Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
FASEB J ; 38(13): e23785, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38949120

ABSTRACT

Cancer metastasis is the leading cause of death for those afflicted with cancer. In cancer metastasis, the cancer cells break off from the primary tumor, penetrate nearby blood vessels, and attach and extravasate out of the vessels to form secondary tumors at distant organs. This makes extravasation a critical step of the metastatic cascade. Herein, with a focus on triple-negative breast cancer, the role that the prospective secondary tumor microenvironment's mechanical properties play in circulating tumor cells' extravasation is reviewed. Specifically, the effects of the physically regulated vascular endothelial glycocalyx barrier element, vascular flow factors, and subendothelial extracellular matrix mechanical properties on cancer cell extravasation are examined. The ultimate goal of this review is to clarify the physical mechanisms that drive triple-negative breast cancer extravasation, as these mechanisms may be potential new targets for anti-metastasis therapy.


Subject(s)
Glycocalyx , Triple Negative Breast Neoplasms , Tumor Microenvironment , Glycocalyx/metabolism , Glycocalyx/pathology , Humans , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Female , Tumor Microenvironment/physiology , Animals , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Neoplasm Metastasis , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology
2.
Pharmacol Rev ; 73(3): 924-967, 2021 07.
Article in English | MEDLINE | ID: mdl-34088867

ABSTRACT

The endothelium, a cellular monolayer lining the blood vessel wall, plays a critical role in maintaining multiorgan health and homeostasis. Endothelial functions in health include dynamic maintenance of vascular tone, angiogenesis, hemostasis, and the provision of an antioxidant, anti-inflammatory, and antithrombotic interface. Dysfunction of the vascular endothelium presents with impaired endothelium-dependent vasodilation, heightened oxidative stress, chronic inflammation, leukocyte adhesion and hyperpermeability, and endothelial cell senescence. Recent studies have implicated altered endothelial cell metabolism and endothelial-to-mesenchymal transition as new features of endothelial dysfunction. Endothelial dysfunction is regarded as a hallmark of many diverse human panvascular diseases, including atherosclerosis, hypertension, and diabetes. Endothelial dysfunction has also been implicated in severe coronavirus disease 2019. Many clinically used pharmacotherapies, ranging from traditional lipid-lowering drugs, antihypertensive drugs, and antidiabetic drugs to proprotein convertase subtilisin/kexin type 9 inhibitors and interleukin 1ß monoclonal antibodies, counter endothelial dysfunction as part of their clinical benefits. The regulation of endothelial dysfunction by noncoding RNAs has provided novel insights into these newly described regulators of endothelial dysfunction, thus yielding potential new therapeutic approaches. Altogether, a better understanding of the versatile (dys)functions of endothelial cells will not only deepen our comprehension of human diseases but also accelerate effective therapeutic drug discovery. In this review, we provide a timely overview of the multiple layers of endothelial function, describe the consequences and mechanisms of endothelial dysfunction, and identify pathways to effective targeted therapies. SIGNIFICANCE STATEMENT: The endothelium was initially considered to be a semipermeable biomechanical barrier and gatekeeper of vascular health. In recent decades, a deepened understanding of the biological functions of the endothelium has led to its recognition as a ubiquitous tissue regulating vascular tone, cell behavior, innate immunity, cell-cell interactions, and cell metabolism in the vessel wall. Endothelial dysfunction is the hallmark of cardiovascular, metabolic, and emerging infectious diseases. Pharmacotherapies targeting endothelial dysfunction have potential for treatment of cardiovascular and many other diseases.


Subject(s)
Atherosclerosis , COVID-19 Drug Treatment , COVID-19 , Cardiovascular Agents , Cardiovascular Diseases , Endothelium, Vascular , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Atherosclerosis/physiopathology , COVID-19/metabolism , COVID-19/physiopathology , Cardiovascular Agents/classification , Cardiovascular Agents/pharmacology , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/physiopathology , Drug Discovery , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Humans , Molecular Targeted Therapy/methods , Molecular Targeted Therapy/trends , SARS-CoV-2
3.
Am J Physiol Cell Physiol ; 324(2): C488-C504, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36440856

ABSTRACT

Endothelium health is essential to the regulation of physiological vascular functions. Because of the critical capability of endothelial cells (ECs) to sense and transduce chemical and mechanical signals in the local vascular environment, their dysfunction is associated with a vast variety of vascular diseases and injuries, especially atherosclerosis and subsequent cardiovascular diseases. This review describes the mechanotransduction events that are mediated through ECs, the EC subcellular components involved, and the pathways reported to be potentially involved. Up-to-date research efforts involving in vivo animal models and in vitro biomimetic models are also discussed, including their advantages and drawbacks, with recommendations on future modeling approaches to aid the development of novel therapies targeting atherosclerosis and related cardiovascular diseases.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Animals , Endothelial Cells/metabolism , Mechanotransduction, Cellular/physiology , Cardiovascular Diseases/metabolism , Endothelium, Vascular/metabolism , Atherosclerosis/metabolism , Stress, Mechanical
4.
FASEB J ; 36(12): e22630, 2022 12.
Article in English | MEDLINE | ID: mdl-36315163

ABSTRACT

The endothelium, a crucial homeostatic organ, regulates vascular permeability and tone. Under physiological conditions, endothelial stimulation induces vasodilator endothelial nitric oxide (eNO) release and prevents adhesion molecule accessibility and leukocyte adhesion and migration into vessel walls. Endothelium dysfunction is a principal event in cardiovascular disorders, including atherosclerosis. Minimal attention is given to an important endothelial cell structure, the endothelial glycocalyx (GCX), a negatively charged heterogeneous polysaccharide that serves as a protective covering for endothelial cells and enables endothelial cells to transduce mechanical stimuli into various biological and chemical activities. Endothelial GCX shedding thus plays a role in endothelial dysfunction, for example by increasing vascular permeability and decreasing vessel tone. Consequently, there is increasing interest in developing therapies that focus on GCX repair to limit downstream endothelium dysfunction and prevent further downstream cardiovascular events. Here, we present diosmin (3',5,7-trihydroxy-4'-methoxyflavone-7-rhamnoglucoside), a flavone glycoside of diosmetin, which downregulates adhesive molecule expression, decreases inflammation and capillary permeability, and upregulates eNO expression. Due to these pleiotropic effects of diosmin on the vasculature, a possible unidentified mechanism of action is through GCX restoration. We hypothesize that diosmin positively affects GCX integrity along with GCX-related endothelial functions. Our hypothesis was tested in a partial ligation left carotid artery (LCA) mouse model, where the right carotid artery was the control for each mouse. Diosmin (50 mg/kg) was administered daily for 7 days, 72 h after ligation. Within the ligated mice LCAs, diosmin treatment elevated the activated eNO synthase level, inhibited inflammatory cell uptake, decreased vessel wall thickness, increased vessel diameter, and increased GCX coverage of the vessel wall. ELISA showed a decrease in hyaluronan concentration in plasma samples of diosmin-treated mice, signifying reduced GCX shedding. In summary, diosmin supported endothelial GCX integrity, to which we attribute diosmin's preservation of endothelial function as indicated by attenuated expression of inflammatory factors and restored vascular tone.


Subject(s)
Atherosclerosis , Diosmin , Mice , Animals , Glycocalyx/metabolism , Diosmin/pharmacology , Diosmin/metabolism , Endothelial Cells/metabolism , Atherosclerosis/metabolism , Nitric Oxide/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/metabolism , Endothelium, Vascular/metabolism
5.
FASEB J ; 34(5): 6166-6184, 2020 05.
Article in English | MEDLINE | ID: mdl-32167209

ABSTRACT

Cancer metastasis and secondary tumor initiation largely depend on circulating tumor cell (CTC) and vascular endothelial cell (EC) interactions by incompletely understood mechanisms. Endothelial glycocalyx (GCX) dysfunction may play a significant role in this process. GCX structure depends on vascular flow patterns, which are irregular in tumor environments. This work presents evidence that disturbed flow (DF) induces GCX degradation, leading to CTC homing to the endothelium, a first step in secondary tumor formation. A 2-fold greater attachment of CTCs to human ECs was found to occur under DF conditions, compared to uniform flow (UF) conditions. These results corresponded to an approximately 50% decrease in wheat germ agglutinin (WGA)-labeled components of the GCX under DF conditions, vs UF conditions, with undifferentiated levels of CTC-recruiting E-selectin under DF vs UF conditions. Confirming the role of the GCX, neuraminidase induced the degradation of WGA-labeled GCX under UF cell culture conditions or in Balb/C mice and led to an over 2-fold increase in CTC attachment to ECs or Balb/C mouse lungs, respectively, compared to untreated conditions. These experiments confirm that flow-induced GCX degradation can enable metastatic CTC arrest. This work, therefore, provides new insight into pathways of secondary tumor formation.


Subject(s)
Breast Neoplasms/pathology , Endothelium, Vascular/pathology , Glycocalyx/metabolism , Hemodynamics , Lung Neoplasms/secondary , Neoplastic Cells, Circulating/pathology , Neuraminidase/metabolism , Animals , Breast Neoplasms/metabolism , Cells, Cultured , E-Selectin/metabolism , Endothelium, Vascular/metabolism , Female , Humans , Lung Neoplasms/metabolism , Mice , Mice, Inbred BALB C , Neoplastic Cells, Circulating/metabolism
6.
J Transl Med ; 16(1): 364, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30563532

ABSTRACT

BACKGROUND: Endothelial-dependent atherosclerosis develops in a non-random pattern in regions of vessel bending and bifurcations, where blood flow exhibits disturbed flow (DF) patterns. In contrast, uniform flow (UF), normal endothelium, and healthy vessel walls co-exist within straight vessels. In clarifying how flow protectively or atherogenically regulates endothelial cell behavior, involvement of the endothelial surface glycocalyx has been suggested due to reduced expression in regions of atherosclerosis development. Here, we hypothesized that pro-atherosclerotic endothelial dysfunction occurs as a result of DF-induced reduction in glycocalyx expression and subsequently impairs endothelial sensitivity to flow. Specifically, we propose that glycocalyx degradation can induce pro-atherosclerotic endothelial dysfunction through decreased caveolin-1 and endothelial nitric oxide synthase expression and localization. METHODS: We studied endothelial cells in atherosclerotic-prone DF and atherosclerotic-resistant UF conditions in parallel plate flow culture and in C57Bl/6 mice. The effects of flow conditioning on endothelial cell behavior were quantified using immunocytochemistry. The glycocalyx was fluorescently labeled for wheat germ agglutinin, which serves as a general glycocalyx label, and heparan sulfate, a major glycocalyx component. Additionally, mechanosensitivity was assessed by immunocytochemical fluorescence expression and function of caveolin-1, the protein that forms the mechanosignaling caveolar invaginations on the endothelial surface, total endothelial-type nitric oxide synthase (eNOS), which synthesizes nitric oxide, and serine 1177 phosphorylated eNOS (eNOS-pS1177), which is the active form of eNOS. Caveolin function and eNOS expression and activation were correlated to glycocalyx expression. Heparinase III enzyme was used to degrade a major glycocalyx component, HS, to identify the role of the glycocalyx in caveoin-1 and eNOS-pS1177 regulation. RESULTS: Results confirmed that DF reduces caveolin-1 expression and abolishes most of its subcellular localization preferences, when compared to the effect of UF. DF down-regulates caveolin-1 mechanosignaling, as indicated by its reduced colocalization with serine 1177 phosphorylated endothelial-type nitric oxide synthase (eNOS-pS1177), a vasoregulatory signaling molecule whose activity is regulated by its residence in caveolae. As expected, DF inhibited glycocalyx expression compared to UF. In the absence of heparan sulfate, a major glycocalyx component, UF-conditioned endothelial cells exhibited near DF-like caveolin-1 expression, localization, and colocalization with eNOS-pS1177. CONCLUSIONS: This is the first demonstration of a flow-defined role of the glycocalyx in caveolae expression and function related to vasculoprotective endothelial mechanosensitivity that defends against atherosclerosis. The results suggest that a glycocalyx-based therapeutic targeted to areas of atherosclerosis development could prevent disease initiation and progression.


Subject(s)
Atherosclerosis/metabolism , Caveolin 1/metabolism , Glycocalyx/metabolism , Adipose Tissue , Animals , Endothelial Cells/metabolism , Hemorheology , Heparitin Sulfate/metabolism , Male , Mice, Inbred C57BL , Models, Biological , Nitric Oxide Synthase Type III/metabolism , Rats , Signal Transduction
7.
Front Physiol ; 15: 1394725, 2024.
Article in English | MEDLINE | ID: mdl-39027900

ABSTRACT

While cardiovascular disease, cancer, and human immunodeficiency virus (HIV) mortality rates have decreased over the past 20 years, Alzheimer's Disease (AD) deaths have risen by 145% since 2010. Despite significant research efforts, effective AD treatments remain elusive due to a poorly defined etiology and difficulty in targeting events that occur too downstream of disease onset. In hopes of elucidating alternative treatment pathways, now, AD is commonly being more broadly defined not only as a neurological disorder but also as a progression of a variety of cerebrovascular pathologies highlighted by the breakdown of the blood-brain barrier. The endothelial glycocalyx (GCX), which is an essential regulator of vascular physiology, plays a crucial role in the function of the neurovascular system, acting as an essential vascular mechanotransducer to facilitate ultimate blood-brain homeostasis. Shedding of the cerebrovascular GCX could be an early indication of neurovascular dysfunction and may subsequently progress neurodegenerative diseases like AD. Recent advances in in vitro modeling, gene/protein silencing, and imaging techniques offer new avenues of scrutinizing the GCX's effects on AD-related neurovascular pathology. Initial studies indicate GCX degradation in AD and other neurodegenerative diseases and have begun to demonstrate a possible link to GCX loss and cerebrovascular dysfunction. This review will scrutinize the GCX's contribution to known vascular etiologies of AD and propose future work aimed at continuing to uncover the relationship between GCX dysfunction and eventual AD-associated neurological deterioration.

8.
Pflugers Arch ; 465(9): 1293-302, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23568367

ABSTRACT

Endothelial cell (EC) dysfunction and atherosclerotic plaque formation coincide with human circulatory regions where blood flow is altered (disturbed). In areas of undisturbed uniform blood flow, including the majority of the vasculature, the vessel wall is relatively atherosclerotic lesion-resistant with normal endothelium. The molecular mechanisms of blood flow regulation of EC function and atherogenesis are unclear. We hypothesize that EC dysfunction potentiating atherosclerosis is related to disturbed flow (DF)-induced EC gap junctional intercellular communication (GJIC) changes via the gap junction connexin (Cx) 37, 40, and 43 proteins, which are involved in EC proliferation and vasoactivity that are known to be altered in atherosclerosis. We investigated human EC GJIC using an in vitro model of the hemodynamic features found in atherosclerotic-prone DF regions in vivo. Using dye transfer assays, Cx-specific mimetic peptide inhibitors, proliferation assays, and immunocytochemistry, we correlated functional GJIC via gap junction channels formed by hemichannels composed of the two most abundant endothelial Cx-Cx40 and Cx43-to EC proliferation and expression of vasoactive endothelial-type nitric oxide synthase (eNOS). We found that, in uniform flow conditions, substantial GJIC was conducted through gap junctions containing Cx40 hemichannels and correlated to a nonproliferative EC phenotype and membrane localization of eNOS, similar to physiological conditions. In DF, GJIC was largely attained through Cx43 hemichannel-containing gap junctions, EC phenotype was proliferative (attributed to loss of contact inhibition), and intracellular eNOS was more abundant than membrane eNOS, typical of atherosclerotic sites in vivo. This is the first in vitro study to demonstrate local hemodynamically defined Cx protein specificity in human EC GJIC with a potential role in endothelial dysfunction characteristic of early atherosclerosis.


Subject(s)
Cell Communication , Connexins/metabolism , Endothelial Cells/metabolism , Gap Junctions/metabolism , Cell Line , Cell Membrane/metabolism , Cell Proliferation , Endothelial Cells/physiology , Endothelium, Vascular/cytology , Humans , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Stress, Mechanical
9.
Am J Physiol Heart Circ Physiol ; 305(6): H811-20, 2013 Sep 15.
Article in English | MEDLINE | ID: mdl-23851278

ABSTRACT

The endothelial glycocalyx plays important roles in mechanotransduction. We recently investigated the distribution and interaction of glycocalyx components on statically cultured endothelial cells. In the present study, we further explored the unknown organization of the glycocalyx during early exposure (first 30 min) to shear stress and tested the hypothesis that proteoglycans with glycosaminoglycans, which are localized in different lipid microdomains, respond distinctly to shear stress. During the initial 30 min of exposure to shear stress, the very early responses of the glycocalyx and membrane rafts were detected using confocal microscopy. We observed that heparan sulfate (HS) and glypican-1 clustered in the cell junctions. In contrast, chondroitin sulfate (CS), bound albumin, and syndecan-1 did not move. The caveolae marker caveolin-1 did not move, indicating that caveolae are anchored sufficiently to resist shear stress during the 30 min of exposure. Shear stress induced significant changes in the distribution of ganglioside GM1 (a marker for membrane rafts labeled with cholera toxin B subunit). These data suggest that fluid shear stress induced the cell junctional clustering of lipid rafts with their anchored glypican-1 and associated HS. In contrast, the mobility of CS, transmembrane bound syndecan-1, and caveolae were constrained during exposure to shear stress. This study illuminates the role of changes in glycocalyx organization that underlie mechanisms of mechanotransduction.


Subject(s)
Endothelial Cells/physiology , Glypicans/metabolism , Heparitin Sulfate/metabolism , Mechanotransduction, Cellular/physiology , Membrane Fluidity/physiology , Membrane Microdomains/physiology , Shear Strength/physiology , Animals , Cells, Cultured , Rats , Stress, Mechanical , Tissue Distribution
10.
Front Bioeng Biotechnol ; 11: 1250348, 2023.
Article in English | MEDLINE | ID: mdl-38026846

ABSTRACT

Glycocalyx (GCX) is a carbohydrate-rich structure that coats the surface of endothelial cells (ECs) and lines the blood vessel lumen. Mechanical perturbations in the vascular environment, such as blood vessel stiffness, can be transduced and sent to ECs through mechanosensors such as GCX. Adverse stiffness alters GCX-mediated mechanotransduction and leads to EC dysfunction and eventually atherosclerotic cardiovascular diseases. To understand GCX-regulated mechanotransduction events, an in vitro model emulating in vivo vessel conditions is needed. To this end, we investigated the impact of matrix chemical and mechanical properties on GCX expression via fabricating a tunable non-swelling matrix based on the collagen-derived polypeptide, gelatin. To study the effect of matrix composition, we conducted a comparative analysis of GCX expression using different concentrations (60-25,000 µg/mL) of gelatin and gelatin methacrylate (GelMA) in comparison to fibronectin (60 µg/mL), a standard coating material for GCX-related studies. Using immunocytochemistry analysis, we showed for the first time that different substrate compositions and concentrations altered the overall GCX expression on human umbilical vein ECs (HUVECs). Subsequently, GelMA hydrogels were fabricated with stiffnesses of 2.5 and 5 kPa, representing healthy vessel tissues, and 10 kPa, corresponding to diseased vessel tissues. Immunocytochemistry analysis showed that on hydrogels with different levels of stiffness, the GCX expression in HUVECs remained unchanged, while its major polysaccharide components exhibited dysregulation in distinct patterns. For example, there was a significant decrease in heparan sulfate expression on pathological substrates (10 kPa), while sialic acid expression increased with increased matrix stiffness. This study suggests the specific mechanisms through which GCX may influence ECs in modulating barrier function, immune cell adhesion, and mechanotransduction function under distinct chemical and mechanical conditions of both healthy and diseased substrates.

11.
Arterioscler Thromb Vasc Biol ; 31(8): 1908-15, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21474821

ABSTRACT

OBJECTIVE: Recent publications questioned the validity of endothelial cell (EC) culture studies of glycocalyx (GCX) function because of findings that GCX in vitro may be substantially thinner than GCX in vivo. The assessment of thickness differences is complicated by GCX collapse during dehydration for traditional electron microscopy. We measured in vitro GCX thickness using rapid freezing/freeze substitution (RF/FS) transmission electron microscopy (TEM), taking advantage of the high spatial resolution provided by TEM and the capability to stably preserve the GCX in its hydrated configuration by RF/FS. METHODS AND RESULTS: Bovine aortic EC (BAEC) and rat fat pad EC were subjected to conventional or RF/FS-TEM. Conventionally preserved BAEC GCX was ≈0.040 µm in thickness. RF/FS-TEM revealed impressively thick BAEC GCX of ≈11 µm and rat fat pad EC GCX of ≈5 µm. RF/FS-TEM also discerned GCX structure and thickness variations due to heparinase III enzyme treatment and extracellular protein removal, respectively. Immunoconfocal studies confirmed that the in vitro GCX is several micrometers thick and is composed of extensive and well-integrated heparan sulfate, hyaluronic acid, and protein layers. CONCLUSIONS: New observations by RF/FS-TEM reveal substantial GCX layers on cultured EC, supporting their continued use for fundamental studies of GCX and its function in the vasculature.


Subject(s)
Cryopreservation/methods , Endothelial Cells/ultrastructure , Glycocalyx/ultrastructure , Animals , Cattle , Cells, Cultured , Freeze Substitution/methods , Microscopy, Electron, Transmission , Rats
12.
Lab Chip ; 22(23): 4603-4620, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36326069

ABSTRACT

Blood-brain barrier (BBB) endothelial cell (EC) function depends on flow conditions and on supportive cells, like pericytes and astrocytes, which have been shown to be both beneficial and detrimental for brain EC function. Most studies investigating BBB EC function lack physiological relevance, using sub-physiological shear stress magnitudes and/or omitting pericytes and astrocytes. In this study, we developed a millifluidic device compatible with standard transwell inserts to investigate BBB function. In contrast to standard polydimethylsiloxane (PDMS) microfluidic devices, this model allows for easy, reproducible shear stress exposure without common limitations of PDMS devices such as inadequate nutrient diffusion and air bubble formation. In no-flow conditions, we first used the device to examine the impact of primary human pericytes and astrocytes on human brain microvascular EC (HBMEC) barrier integrity. Astrocytes, pericytes, and a 1-to-1 ratio of both cell types increased HBMEC barrier integrity via reduced 3 and 40 kDa fluorescent dextran permeability and increased claudin-5 expression. There were differing levels of low 3 kDa permeability in HBMEC-pericyte, HBMEC-astrocyte, and HBMEC-astrocyte-pericyte co-cultures, while levels of low 40 kDa permeability were consistent across co-cultures. The 3 kDa findings suggest that pericytes provide more barrier support to the BBB model compared to astrocytes, although both supportive cell types are permeability reducers. Incorporation of 24-hour 12 dynes per cm2 flow significantly reduced dextran permeability in HBMEC monolayers, but not in the tri-culture model. These results indicate that tri-culture may exert more pronounced impact on overall BBB permeability than flow exposure. In both cases, monolayer and tri-culture, flow exposure interestingly reduced HBMEC expression of both claudin-5 and occludin. ZO-1 expression, and localization at cell-cell junctions increased in the tri-culture but exhibited no apparent change in the HBMEC monolayer. Under flow conditions, we also observed HBMEC alignment in the tri-culture but not in HBMEC monolayers, indicating supportive cells and flow are both essential to observe brain EC alignment in vitro. Collectively, these results support the necessity of physiologically relevant, multicellular BBB models when investigating BBB EC function. Consideration of the roles of shear stress and supportive cells within the BBB is critical for elucidating the physiology of the neurovascular unit.


Subject(s)
Blood-Brain Barrier , Dextrans , Humans , Claudin-5/metabolism , Pericytes/metabolism , Astrocytes , Coculture Techniques , Cells, Cultured
13.
Cardiovasc Eng Technol ; 12(1): 72-90, 2021 02.
Article in English | MEDLINE | ID: mdl-33000443

ABSTRACT

PURPOSE: The endothelial glycocalyx (GCX) plays a critical role in the health of the vascular system. Degradation of the GCX has been implicated in the onset of diseases like atherosclerosis and cancer because it disrupts endothelial cell (EC) function that is meant to protect from atherosclerosis and cancer. Examples of such EC function include interendothelial cell communication via gap junctions and receptor-mediated interactions between endothelial and tumor cells. This review focuses on GCX-dependent regulation of these intercellular interactions in healthy and diseased states. The ultimate goal is to build new knowledge that can be applied to developing GCX regeneration strategies that can control intercellular interaction in order to combat the progression of diseases such as atherosclerosis and cancer. METHODS: In vitro and in vivo studies were conducted to determine the baseline expression of GCX in physiologically relevant conditions. Chemical and mechanical GCX degradation approaches were employed to degrade the GCX. The impact of intact versus degraded GCX on intercellular interactions was assessed using cytochemistry, histochemistry, a Lucifer yellow dye transfer assay, and confocal, intravital, and scanning electron microscopy techniques. RESULTS: Relevant to atherosclerosis, we found that GCX stability determines the expression and functionality of Cx43 in gap junction-mediated EC-to-EC communication. Relevant to cancer metastasis, we found that destabilizing the GCX through either disturbed flow-induced or enzyme induced GCX degradation results in increased E-selectin receptor-mediated EC-tumor cell interactions. CONCLUSION: Our findings lay a foundation for future endothelial GCX-targeted therapy, to control intercellular interactions and limit the progression of atherosclerosis and cancer.


Subject(s)
Atherosclerosis , Neoplasms , Cell Communication , Endothelial Cells , Gap Junctions , Glycocalyx , Humans
14.
Front Physiol ; 11: 605398, 2020.
Article in English | MEDLINE | ID: mdl-33424628

ABSTRACT

Ischemic stroke, a major cause of mortality in the United States, often contributes to disruption of the blood-brain barrier (BBB). The BBB along with its supportive cells, collectively referred to as the "neurovascular unit," is the brain's multicellular microvasculature that bi-directionally regulates the transport of blood, ions, oxygen, and cells from the circulation into the brain. It is thus vital for the maintenance of central nervous system homeostasis. BBB disruption, which is associated with the altered expression of tight junction proteins and BBB transporters, is believed to exacerbate brain injury caused by ischemic stroke and limits the therapeutic potential of current clinical therapies, such as recombinant tissue plasminogen activator. Accumulating evidence suggests that endothelial mechanobiology, the conversion of mechanical forces into biochemical signals, helps regulate function of the peripheral vasculature and may similarly maintain BBB integrity. For example, the endothelial glycocalyx (GCX), a glycoprotein-proteoglycan layer extending into the lumen of bloods vessel, is abundantly expressed on endothelial cells of the BBB and has been shown to regulate BBB permeability. In this review, we will focus on our understanding of the mechanisms underlying BBB damage after ischemic stroke, highlighting current and potential future novel pharmacological strategies for BBB protection and recovery. Finally, we will address the current knowledge of endothelial mechanotransduction in BBB maintenance, specifically focusing on a potential role of the endothelial GCX.

15.
Ann Biomed Eng ; 48(7): 1941-1954, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32072383

ABSTRACT

Therapies for atherosclerotic cardiovascular disease should target early disease stages and specific vascular sites where disease occurs. Endothelial glycocalyx (GCX) degradation compromises endothelial barrier function and increases vascular permeability. This initiates pro-atherosclerotic lipids and inflammatory cells to penetrate vessel walls, and at the same time this can be leveraged for targeted drug delivery. In prior cell culture studies, GCX degradation significantly increased endothelial cell uptake of nanoparticle vehicles that are designed for drug delivery, compared to the effects of intact GCX. The present study assessed if the cell culture findings translate to selective nanoparticle uptake in animal vessels. In mice, the left carotid artery (LCA) was partially ligated to disturb blood flow, which induces GCX degradation, endothelial dysfunction, and atherosclerosis. After ligation, the LCA vessel wall exhibited a loss of continuity of the GCX layer on the intima. 10-nm gold nanospheres (GNS) coated with polyethylene glycol (PEG) were delivered intravenously. GCX degradation in the ligated LCA correlated to increased GNS infiltration of the ligated LCA wall. This suggests that GCX dysfunction, which coincides with atherosclerosis, can indeed be targeted for enhanced drug delivery, offering a new approach in cardiovascular disease therapy.


Subject(s)
Atherosclerosis/drug therapy , Endothelium, Vascular/pathology , Glycocalyx/pathology , Metal Nanoparticles/administration & dosage , Animals , Carotid Arteries/pathology , Endothelium, Vascular/cytology , Gold , Human Umbilical Vein Endothelial Cells , Humans , Male , Mice , Mice, Inbred C57BL , Polyethylene Glycols
16.
AIChE J ; 65(8)2019 Aug.
Article in English | MEDLINE | ID: mdl-31367063

ABSTRACT

While it is known that cancer cell interactions with vascular endothelial cells (ECs) drive metastatic cancer cell extravasation from blood vessels into secondary tumor sites, the mechanisms of action are still poorly understood. Here, we tested the hypothesis that neuraminidase-induced degradation of EC surface glycocalyx (GCX), particularly the sialic acid (SA) residue components of the GCX, will substantially increase metastatic cancer cell attachment to ECs. To our knowledge, our study is the first to isolate the role of GCX SA residues in cancer cell attachment to the endothelium, which were found to be differentially affected by the presence of neuraminidase and to indeed regulate metastatic cancer cell homing to ECs. We hope that this work will eventually translate to identification of EC GCX-based cancer markers that can be therapeutically targeted to hinder the progression of metastasis.

17.
Biorheology ; 56(2-3): 131-149, 2019.
Article in English | MEDLINE | ID: mdl-30988234

ABSTRACT

BACKGROUND: The onset of many disease processes depends on the function of the endothelial cell (EC) glycocalyx (GCX) which acts as a flow-dependent barrier to cellular infiltration and molecular transport across the blood vessel wall. OBJECTIVE: This review aims to examine these processes with the potential end goal of implementing GCX repair to restore EC barrier function and slow the progression of disease. METHODS: Cell and mouse studies were employed to examine the state of EC GCX in healthy versus disruptive flow conditions. Correlations of observations of the GCX with a number of EC functions were sought with an emphasis on studies of trans-endothelial barrier integrity against vessel wall infiltration of cells and molecules from the circulation. To demonstrate the importance of GCX as a regulator of trans-endothelial infiltration, assays were performed using ECs with an intact GCX and compared to assays of ECs with an experimentally degraded GCX. Studies were also conducted of ECs in which a degraded GCX was repaired. RESULTS: In healthy flow conditions, the EC GCX was found to be thick and substantially covered the endothelial surface. GCX expression dropped significantly in complex flow conditions and coincided with a disease-like cellular and molecular accumulation in the endothelium or within the blood vessel wall. Therapeutic repair of the GCX abolished this accumulation. CONCLUSIONS: Regenerating the degraded GCX reverses EC barrier dysfunction and may attenuate the progression of vascular disease.


Subject(s)
Endothelial Cells/metabolism , Glycocalyx/metabolism , Hemodynamics , Vascular Diseases/metabolism , Animals , Capillary Permeability/physiology , Endothelium, Vascular/metabolism , Hemodynamics/physiology , Humans , Mice , Vascular Diseases/therapy
18.
Int J Nanomedicine ; 14: 319-333, 2019.
Article in English | MEDLINE | ID: mdl-30697044

ABSTRACT

BACKGROUND: Clinical data show shed endothelial glycocalyx (GCX) components in blood samples of atherosclerotic patients, linking atherosclerotic development to endothelial GCX integrity. Healthy GCX has pores no >7 nm, and shed GCX has even larger pores. Therefore, we suggest targeting and treating atherosclerosis-prone blood vessels by using nanoscale vehicles to deliver drugs via the nanoscale GCX as it becomes dysfunctional. MATERIALS AND METHODS: To test our idea, we investigated permeability of nanoparticles in endothelium, as related to a GCX expression. The present work involves nanorods, which are expected to interact with larger portions of endothelial cell (EC) membranes, due to surface area of the nanorod long axis. Conventional nanorod diameters are orders of magnitude larger than the GCX pore size, so we adapted conventional synthesis methods to fabricate ultrasmall gold nanorods (GNRs). Our ultrasmall GNRs have an aspect ratio of 3.4, with a length of 27.9±3.1 nm and a diameter of 8.2±1.4 nm. In addition, we produced GNRs that are biocompatible and fluorescently visible, by coating the surface with functionalized polyethylene glycol and Alexa Fluor 647. To study GNR-GCX interactions, we used human ECs, for species relevance. RESULTS: Under life-like flow conditions, the human ECs are densely covered with a 1.3 µm thick layer of GCX, which coincides with minimal GNR permeability. When the GCX is weakened from lack of flow (static culture) or the presence of GCX degradation enzyme in the flow stream, the GCX shows 40% and 60% decreased thickness, respectively. GCX weakness due to lack of flow only slightly increases cellular permeability to GNRs, while GCX weakness due to the presence of enzyme in the flow leads to substantial increase in GNR permeability. CONCLUSION: These results clarify that the GCX structure is an avenue through which drug-carrying nanoparticles can be delivered for targeting affected blood vessels to treat atherosclerosis.


Subject(s)
Cell Membrane Permeability , Glycocalyx/metabolism , Gold/chemistry , Human Umbilical Vein Endothelial Cells/metabolism , Nanotubes/chemistry , Particle Size , Atherosclerosis/metabolism , Humans , Models, Biological , Nanospheres/chemistry , Polyethylene Glycols/chemistry , Rheology , Time Factors
19.
J Vis Exp ; (131)2018 01 15.
Article in English | MEDLINE | ID: mdl-29364277

ABSTRACT

Gold nanoparticles (AuNPs) have been used extensively in medical research due to their size, biocompatibility, and modifiable surface. Specific targeting and drug delivery are some of the applications of these AuNPs, but endothelial extracellular matrices' defensive properties hamper particle uptake. To address this issue, we describe a synthesis method for ultrasmall gold nanoparticles to improve vascular delivery, with customizable functional groups and polymer lengths for further adjustments. The protocol yields 2.5 nm AuNPs that are capped with tetrakis(hydroxymethyl)phosphonium chloride (THPC). The replacement of THPC with hetero-functional polyethylene glycol (PEG) on the surface of the AuNP increases the hydrodynamic radius to 10.5 nm while providing various functional groups on the surface. The last part of the protocol includes an optional addition of a fluorophore to allow the AuNPs to be visualized under fluorescence to track nanoparticle uptake. Dialysis and lyophilization were used to purify and isolate the AuNPs. These fluorescent nanoparticles can be visualized in both in vitro and in vivo experiments due to the biocompatible PEG coating and fluorescent probes. Additionally, the size range of these nanoparticles render them an ideal candidate for probing the glycocalyx without disrupting normal vasculature function, which may lead to improved delivery and therapeutics.


Subject(s)
Drug Delivery Systems/methods , Endothelium/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Polymers/chemistry , Animals , Metal Nanoparticles/analysis , Particle Size , Rats
20.
Article in English | MEDLINE | ID: mdl-30957020

ABSTRACT

BACKGROUND AND AIMS: Endothelial surface glycocalyx shedding plays a role in endothelial dysfunction and increases vessel wall permeability, which can lead to inflammation and atherogenesis. We sought to elucidate whether a high fat diet (HFD) or disturbed blood flow conditions, both of which are atherogenic risk factors, would contribute more detrimentally to pre-atherosclerotic loss of endothelial glycocalyx integrity and vascular inflammation. METHODS: Six to seven week-old C57BL/6-background apolipoprotein-E-knockout (ApoE-KO) male mice were either fed a chow diet, fed a modified Western HFD, and/or subjected to a partial left carotid artery (LCA) ligation procedure to induce disturbed blood flow patterns in the LCA. Mice were sacrificed after 1 week of experimental conditions. Both LCA and right carotid artery (RCA) vessels were dissected and preserved to compare glycocalyx coverage and thickness as well as macrophage accumulation in carotid arterial walls amongst and between cohorts. RESULTS: Glycocalyx coverage of the endothelium was significantly reduced in the LCAs of HFD fed mice when compared to the control. More significant reduction in glycocalyx coverage occurred in the LCAs of mice exposed to disturbed flow by partial LCA ligation when compared to the control. No differences were found in glycocalyx coverage of RCAs from all cohorts. Regarding inflammation, no difference in macrophage accumulation in carotid arterial walls was observed when comparing the LCAs and RCAs of control and HFD fed mice. However, macrophage infiltration in vessel walls showed a 20-fold increase in the LCAs exposed to disturbed flow following ligation, when compared to control LCAs, while no such statistical difference was observed between the RCAs of the group. CONCLUSIONS: In our mouse model, endothelial glycocalyx integrity was compromised more by disturbed blood flow patterns than by exposure of the carotid vessel to HFD conditions. The pathophysiological implications include endothelial dysfunction, which correlates to macrophage infiltration in vessel walls and promotes atherogenesis.

SELECTION OF CITATIONS
SEARCH DETAIL