Such a widespread role would appear to be incompatible with the inherent lability of the S-nitroso bond, especially its propensity to rapidly react with thiols to generate disulfide bonds. As anticipated, we observed robust and widespread protein S-nitrosation after exposing cells to nitrosocysteine or lipopolysaccharide. Proteins detected using the ascorbate-dependent biotin switch method are typically interpreted to be directly regulated by S-nitrosation. However, these S-nitrosated proteins are shown to predominantly comprise transient intermediates leading to disulfide bond formation. These disulfides are likely to be the dominant end effectors resulting from elevations in nitrosating cellular nitric oxide species. We propose that S-nitrosation primarily serves as a transient intermediate leading to disulfide formation. Overall, we conclude that the current widely held perception that stable S-nitrosation directly regulates the function of many proteins is significantly incorrect.


Subject(s)
Disulfides/metabolism , Nitrosation/physiology , Protein Processing, Post-Translational/physiology , S-Nitrosothiols/metabolism , Cysteine/metabolism , Humans , Nitric Oxide/metabolism , Oxidation-Reduction , Proteins/metabolism , Proteolysis , Proteomics/methods , Sulfhydryl Compounds/metabolism
2.
Proc Natl Acad Sci U S A ; 120(3): e2205044120, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36630448

ABSTRACT

Although hydrogen sulfide (H2S) is an endogenous signaling molecule with antioxidant properties, it is also cytotoxic by potently inhibiting cytochrome c oxidase and mitochondrial respiration. Paradoxically, the primary route of H2S detoxification is thought to occur inside the mitochondrial matrix via a series of relatively slow enzymatic reactions that are unlikely to compete with its rapid inhibition of cytochrome c oxidase. Therefore, alternative or complementary cellular mechanisms of H2S detoxification are predicted to exist. Here, superoxide dismutase [Cu-Zn] (SOD1) is shown to be an efficient H2S oxidase that has an essential role in limiting cytotoxicity from endogenous and exogenous sulfide. Decreased SOD1 expression resulted in increased sensitivity to H2S toxicity in yeast and human cells, while increased SOD1 expression enhanced tolerance to H2S. SOD1 rapidly converted H2S to sulfate under conditions of limiting sulfide; however, when sulfide was in molar excess, SOD1 catalyzed the formation of per- and polysulfides, which induce cellular thiol oxidation. Furthermore, in SOD1-deficient cells, elevated levels of reactive oxygen species catalyzed sulfide oxidation to per- and polysulfides. These data reveal that a fundamental function of SOD1 is to regulate H2S and related reactive sulfur species.


Subject(s)
Electron Transport Complex IV , Hydrogen Sulfide , Superoxide Dismutase-1 , Humans , Electron Transport Complex IV/metabolism , Hydrogen Sulfide/metabolism , Hydrogen Sulfide/toxicity , Sulfides/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
3.
Circ Res ; 133(12): 966-988, 2023 12 08.
Article in English | MEDLINE | ID: mdl-37955182

ABSTRACT

BACKGROUND: Pulmonary hypertension (PH) is a chronic vascular disease characterized, among other abnormalities, by hyperproliferative smooth muscle cells and a perturbed cellular redox and metabolic balance. Oxidants induce cell cycle arrest to halt proliferation; however, little is known about the redox-regulated effector proteins that mediate these processes. Here, we report a novel kinase-inhibitory disulfide bond in cyclin D-CDK4 (cyclin-dependent kinase 4) and investigate its role in cell proliferation and PH. METHODS: Oxidative modifications of cyclin D-CDK4 were detected in human pulmonary arterial smooth muscle cells and human pulmonary arterial endothelial cells. Site-directed mutagenesis, tandem mass-spectrometry, cell-based experiments, in vitro kinase activity assays, in silico structural modeling, and a novel redox-dead constitutive knock-in mouse were utilized to investigate the nature and definitively establish the importance of CDK4 cysteine modification in pulmonary vascular cell proliferation. Furthermore, the cyclin D-CDK4 oxidation was assessed in vivo in the pulmonary arteries and isolated human pulmonary arterial smooth muscle cells of patients with pulmonary arterial hypertension and in 3 preclinical models of PH. RESULTS: Cyclin D-CDK4 forms a reversible oxidant-induced heterodimeric disulfide dimer between C7/8 and C135, respectively, in cells in vitro and in pulmonary arteries in vivo to inhibit cyclin D-CDK4 kinase activity, decrease Rb (retinoblastoma) protein phosphorylation, and induce cell cycle arrest. Mutation of CDK4 C135 causes a kinase-impaired phenotype, which decreases cell proliferation rate and alleviates disease phenotype in an experimental mouse PH model, suggesting this cysteine is indispensable for cyclin D-CDK4 kinase activity. Pulmonary arteries and human pulmonary arterial smooth muscle cells from patients with pulmonary arterial hypertension display a decreased level of CDK4 disulfide, consistent with CDK4 being hyperactive in human pulmonary arterial hypertension. Furthermore, auranofin treatment, which induces the cyclin D-CDK4 disulfide, attenuates disease severity in experimental PH models by mitigating pulmonary vascular remodeling. CONCLUSIONS: A novel disulfide bond in cyclin D-CDK4 acts as a rapid switch to inhibit kinase activity and halt cell proliferation. This oxidative modification forms at a critical cysteine residue, which is unique to CDK4, offering the potential for the design of a selective covalent inhibitor predicted to be beneficial in PH.


Subject(s)
Cyclins , Pulmonary Arterial Hypertension , Humans , Mice , Animals , Cyclins/metabolism , Pulmonary Arterial Hypertension/metabolism , Cysteine/metabolism , Endothelial Cells/metabolism , Cell Proliferation , Pulmonary Artery/metabolism , Phosphorylation , Cell Cycle Checkpoints , Cyclin D/metabolism , Cells, Cultured , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 4/metabolism
4.
Nature ; 566(7745): 548-552, 2019 02.
Article in English | MEDLINE | ID: mdl-30760924

ABSTRACT

Singlet molecular oxygen (1O2) has well-established roles in photosynthetic plants, bacteria and fungi1-3, but not in mammals. Chemically generated 1O2 oxidizes the amino acid tryptophan to precursors of a key metabolite called N-formylkynurenine4, whereas enzymatic oxidation of tryptophan to N-formylkynurenine is catalysed by a family of dioxygenases, including indoleamine 2,3-dioxygenase 15. Under inflammatory conditions, this haem-containing enzyme is expressed in arterial endothelial cells, where it contributes to the regulation of blood pressure6. However, whether indoleamine 2,3-dioxygenase 1 forms 1O2 and whether this contributes to blood pressure control have remained unknown. Here we show that arterial indoleamine 2,3-dioxygenase 1 regulates blood pressure via formation of 1O2. We observed that in the presence of hydrogen peroxide, the enzyme generates 1O2 and that this is associated with the stereoselective oxidation of L-tryptophan to a tricyclic hydroperoxide via a previously unrecognized oxidative activation of the dioxygenase activity. The tryptophan-derived hydroperoxide acts in vivo as a signalling molecule, inducing arterial relaxation and decreasing blood pressure; this activity is dependent on Cys42 of protein kinase G1α. Our findings demonstrate a pathophysiological role for 1O2 in mammals through formation of an amino acid-derived hydroperoxide that regulates vascular tone and blood pressure under inflammatory conditions.


Subject(s)
Blood Pressure/physiology , Inflammation/blood , Inflammation/physiopathology , Singlet Oxygen/metabolism , Vasodilator Agents/metabolism , Animals , Cell Line , Cyclic GMP-Dependent Protein Kinase Type I/antagonists & inhibitors , Cyclic GMP-Dependent Protein Kinase Type I/chemistry , Cyclic GMP-Dependent Protein Kinase Type I/metabolism , Cysteine/metabolism , Enzyme Activation/drug effects , Female , Humans , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Indoleamine-Pyrrole 2,3,-Dioxygenase/chemistry , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Inflammation/enzymology , Male , Oxidation-Reduction/drug effects , Rats , Signal Transduction , Singlet Oxygen/chemistry , Tryptophan/chemistry , Tryptophan/metabolism
5.
Proc Natl Acad Sci U S A ; 119(21): e2200022119, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35584114

ABSTRACT

Inducible nitric oxide synthase (NOS2) produces high local concentrations of nitric oxide (NO), and its expression is associated with inflammation, cellular stress signals, and cellular transformation. Additionally, NOS2 expression results in aggressive cancer cell phenotypes and is correlated with poor outcomes in patients with breast cancer. DNA hypomethylation, especially of noncoding repeat elements, is an early event in carcinogenesis and is a common feature of cancer cells. In addition to altered gene expression, DNA hypomethylation results in genomic instability via retrotransposon activation. Here, we show that NOS2 expression and associated NO signaling results in substantial DNA hypomethylation in human cell lines by inducing the degradation of DNA (cytosine-5)­methyltransferase 1 (DNMT1) protein. Similarly, NOS2 expression levels were correlated with decreased DNA methylation in human breast tumors. NOS2 expression and NO signaling also resulted in long interspersed noncoding element 1 (LINE-1) retrotransposon hypomethylation, expression, and DNA damage. DNMT1 degradation was mediated by an NO/p38-MAPK/lysine acetyltransferase 5­dependent mechanism. Furthermore, we show that this mechanism is required for NO-mediated epithelial transformation. Therefore, we conclude that NOS2 and NO signaling results in DNA damage and malignant cellular transformation via an epigenetic mechanism.


Subject(s)
DNA Methylation , Inflammation , S-Nitrosothiols , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , Humans , Inflammation/genetics , Nitric Oxide , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Retroelements/genetics
6.
Chemistry ; 30(3): e202303133, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-37823679

ABSTRACT

Homocubane, a highly strained cage hydrocarbon, contains two very different positions for the introduction of a nitrogen atom into the skeleton, e. g., a position 1 exchange results in a tertiary amine whereas position 9 yields a secondary amine. Herein reported is the synthesis of 9-azahomocubane along with associated structural characterization, physical property analysis and chemical reactivity. Not only is 9-azahomocubane readily synthesized, and found to be stable as predicted, the basicity of the secondary amine was observed to be significantly lower than the structurally related azabicyclo[2.2.1]heptane, although similar to 1-azahomocubane.

7.
Annu Rev Physiol ; 81: 63-87, 2019 02 10.
Article in English | MEDLINE | ID: mdl-30216743

ABSTRACT

Oxidant molecules are produced in biological systems and historically have been considered causal mediators of damage and disease. While oxidants may contribute to the pathogenesis of disease, evidence continues to emerge that shows these species also play important regulatory roles in health. A major mechanism of oxidant sensing and signaling involves their reaction with reactive cysteine thiols within proteins, inducing oxidative posttranslational modifications that can couple to altered function to enable homeostatic regulation. Protein kinase A and protein kinase G are regulated by oxidants in this way, and this review focuses on our molecular-level understanding of these events and their role in regulating cardiovascular physiology during health and disease.


Subject(s)
Cardiovascular System/metabolism , Cyclic Nucleotide-Regulated Protein Kinases/metabolism , Cysteine/metabolism , Nucleotides, Cyclic/metabolism , Signal Transduction/physiology , Animals , Humans , Oxidation-Reduction
8.
Circulation ; 143(5): 449-465, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33185461

ABSTRACT

BACKGROUND: Kinase oxidation is a critical signaling mechanism through which changes in the intracellular redox state alter cardiac function. In the myocardium, PKARIα (type-1 protein kinase A) can be reversibly oxidized, forming interprotein disulfide bonds in the holoenzyme complex. However, the effect of PKARIα disulfide formation on downstream signaling in the heart, particularly under states of oxidative stress such as ischemia and reperfusion (I/R), remains unexplored. METHODS: Atrial tissue obtained from patients before and after cardiopulmonary bypass and reperfusion and left ventricular (LV) tissue from mice subjected to I/R or sham surgery were used to assess PKARIα disulfide formation by immunoblot. To determine the effect of disulfide formation on PKARIα catalytic activity and subcellular localization, live-cell fluorescence imaging and stimulated emission depletion super-resolution microscopy were performed in prkar1 knock-out mouse embryonic fibroblasts, neonatal myocytes, or adult LV myocytes isolated from "redox dead" (Cys17Ser) PKARIα knock-in mice and their wild-type littermates. Comparison of intracellular calcium dynamics between genotypes was assessed in fura2-loaded LV myocytes, whereas I/R-injury was assessed ex vivo. RESULTS: In both humans and mice, myocardial PKARIα disulfide formation was found to be significantly increased (2-fold in humans, P=0.023; 2.4-fold in mice, P<0.001) in response to I/R in vivo. In mouse LV cardiomyocytes, disulfide-containing PKARIα was not found to impact catalytic activity, but instead led to enhanced AKAP (A-kinase anchoring protein) binding with preferential localization of the holoenzyme to the lysosome. Redox-dependent regulation of lysosomal two-pore channels by PKARIα was sufficient to prevent global calcium release from the sarcoplasmic reticulum in LV myocytes, without affecting intrinsic ryanodine receptor leak or phosphorylation. Absence of I/R-induced PKARIα disulfide formation in "redox dead" knock-in mouse hearts resulted in larger infarcts (2-fold, P<0.001) and a concomitant reduction in LV contractile recovery (1.6-fold, P<0.001), which was prevented by administering the lysosomal two-pore channel inhibitor Ned-19 at the time of reperfusion. CONCLUSIONS: Disulfide modification targets PKARIα to the lysosome, where it acts as a gatekeeper for two-pore channel-mediated triggering of global calcium release. In the postischemic heart, this regulatory mechanism is critical for protection from extensive injury and offers a novel target for the design of cardioprotective therapeutics.


Subject(s)
Calcium/metabolism , Cyclic AMP-Dependent Protein Kinase RIalpha Subunit/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Myocardial Reperfusion Injury/therapy , Animals , Humans , Mice , Oxidation-Reduction
9.
Proc Natl Acad Sci U S A ; 116(26): 13016-13025, 2019 06 25.
Article in English | MEDLINE | ID: mdl-31186362

ABSTRACT

Chronic hypoxia causes pulmonary hypertension (PH), vascular remodeling, right ventricular (RV) hypertrophy, and cardiac failure. Protein kinase G Iα (PKGIα) is susceptible to oxidation, forming an interprotein disulfide homodimer associated with kinase targeting involved in vasodilation. Here we report increased disulfide PKGIα in pulmonary arteries from mice with hypoxic PH or lungs from patients with pulmonary arterial hypertension. This oxidation is likely caused by oxidants derived from NADPH oxidase-4, superoxide dismutase 3, and cystathionine γ-lyase, enzymes that were concomitantly increased in these samples. Indeed, products that may arise from these enzymes, including hydrogen peroxide, glutathione disulfide, and protein-bound persulfides, were increased in the plasma of hypoxic mice. Furthermore, low-molecular-weight hydropersulfides, which can serve as "superreductants" were attenuated in hypoxic tissues, consistent with systemic oxidative stress and the oxidation of PKGIα observed. Inhibiting cystathionine γ-lyase resulted in decreased hypoxia-induced disulfide PKGIα and more severe PH phenotype in wild-type mice, but not in Cys42Ser PKGIα knock-in (KI) mice that are resistant to oxidation. In addition, KI mice also developed potentiated PH during hypoxia alone. Thus, oxidation of PKGIα is an adaptive mechanism that limits PH, a concept further supported by polysulfide treatment abrogating hypoxia-induced RV hypertrophy in wild-type, but not in the KI, mice. Unbiased transcriptomic analysis of hypoxic lungs before structural remodeling identified up-regulation of endothelial-to-mesenchymal transition pathways in the KI compared with wild-type mice. Thus, disulfide PKGIα is an intrinsic adaptive mechanism that attenuates PH progression not only by promoting vasodilation but also by limiting maladaptive growth and fibrosis signaling.


Subject(s)
Cyclic GMP-Dependent Protein Kinase Type I/metabolism , Hypertension, Pulmonary/pathology , Hypoxia/complications , Pulmonary Artery/pathology , Adult , Animals , Cell Line , Cyclic GMP-Dependent Protein Kinase Type I/chemistry , Cystathionine gamma-Lyase/antagonists & inhibitors , Cystathionine gamma-Lyase/metabolism , Disease Models, Animal , Disease Progression , Disulfides/chemistry , Female , Fibrosis , Gene Knock-In Techniques , Humans , Hypertension, Pulmonary/blood , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/prevention & control , Hypoxia/blood , Hypoxia/drug therapy , Lung/blood supply , Lung/pathology , Male , Mice , Mice, Transgenic , Middle Aged , Oxidants/metabolism , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Sulfides/administration & dosage , Sulfides/blood , Sulfides/metabolism , Up-Regulation , Vasoconstriction/drug effects , Vasodilation/drug effects
10.
Circ Res ; 124(12): 1727-1746, 2019 06 07.
Article in English | MEDLINE | ID: mdl-30922174

ABSTRACT

RATIONALE: Hypoxic pulmonary vasoconstriction (HPV) optimizes systemic oxygen delivery by matching ventilation to perfusion. HPV is intrinsic to pulmonary artery smooth muscle cells (PASMCs). Hypoxia dilates systemic arteries, including renal arteries. Hypoxia is sensed by changes in mitochondrial-derived reactive oxygen species, notably hydrogen peroxide (H2O2) ([H2O2]mito). Decreases in [H2O2]mito elevate pulmonary vascular tone by increasing intracellular calcium ([Ca2+]i) through reduction-oxidation regulation of ion channels. Although HPV is mimicked by the Complex I inhibitor, rotenone, the molecular identity of the O2 sensor is unknown. OBJECTIVE: To determine the role of Ndufs2 (NADH [nicotinamide adenine dinucleotide] dehydrogenase [ubiquinone] iron-sulfur protein 2), Complex I's rotenone binding site, in pulmonary vascular oxygen-sensing. METHODS AND RESULTS: Mitochondria-conditioned media from pulmonary and renal mitochondria isolated from normoxic and chronically hypoxic rats were infused into an isolated lung bioassay. Mitochondria-conditioned media from normoxic lungs contained more H2O2 than mitochondria-conditioned media from chronic hypoxic lungs or kidneys and uniquely attenuated HPV via a catalase-dependent mechanism. In PASMC, acute hypoxia decreased H2O2 within 112±7 seconds, followed, within 205±34 seconds, by increased intracellular calcium concentration, [Ca2+]i. Hypoxia had no effects on [Ca2+]i in renal artery SMC. Hypoxia decreases both cytosolic and mitochondrial H2O2 in PASMC while increasing cytosolic H2O2 in renal artery SMC. Ndufs2 expression was greater in PASMC versus renal artery SMC. Lung Ndufs2 cysteine residues became reduced during acute hypoxia and both hypoxia and reducing agents caused functional inhibition of Complex I. In PASMC, siNdufs2 (cells/tissue treated with Ndufs2 siRNA) decreased normoxic H2O2, prevented hypoxic increases in [Ca2+]i, and mimicked aspects of chronic hypoxia, including decreasing Complex I activity, elevating the nicotinamide adenine dinucleotide (NADH/NAD+) ratio and decreasing expression of the O2-sensitive ion channel, Kv1.5. Knocking down another Fe-S center within Complex I (Ndufs1, NADH [nicotinamide adenine dinucleotide] dehydrogenase [ubiquinone] iron-sulfur protein 1) or other mitochondrial subunits proposed as putative oxygen sensors (Complex III's Rieske Fe-S center and COX4i2 [cytochrome c oxidase subunit 4 isoform 2] in Complex IV) had no effect on hypoxic increases in [Ca2+]i. In vivo, siNdufs2 significantly decreased hypoxia- and rotenone-induced constriction while enhancing phenylephrine-induced constriction. CONCLUSIONS: Ndufs2 is essential for oxygen-sensing and HPV.


Subject(s)
Electron Transport Complex I/metabolism , Hypoxia/metabolism , NADH Dehydrogenase/metabolism , Oxygen/metabolism , Vascular Resistance/physiology , Vasoconstriction/physiology , Animals , Cells, Cultured , Hypoxia/pathology , Lung/blood supply , Lung/metabolism , Male , Mice , Mice, Inbred C57BL , Muscle, Smooth, Vascular/metabolism , Organ Culture Techniques , Oxygen/analysis , Protein Subunits/metabolism , Rats , Rats, Sprague-Dawley
11.
Circulation ; 140(2): 126-137, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31116951

ABSTRACT

BACKGROUND: The health-promoting and disease-limiting abilities of resveratrol, a natural polyphenol, has led to considerable interest in understanding the mechanisms of its therapeutic actions. The polyphenolic rings of resveratrol enable it to react with and detoxify otherwise injurious oxidants. Whilst the protective actions of resveratrol are commonly ascribed to its antioxidant activity, here we show that this is a misconception. METHODS: The ability of resveratrol to oxidize cGMP-dependent PKG1α (protein kinase 1α) was assessed in isolated rat aortic smooth muscle cells, and the mechanism of action of this polyphenol was characterized using in vitro experiments, mass spectrometry and electron paramagnetic resonance. The blood pressure of wild-type and C42S knock-in mice was assessed using implanted telemetry probes. Mice were made hypertensive by administration of angiotensin II via osmotic mini-pumps and blood pressure monitored during 15 days of feeding with chow diet containing vehicle or resveratrol. RESULTS: Oxidation of the phenolic rings of resveratrol paradoxically leads to oxidative modification of proteins, explained by formation of a reactive quinone that oxidizes the thiolate side chain of cysteine residues; events that were enhanced in cells under oxidative stress. Consistent with these observations and its ability to induce vasodilation, resveratrol induced oxidative activation of PKG1α and lowered blood pressure in hypertensive wild-type mice, but not C42S PKG1α knock-in mice that are resistant to disulfide activation. CONCLUSIONS: Resveratrol mediates lowering of blood pressure by paradoxically inducing protein oxidation, especially during times of oxidative stress, a mechanism that may be a common feature of antioxidant molecules.


Subject(s)
Antioxidants/pharmacology , Blood Pressure/drug effects , Cyclic GMP-Dependent Protein Kinase Type I/metabolism , Oxidative Stress/drug effects , Resveratrol/pharmacology , Animals , Blood Pressure/physiology , Cells, Cultured , Humans , Mice , Mice, Transgenic , Organ Culture Techniques , Oxidation-Reduction/drug effects , Oxidative Stress/physiology , Rats , Telemetry/methods
12.
Protein Expr Purif ; 153: 105-113, 2019 01.
Article in English | MEDLINE | ID: mdl-30218745

ABSTRACT

The human soluble Epoxide Hydrolase (hsEH) is an enzyme involved in the hydrolysis of endogenous anti-inflammatory and cardio-protective signalling mediators known as epoxyeicosatrienoic acids (EETs). EETs' conversion into the corresponding diols by hsEH generates non-bioactive molecules, thereby the enzyme inhibition would be expected to enhance the EETs bioavailability, and their beneficial properties. Numerous inhibitors have been developed to target the enzyme, some of which are showing promising antihypertensive and anti-inflammatory properties in vivo. Thus far, the preparation of the recombinant enzyme for enzymatic and structural in vitro studies has been performed mainly using a baculovirus expression system. More recently, it was reported that the enzyme could be exogenously expressed and isolated from E. coli, although limited amounts of active protein were obtained. We herein describe two novel methods to yield pure recombinant enzyme. The first describes the expression and purification of the full-length enzyme from eukaryotic cells HEK293-F, whilst the second concerns the C-terminal domain of hsEH obtained from the cost-effective and rapid E. coli prokaryotic system. The two methods successfully generated satisfactory amounts of functional enzyme, with virtually identical enzymatic activity. Overall, the protocols described in this paper can be employed for the recombinant expression and purification of active hsEH, to be used in future biomedical investigations and for high-throughput screening of inhibitors for potential use in the treatment of cardiovascular disease.


Subject(s)
8,11,14-Eicosatrienoic Acid/analogs & derivatives , Cloning, Molecular/methods , Epoxide Hydrolases/genetics , Chromatography, Affinity , Enzyme Assays , Epoxide Hydrolases/chemistry , Epoxide Hydrolases/isolation & purification , Epoxide Hydrolases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HEK293 Cells , Humans , Hydrolysis , Protein Domains , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Solubility , Spectrometry, Mass, Electrospray Ionization
13.
J Biol Chem ; 292(39): 16161-16173, 2017 09 29.
Article in English | MEDLINE | ID: mdl-28739872

ABSTRACT

The kinase p38α MAPK (p38α) plays a pivotal role in many biological processes. p38α is activated by canonical upstream kinases that phosphorylate the activation region. The purpose of our study was to determine whether such activation may depend on redox-sensing cysteines within p38α. p38α was activated and formed a disulfide-bound heterodimer with MAP2K3 (MKK3) in rat cardiomyocytes and isolated hearts exposed to H2O2 This disulfide heterodimer was sensitive to reduction by mercaptoethanol and was enhanced by the thioredoxin-reductase inhibitor auranofin. We predicted that Cys-119 or Cys-162 of p38α, close to the known MKK3 docking domain, were relevant for these redox characteristics. The C119S mutation decreased whereas the C162S mutation increased the dimer formation, suggesting that these two Cys residues act as vicinal thiols, consistent with C119S/C162S being incapable of sensing H2O2 Similarly, disulfide heterodimer formation was abolished in H9C2 cells expressing both MKK3 and p38α C119S/C162S and subjected to simulated ischemia and reperfusion. However, the p38α C119S/C162S mutants did not exhibit appreciable alteration in activating dual phosphorylation. In contrast, the anti-inflammatory agent 10-nitro-oleic acid (NO2-OA), a component of the Mediterranean diet, reduced p38α activation and covalently modified Cys-119/Cys-162, probably obstructing MKK3 access. Moreover, NO2-OA reduced the dephosphorylation of p38α by hematopoietic tyrosine phosphatase (HePTP). Furthermore, steric obstruction of Cys-119/Cys-162 by NO2-OA pretreatment in Langendorff-perfused murine hearts prevented the p38-MKK3 disulfide dimer formation and attenuated H2O2-induced contractile dysfunction. Our findings suggest that cysteine residues within p38α act as redox sensors that can dynamically regulate the association between p38 and MKK3.


Subject(s)
Cystine/metabolism , Heart Ventricles/enzymology , MAP Kinase Kinase 3/metabolism , Mitogen-Activated Protein Kinase 14/metabolism , Models, Molecular , Myocytes, Cardiac/enzymology , Oxidative Stress , Amino Acid Substitution , Animals , Cell Line , Cells, Cultured , Cysteine/chemistry , Cysteine/metabolism , Cystine/chemistry , Enzyme Activation , Heart Ventricles/cytology , Heart Ventricles/metabolism , Humans , In Vitro Techniques , MAP Kinase Kinase 3/chemistry , MAP Kinase Kinase 3/genetics , Male , Mice, Inbred C57BL , Mitogen-Activated Protein Kinase 14/chemistry , Mitogen-Activated Protein Kinase 14/genetics , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Oxidation-Reduction , Protein Conformation , Protein Multimerization , Rats, Wistar , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism
14.
Circulation ; 135(22): 2163-2177, 2017 May 30.
Article in English | MEDLINE | ID: mdl-28298457

ABSTRACT

BACKGROUND: Hypertension caused by increased renin-angiotensin system activation is associated with elevated reactive oxygen species production. Previous studies implicate NADPH oxidase (Nox) proteins as important reactive oxygen species sources during renin-angiotensin system activation, with different Nox isoforms being potentially involved. Among these, Nox2 is expressed in multiple cell types, including endothelial cells, fibroblasts, immune cells, and microglia. Blood pressure (BP) is regulated at the central nervous system, renal, and vascular levels, but the cell-specific role of Nox2 in BP regulation is unknown. METHODS: We generated a novel mouse model with a floxed Nox2 gene and used Tie2-Cre, LysM Cre, or Cdh5-CreERT2 driver lines to develop cell-specific models of Nox2 perturbation to investigate its role in BP regulation. RESULTS: Unexpectedly, Nox2 deletion in myeloid but not endothelial cells resulted in a significant reduction in basal BP. Both Tie2-CreNox2 knockout (KO) mice (in which Nox2 was deficient in both endothelial cells and myeloid cells) and LysM CreNox2KO mice (in which Nox2 was deficient in myeloid cells) had significantly lower BP than littermate controls, whereas basal BP was unaltered in Cdh5-CreERT2 Nox2KO mice (in which Nox2 is deficient only in endothelial cells). The lower BP was attributable to an increased NO bioavailability that dynamically dilated resistance vessels in vivo under basal conditions without a change in renal function. Myeloid-specific Nox2 deletion had no effect on angiotensin II-induced hypertension, which, however, was blunted in Tie2-CreNox2KO mice, along with preservation of endothelium-dependent relaxation during angiotensin II stimulation. CONCLUSIONS: We identify a hitherto unrecognized modulation of basal BP by myeloid cell Nox2, whereas endothelial cell Nox2 regulates angiotensin II-induced hypertension. These results identify distinct cell-specific roles for Nox2 in BP regulation.


Subject(s)
Blood Pressure/physiology , Endothelial Cells/enzymology , Hypertension/enzymology , Membrane Glycoproteins/deficiency , Myeloid Cells/enzymology , NADPH Oxidases/deficiency , Angiotensin II/toxicity , Animals , Blood Pressure/drug effects , Electron Spin Resonance Spectroscopy/methods , Endothelial Cells/drug effects , Hypertension/chemically induced , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Myeloid Cells/drug effects , NADPH Oxidase 2
15.
Mol Cell Proteomics ; 15(1): 246-55, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26582072

ABSTRACT

The endogenous mechanisms contributing to tissue survival following myocardial infarction are not fully understood. We investigated the alterations in the mitochondrial proteome after ischemia-reperfusion (I/R) and its possible implications on cell survival. Mitochondrial proteomic analysis of cardiac tissue from an in vivo porcine I/R model found that surviving tissue in the peri-infarct border zone showed increased expression of several proteins. Notably, these included subunits of the mitochondrial pyruvate carrier (MPC), namely MPC1 and MPC2. Western blot, immunohistochemistry, and mRNA analysis corroborated the elevated expression of MPC in the surviving tissue. Furthermore, MPC1 and MPC2 protein levels were found to be markedly elevated in the myocardium of ischemic cardiomyopathy patients. These findings led to the hypothesis that increased MPC expression is cardioprotective due to enhancement of mitochondrial pyruvate uptake in the energy-starved heart following I/R. To test this, isolated mouse hearts perfused with a modified Krebs buffer (containing glucose, pyruvate, and octanoate as metabolic substrates) were subjected to I/R with or without the MPC transport inhibitor UK5099. UK5099 increased myocardial infarction and attenuated post-ischemic recovery of left ventricular end-diastolic pressure. However, aerobically perfused control hearts that were exposed to UK5099 did not modulate contractile function, although pyruvate uptake was blocked as evidenced by increased cytosolic lactate and pyruvate levels. Our findings indicate that increased expression of MPC leads to enhanced uptake and utilization of pyruvate during I/R. We propose this as a putative endogenous mechanism that promotes myocardial survival to limit infarct size.


Subject(s)
Membrane Transport Proteins/metabolism , Mitochondrial Proteins/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardium/metabolism , Proteome/metabolism , Animals , Anion Transport Proteins , Blotting, Western , Humans , Immunohistochemistry , Male , Membrane Transport Proteins/genetics , Mice, Inbred C57BL , Mitochondria, Heart/genetics , Mitochondria, Heart/metabolism , Mitochondrial Membrane Transport Proteins , Mitochondrial Proteins/genetics , Monocarboxylic Acid Transporters , Myocardial Reperfusion Injury/genetics , Principal Component Analysis , Proteome/genetics , Proteomics/methods , Reverse Transcriptase Polymerase Chain Reaction , Swine , Tandem Mass Spectrometry , Tissue Survival
16.
J Biol Chem ; 291(33): 17427-36, 2016 08 12.
Article in English | MEDLINE | ID: mdl-27342776

ABSTRACT

Phosphodiesterase 5 (PDE5) inhibitors limit myocardial injury caused by stresses, including doxorubicin chemotherapy. cGMP binding to PKG Iα attenuates oxidant-induced disulfide formation. Because PDE5 inhibition elevates cGMP and protects from doxorubicin-induced injury, we reasoned that this may be because it limits PKG Iα disulfide formation. To investigate the role of PKG Iα disulfide dimerization in the development of apoptosis, doxorubicin-induced cardiomyopathy was compared in male wild type (WT) or disulfide-resistant C42S PKG Iα knock-in (KI) mice. Echocardiography showed that doxorubicin treatment caused loss of myocardial tissue and depressed left ventricular function in WT mice. Doxorubicin also reduced pro-survival signaling and increased apoptosis in WT hearts. In contrast, KI mice were markedly resistant to the dysfunction induced by doxorubicin in WTs. In follow-on experiments the influence of the PDE5 inhibitor tadalafil on the development of doxorubicin-induced cardiomyopathy in WT and KI mice was investigated. In WT mice, co-administration of tadalafil with doxorubicin reduced PKG Iα oxidation caused by doxorubicin and also protected against cardiac injury and loss of function. KI mice were again innately resistant to doxorubicin-induced cardiotoxicity, and therefore tadalafil afforded no additional protection. Doxorubicin decreased phosphorylation of RhoA (Ser-188), stimulating its GTPase activity to activate Rho-associated protein kinase (ROCK) in WTs. These pro-apoptotic events were absent in KI mice and were attenuated in WTs co-administered tadalafil. PKG Iα disulfide formation triggers cardiac injury, and this initiation of maladaptive signaling can be blocked by pharmacological therapies that elevate cGMP, which binds kinase to limit its oxidation.


Subject(s)
Cardiomegaly , Cyclic GMP-Dependent Protein Kinase Type I , Disulfides/metabolism , Doxorubicin , Heart Failure , Phosphodiesterase 5 Inhibitors/pharmacology , Second Messenger Systems , Tadalafil/pharmacology , Animals , Cardiomegaly/chemically induced , Cardiomegaly/enzymology , Cardiomegaly/genetics , Cardiomegaly/prevention & control , Cyclic GMP/genetics , Cyclic GMP/metabolism , Cyclic GMP-Dependent Protein Kinase Type I/antagonists & inhibitors , Cyclic GMP-Dependent Protein Kinase Type I/genetics , Cyclic GMP-Dependent Protein Kinase Type I/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 5/genetics , Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , Doxorubicin/adverse effects , Doxorubicin/pharmacology , Heart Failure/chemically induced , Heart Failure/enzymology , Heart Failure/genetics , Heart Failure/prevention & control , Mice , Mice, Mutant Strains , Oxidation-Reduction , Second Messenger Systems/drug effects , Second Messenger Systems/genetics , rho-Associated Kinases/genetics , rho-Associated Kinases/metabolism
17.
J Biol Chem ; 291(19): 10399-410, 2016 May 06.
Article in English | MEDLINE | ID: mdl-26945066

ABSTRACT

The role and responses of the dimeric DJ-1 protein to cardiac oxidative stress is incompletely understood. H2O2 induces a 50-kDa DJ-1 interprotein homodimer disulfide, known to form between Cys-53 on each subunit. A trimeric 75-kDa DJ-1 complex that mass spectrometry shows contained 2-Cys peroxiredoxin also formed and precedes the appearance of the disulfide dimer. These observations may represent peroxiredoxin sensing and transducing the oxidant signal to DJ-1. The dimeric disulfide DJ-1 complex was stabilized by auranofin, suggesting that thioredoxin recycles it in cells. Higher concentrations of H2O2 concomitantly induce DJ-1 Cys-106 hyperoxidation (sulfination or sulfonation) in myocytes, perfused heart, or HEK cells. An oxidation-resistant C53A DJ-1 shows potentiated H2O2-induced Cys-106 hyperoxidation. DJ-1 also forms multiple disulfides with unknown target proteins during H2O2 treatment, the formation of which is also potentiated in cells expressing the C53A mutant. This suggests that the intersubunit disulfide induces a conformational change that limits Cys-106 forming heterodisulfide protein complexes or from hyperoxidizing. High concentrations of H2O2 also induce cell death, with DJ-1 Cys-106 sulfonation appearing causal in these events, as expressionof C53A DJ-1 enhanced both Cys-106 sulfonation and cell death. Nonetheless, expression of the DJ-1 C106A mutant, which fully prevents hyperoxidation, also showed exacerbated cell death responses to H2O2 A rational explanation for these findings is that DJ-1 Cys-106 forms disulfides with target proteins to limit oxidant-induced cell death. However, when Cys-106 is hyperoxidized, formation of these potentially protective heterodimeric disulfide complexes is limited, and so cell death is exacerbated.


Subject(s)
Disulfides/chemistry , Hydrogen Peroxide/pharmacology , Microtubule-Associated Proteins/metabolism , Oxidants/pharmacology , Oxidative Stress , Peroxiredoxins/metabolism , Protein Interaction Domains and Motifs/drug effects , Animals , Blotting, Western , Cells, Cultured , Fluorescent Antibody Technique , HEK293 Cells , Humans , Immunoprecipitation , Male , Mutation/genetics , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Oxidation-Reduction , Peroxiredoxins/genetics , Protein Deglycase DJ-1 , Proteomics , Rats , Rats, Wistar
18.
J Biol Chem ; 291(4): 1774-1788, 2016 Jan 22.
Article in English | MEDLINE | ID: mdl-26620565

ABSTRACT

The gasotransmitter, hydrogen sulfide (H2S) is recognized as an important mediator of endothelial cell homeostasis and function that impacts upon vascular tone and blood pressure. Cystathionine-γ-lyase (CSE) is the predominant endothelial generator of H2S, and recent evidence suggests that its transcriptional expression is regulated by the reactive oxygen species, H2O2. However, the cellular source of H2O2 and the redox-dependent molecular signaling pathway that modulates this is not known. We aimed to investigate the role of Nox4, an endothelial generator of H2O2, in the regulation of CSE in endothelial cells. Both gain- and loss-of-function experiments in human endothelial cells in vitro demonstrated Nox4 to be a positive regulator of CSE transcription and protein expression. We demonstrate that this is dependent upon a heme-regulated inhibitor kinase/eIF2α/activating transcription factor 4 (ATF4) signaling module. ATF4 was further demonstrated to bind directly to cis-regulatory sequences within the first intron of CSE to activate transcription. Furthermore, CSE expression was also increased in cardiac microvascular endothelial cells, isolated from endothelial-specific Nox4 transgenic mice, compared with wild-type littermate controls. Using wire myography we demonstrate that endothelial-specific Nox4 transgenic mice exhibit a hypo-contractile phenotype in response to phenylephrine that was abolished when vessels were incubated with a CSE inhibitor, propargylglycine. We, therefore, conclude that Nox4 is a positive transcriptional regulator of CSE in endothelial cells and propose that it may in turn contribute to the regulation of vascular tone via the modulation of H2S production.


Subject(s)
Cystathionine gamma-Lyase/genetics , Gene Expression Regulation, Enzymologic , Human Umbilical Vein Endothelial Cells/enzymology , NADPH Oxidases/metabolism , Transcription, Genetic , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Animals , Cystathionine gamma-Lyase/metabolism , Gene Expression Regulation , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , NADPH Oxidase 4 , NADPH Oxidases/genetics , Signal Transduction
19.
FASEB J ; 30(5): 1849-64, 2016 05.
Article in English | MEDLINE | ID: mdl-26839380

ABSTRACT

Cardiac myosin-binding protein C (cMyBP-C) regulates actin-myosin interaction and thereby cardiac myocyte contraction and relaxation. This physiologic function is regulated by cMyBP-C phosphorylation. In our study, reduced site-specific cMyBP-C phosphorylation coincided with increased S-glutathiolation in ventricular tissue from patients with dilated or ischemic cardiomyopathy compared to nonfailing donors. We used redox proteomics, to identify constitutive and disease-specific S-glutathiolation sites in cMyBP-C in donor and patient samples, respectively. Among those, a cysteine cluster in the vicinity of the regulatory phosphorylation sites within the myosin S2 interaction domain C1-M-C2 was identified and showed enhanced S-glutathiolation in patients. In vitro S-glutathiolation of recombinant cMyBP-C C1-M-C2 occurred predominantly at Cys(249), which attenuated phosphorylation by protein kinases. Exposure to glutathione disulfide induced cMyBP-C S-glutathiolation, which functionally decelerated the kinetics of Ca(2+)-activated force development in ventricular myocytes from wild-type, but not those from Mybpc3-targeted knockout mice. These oxidation events abrogate protein kinase-mediated phosphorylation of cMyBP-C and therefore potentially contribute to the reduction of its phosphorylation and the contractile dysfunction observed in human heart failure.-Stathopoulou, K., Wittig, I., Heidler, J., Piasecki, A., Richter, F., Diering, S., van der Velden, J., Buck, F., Donzelli, S., Schröder, E., Wijnker, P. J. M., Voigt, N., Dobrev, D., Sadayappan, S., Eschenhagen, T., Carrier, L., Eaton, P., Cuello, F. S-glutathiolation impairs phosphoregulation and function of cardiac myosin-binding protein C in human heart failure.


Subject(s)
Carrier Proteins/metabolism , Gene Expression Regulation/physiology , Glutathione/metabolism , Heart Failure/metabolism , Adult , Animals , Cardiovascular Agents/therapeutic use , Carrier Proteins/genetics , Female , Heart Failure/drug therapy , Heart Ventricles/metabolism , Humans , Male , Mice , Mice, Knockout , Middle Aged , Oxidation-Reduction , Phosphorylation , Young Adult
20.
Proc Natl Acad Sci U S A ; 111(22): 8167-72, 2014 Jun 03.
Article in English | MEDLINE | ID: mdl-24843165

ABSTRACT

Soluble epoxide hydrolase (sEH) is inhibited by electrophilic lipids by their adduction to Cys521 proximal to its catalytic center. This inhibition prevents hydrolysis of the enzymes' epoxyeicosatrienoic acid (EET) substrates, so they accumulate inducing vasodilation to lower blood pressure (BP). We generated a Cys521Ser sEH redox-dead knockin (KI) mouse model that was resistant to this mode of inhibition. The electrophilic lipid 10-nitro-oleic acid (NO2-OA) inhibited hydrolase activity and also lowered BP in an angiotensin II-induced hypertension model in wild-type (WT) but not KI mice. Furthermore, EET/dihydroxy-epoxyeicosatrienoic acid isomer ratios were elevated in plasma from WT but not KI mice following NO2-OA treatment, consistent with the redox-dead mutant being resistant to inhibition by lipid electrophiles. sEH was inhibited in WT mice fed linoleic acid and nitrite, key constituents of the Mediterranean diet that elevates electrophilic nitro fatty acid levels, whereas KIs were unaffected. These observations reveal that lipid electrophiles such as NO2-OA mediate antihypertensive signaling actions by inhibiting sEH and suggest a mechanism accounting for protection from hypertension afforded by the Mediterranean diet.


Subject(s)
Diet, Mediterranean , Epoxide Hydrolases/metabolism , Fatty Acids/metabolism , Hypertension/diet therapy , Hypertension/prevention & control , Angiotensin II/pharmacology , Animals , Blood Pressure , Cardiomegaly/diet therapy , Cardiomegaly/prevention & control , Cellulase , Disease Models, Animal , Epoxide Hydrolases/genetics , Gene Knock-In Techniques , Hypertension/chemically induced , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Nitrates/metabolism , Nitrites/metabolism , Sulfhydryl Compounds/metabolism , Vasoconstrictor Agents/pharmacology , Vasodilation/drug effects , Vasodilation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL