Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Nat Immunol ; 19(10): 1093-1099, 2018 10.
Article in English | MEDLINE | ID: mdl-30201992

ABSTRACT

Group 2 innate lymphoid cells (ILC2s) are distributed systemically and produce type 2 cytokines in response to a variety of stimuli, including the epithelial cytokines interleukin (IL)-25, IL-33, and thymic stromal lymphopoietin (TSLP). Transcriptional profiling of ILC2s from different tissues, however, grouped ILC2s according to their tissue of origin, even in the setting of combined IL-25-, IL-33-receptor-, and TSLP-receptor-deficiency. Single-cell profiling confirmed a tissue-organizing transcriptome and identified ILC2 subsets expressing distinct activating receptors, including the major subset of skin ILC2s, which were activated preferentially by IL-18. Tissue ILC2 subsets were unaltered in number and expression in germ-free mice, suggesting that endogenous, tissue-derived signals drive the maturation of ILC2 subsets by controlling expression of distinct patterns of activating receptors, thus anticipating tissue-specific perturbations occurring later in life.


Subject(s)
Immunity, Innate/immunology , Lymphocyte Subsets/immunology , Lymphocytes/immunology , Animals , Mice , Mice, Inbred C57BL , Mice, Knockout
2.
Hum Mol Genet ; 29(22): 3606-3615, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33179741

ABSTRACT

Adolescent idiopathic scoliosis (AIS), a sideways curvature of the spine, is the most common pediatric musculoskeletal disorder, affecting ~3% of the population worldwide. However, its genetic bases and tissues of origin remain largely unknown. Several genome-wide association studies (GWAS) have implicated nucleotide variants in non-coding sequences that control genes with important roles in cartilage, muscle, bone, connective tissue and intervertebral disks (IVDs) as drivers of AIS susceptibility. Here, we set out to define the expression of AIS-associated genes and active regulatory elements by performing RNA-seq and chromatin immunoprecipitation-sequencing against H3 lysine 27 acetylation in these tissues in mouse and human. Our study highlights genetic pathways involving AIS-associated loci that regulate chondrogenesis, IVD development and connective tissue maintenance and homeostasis. In addition, we identify thousands of putative AIS-associated regulatory elements which may orchestrate tissue-specific expression in musculoskeletal tissues of the spine. Quantification of enhancer activity of several candidate regulatory elements from our study identifies three functional enhancers carrying AIS-associated GWAS SNPs at the ADGRG6 and BNC2 loci. Our findings provide a novel genome-wide catalog of AIS-relevant genes and regulatory elements and aid in the identification of novel targets for AIS causality and treatment.


Subject(s)
DNA-Binding Proteins/genetics , Genetic Predisposition to Disease , Histones/genetics , Receptors, G-Protein-Coupled/genetics , Scoliosis/genetics , Acetylation , Adolescent , Child , Female , Genome-Wide Association Study , Genomics/trends , Humans , Lysine/genetics , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , RNA-Seq , Scoliosis/epidemiology , Scoliosis/pathology , Spine/metabolism , Spine/pathology , Transcriptome/genetics
3.
PLoS Genet ; 16(8): e1008927, 2020 08.
Article in English | MEDLINE | ID: mdl-32797036

ABSTRACT

The genetic control of gene expression is a core component of human physiology. For the past several years, transcriptome-wide association studies have leveraged large datasets of linked genotype and RNA sequencing information to create a powerful gene-based test of association that has been used in dozens of studies. While numerous discoveries have been made, the populations in the training data are overwhelmingly of European descent, and little is known about the generalizability of these models to other populations. Here, we test for cross-population generalizability of gene expression prediction models using a dataset of African American individuals with RNA-Seq data in whole blood. We find that the default models trained in large datasets such as GTEx and DGN fare poorly in African Americans, with a notable reduction in prediction accuracy when compared to European Americans. We replicate these limitations in cross-population generalizability using the five populations in the GEUVADIS dataset. Via realistic simulations of both populations and gene expression, we show that accurate cross-population generalizability of transcriptome prediction only arises when eQTL architecture is substantially shared across populations. In contrast, models with non-identical eQTLs showed patterns similar to real-world data. Therefore, generating RNA-Seq data in diverse populations is a critical step towards multi-ethnic utility of gene expression prediction.


Subject(s)
Black or African American/genetics , Genome-Wide Association Study/methods , Models, Genetic , Transcriptome , Gene Expression Profiling/methods , Gene Expression Profiling/standards , Genome-Wide Association Study/standards , Humans , Quantitative Trait Loci , RNA-Seq/methods , RNA-Seq/standards , Reference Standards
4.
Am J Respir Cell Mol Biol ; 66(4): 391-401, 2022 04.
Article in English | MEDLINE | ID: mdl-34982656

ABSTRACT

Asthma is associated with chronic changes in the airway epithelium, a key target of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Many epithelial changes, including goblet cell metaplasia, are driven by the type 2 cytokine IL-13, but the effects of IL-13 on SARS-CoV-2 infection are unknown. We found that IL-13 stimulation of differentiated human bronchial epithelial cells (HBECs) cultured at air-liquid interface reduced viral RNA recovered from SARS-CoV-2-infected cells and decreased double-stranded RNA, a marker of viral replication, to below the limit of detection in our assay. An intact mucus gel reduced SARS-CoV-2 infection of unstimulated cells, but neither a mucus gel nor SPDEF, which is required for goblet cell metaplasia, were required for the antiviral effects of IL-13. Bulk RNA sequencing revealed that IL-13 regulated 41 of 332 (12%) mRNAs encoding SARS-CoV-2-associated proteins that were detected in HBECs (>1.5-fold change; false discovery rate < 0.05). Although both IL-13 and IFN-α each inhibit SARS-CoV-2 infection, their transcriptional effects differed markedly. Single-cell RNA sequencing revealed cell type-specific differences in SARS-CoV-2-associated gene expression and IL-13 responses. Many IL-13-induced gene expression changes were seen in airway epithelium from individuals with type 2 asthma and chronic obstructive pulmonary disease. IL-13 effects on airway epithelial cells may protect individuals with type 2 asthma from COVID-19 and could lead to identification of novel strategies for reducing SARS-CoV-2 infection.


Subject(s)
Asthma , COVID-19 , Cells, Cultured , Epithelial Cells , Epithelium , Humans , Interleukin-13/pharmacology , SARS-CoV-2
5.
Am J Respir Cell Mol Biol ; 64(3): 308-317, 2021 03.
Article in English | MEDLINE | ID: mdl-33196316

ABSTRACT

The human airway epithelium is essential in homeostasis, and epithelial dysfunction contributes to chronic airway disease. Development of flow-cytometric methods to characterize subsets of airway epithelial cells will enable further dissection of airway epithelial biology. Leveraging single-cell RNA-sequencing data in combination with known cell type-specific markers, we developed panels of antibodies to characterize and isolate the major airway epithelial subsets (basal, ciliated, and secretory cells) from human bronchial epithelial-cell cultures. We also identified molecularly distinct subpopulations of secretory cells and demonstrated cell subset-specific expression of low-abundance transcripts and microRNAs that are challenging to analyze with current single-cell RNA-sequencing methods. These new tools will be valuable for analyzing and separating airway epithelial subsets and interrogating airway epithelial biology.


Subject(s)
Cell Separation/methods , Epithelial Cells/cytology , Flow Cytometry/methods , Respiratory System/cytology , Antibodies/metabolism , Biomarkers/metabolism , Humans
6.
Mol Biol Evol ; 36(12): 2805-2812, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31424545

ABSTRACT

Mastomys are the most widespread African rodent and carriers of various diseases such as the plague or Lassa virus. In addition, mastomys have rapidly gained a large number of mammary glands. Here, we generated a genome, variome, and transcriptomes for Mastomys coucha. As mastomys diverged at similar times from mouse and rat, we demonstrate their utility as a comparative genomic tool for these commonly used animal models. Furthermore, we identified over 500 mastomys accelerated regions, often residing near important mammary developmental genes or within their exons leading to protein sequence changes. Functional characterization of a noncoding mastomys accelerated region, located in the HoxD locus, showed enhancer activity in mouse developing mammary glands. Combined, our results provide genomic resources for mastomys and highlight their potential both as a comparative genomic tool and for the identification of mammary gland number determining factors.


Subject(s)
Genome , Murinae/genetics , Animals , Male , Mice , Murinae/metabolism , Phylogeography , Rats , Transcriptome
7.
J Allergy Clin Immunol ; 143(5): 1791-1802, 2019 05.
Article in English | MEDLINE | ID: mdl-30367910

ABSTRACT

BACKGROUND: Although inhaled corticosteroid (ICS) medication is considered the cornerstone treatment for patients with persistent asthma, few ICS pharmacogenomic studies have involved nonwhite populations. OBJECTIVE: We sought to identify genetic predictors of ICS response in multiple population groups with asthma. METHODS: The discovery group comprised African American participants from the Study of Asthma Phenotypes and Pharmacogenomic Interactions by Race-Ethnicity (SAPPHIRE) who underwent 6 weeks of monitored ICS therapy (n = 244). A genome-wide scan was performed to identify single nucleotide polymorphism (SNP) variants jointly associated (ie, the combined effect of the SNP and SNP × ICS treatment interaction) with changes in asthma control. Top associations were validated by assessing the joint association with asthma exacerbations in 3 additional groups: African Americans (n = 803 and n = 563) and Latinos (n = 1461). RNA sequencing data from 408 asthmatic patients and 405 control subjects were used to examine whether genotype was associated with gene expression. RESULTS: One variant, rs3827907, was significantly associated with ICS-mediated changes in asthma control in the discovery set (P = 7.79 × 10-8) and was jointly associated with asthma exacerbations in 3 validation cohorts (P = .023, P = .029, and P = .041). RNA sequencing analysis found the rs3827907 C-allele to be associated with lower RNASE2 expression (P = 6.10 × 10-4). RNASE2 encodes eosinophil-derived neurotoxin, and the rs3827907 C-allele appeared to particularly influence ICS treatment response in the presence of eosinophilic inflammation (ie, high pretreatment eosinophil-derived neurotoxin levels or blood eosinophil counts). CONCLUSION: We identified a variant, rs3827907, that appears to influence response to ICS treatment in multiple population groups and likely mediates its effect through eosinophils.


Subject(s)
Adrenal Cortex Hormones/therapeutic use , Asthma/drug therapy , Black or African American , Eosinophil-Derived Neurotoxin/genetics , Eosinophils/immunology , Genotype , Hispanic or Latino , Adolescent , Adult , Asthma/epidemiology , Asthma/genetics , Child , Cohort Studies , Disease Progression , Genome-Wide Association Study , Humans , Leukocyte Count , Male , Metered Dose Inhalers , Middle Aged , Pharmacogenomic Variants , Phenotype , Polymorphism, Single Nucleotide , Treatment Outcome , United States/epidemiology , Young Adult
8.
Am J Respir Crit Care Med ; 197(12): 1552-1564, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29509491

ABSTRACT

RATIONALE: Albuterol, a bronchodilator medication, is the first-line therapy for asthma worldwide. There are significant racial/ethnic differences in albuterol drug response. OBJECTIVES: To identify genetic variants important for bronchodilator drug response (BDR) in racially diverse children. METHODS: We performed the first whole-genome sequencing pharmacogenetics study from 1,441 children with asthma from the tails of the BDR distribution to identify genetic association with BDR. MEASUREMENTS AND MAIN RESULTS: We identified population-specific and shared genetic variants associated with BDR, including genome-wide significant (P < 3.53 × 10-7) and suggestive (P < 7.06 × 10-6) loci near genes previously associated with lung capacity (DNAH5), immunity (NFKB1 and PLCB1), and ß-adrenergic signaling (ADAMTS3 and COX18). Functional analyses of the BDR-associated SNP in NFKB1 revealed potential regulatory function in bronchial smooth muscle cells. The SNP is also an expression quantitative trait locus for a neighboring gene, SLC39A8. The lack of other asthma study populations with BDR and whole-genome sequencing data on minority children makes it impossible to perform replication of our rare variant associations. Minority underrepresentation also poses significant challenges to identify age-matched and population-matched cohorts of sufficient sample size for replication of our common variant findings. CONCLUSIONS: The lack of minority data, despite a collaboration of eight universities and 13 individual laboratories, highlights the urgent need for a dedicated national effort to prioritize diversity in research. Our study expands the understanding of pharmacogenetic analyses in racially/ethnically diverse populations and advances the foundation for precision medicine in at-risk and understudied minority populations.


Subject(s)
Albuterol/therapeutic use , Asthma/drug therapy , Bronchodilator Agents/therapeutic use , Genome-Wide Association Study , Mexican Americans/genetics , Pharmacogenomic Variants/genetics , Race Factors , Adolescent , Black or African American/genetics , Child , Female , Hispanic or Latino/genetics , Humans , Male , Polymorphism, Single Nucleotide , United States
9.
PLoS Genet ; 12(3): e1005738, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27019019

ABSTRACT

The molecular events leading to the development of the bat wing remain largely unknown, and are thought to be caused, in part, by changes in gene expression during limb development. These expression changes could be instigated by variations in gene regulatory enhancers. Here, we used a comparative genomics approach to identify regions that evolved rapidly in the bat ancestor, but are highly conserved in other vertebrates. We discovered 166 bat accelerated regions (BARs) that overlap H3K27ac and p300 ChIP-seq peaks in developing mouse limbs. Using a mouse enhancer assay, we show that five Myotis lucifugus BARs drive gene expression in the developing mouse limb, with the majority showing differential enhancer activity compared to the mouse orthologous BAR sequences. These include BAR116, which is located telomeric to the HoxD cluster and had robust forelimb expression for the M. lucifugus sequence and no activity for the mouse sequence at embryonic day 12.5. Developing limb expression analysis of Hoxd10-Hoxd13 in Miniopterus natalensis bats showed a high-forelimb weak-hindlimb expression for Hoxd10-Hoxd11, similar to the expression trend observed for M. lucifugus BAR116 in mice, suggesting that it could be involved in the regulation of the bat HoxD complex. Combined, our results highlight novel regulatory regions that could be instrumental for the morphological differences leading to the development of the bat wing.


Subject(s)
Chiroptera/genetics , Forelimb/metabolism , Homeodomain Proteins/genetics , Organogenesis/genetics , Vertebrates/genetics , Animals , Chiroptera/growth & development , Embryo, Mammalian , Forelimb/growth & development , Gene Expression Regulation, Developmental , Genomics , Homeodomain Proteins/biosynthesis , Mice , Sequence Alignment , Sequence Analysis , Transcription Factors/biosynthesis , Transcription Factors/genetics , Vertebrates/growth & development , Wings, Animal/growth & development , Wings, Animal/metabolism
10.
PLoS Genet ; 12(11): e1006449, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27902686

ABSTRACT

Metformin is used as a first-line therapy for type 2 diabetes (T2D) and prescribed for numerous other diseases. However, its mechanism of action in the liver has yet to be characterized in a systematic manner. To comprehensively identify genes and regulatory elements associated with metformin treatment, we carried out RNA-seq and ChIP-seq (H3K27ac, H3K27me3) on primary human hepatocytes from the same donor treated with vehicle control, metformin or metformin and compound C, an AMP-activated protein kinase (AMPK) inhibitor (allowing to identify AMPK-independent pathways). We identified thousands of metformin responsive AMPK-dependent and AMPK-independent differentially expressed genes and regulatory elements. We functionally validated several elements for metformin-induced promoter and enhancer activity. These include an enhancer in an ataxia telangiectasia mutated (ATM) intron that has SNPs in linkage disequilibrium with a metformin treatment response GWAS lead SNP (rs11212617) that showed increased enhancer activity for the associated haplotype. Expression quantitative trait locus (eQTL) liver analysis and CRISPR activation suggest that this enhancer could be regulating ATM, which has a known role in AMPK activation, and potentially also EXPH5 and DDX10, its neighboring genes. Using ChIP-seq and siRNA knockdown, we further show that activating transcription factor 3 (ATF3), our top metformin upregulated AMPK-dependent gene, could have an important role in gluconeogenesis repression. Our findings provide a genome-wide representation of metformin hepatic response, highlight important sequences that could be associated with interindividual variability in glycemic response to metformin and identify novel T2D treatment candidates.


Subject(s)
AMP-Activated Protein Kinases/biosynthesis , Activating Transcription Factor 3/genetics , Ataxia Telangiectasia Mutated Proteins/biosynthesis , Diabetes Mellitus, Type 2/drug therapy , Liver/metabolism , AMP-Activated Protein Kinases/genetics , Adaptor Proteins, Signal Transducing/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , DEAD-box RNA Helicases/genetics , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Enhancer Elements, Genetic , Gene Knockdown Techniques , Gluconeogenesis/genetics , Haplotypes , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Linkage Disequilibrium , Liver/drug effects , Metformin/adverse effects , Metformin/therapeutic use , Polymorphism, Single Nucleotide
11.
PLoS Genet ; 10(10): e1004648, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25275310

ABSTRACT

Inter-individual variation in gene regulatory elements is hypothesized to play a causative role in adverse drug reactions and reduced drug activity. However, relatively little is known about the location and function of drug-dependent elements. To uncover drug-associated elements in a genome-wide manner, we performed RNA-seq and ChIP-seq using antibodies against the pregnane X receptor (PXR) and three active regulatory marks (p300, H3K4me1, H3K27ac) on primary human hepatocytes treated with rifampin or vehicle control. Rifampin and PXR were chosen since they are part of the CYP3A4 pathway, which is known to account for the metabolism of more than 50% of all prescribed drugs. We selected 227 proximal promoters for genes with rifampin-dependent expression or nearby PXR/p300 occupancy sites and assayed their ability to induce luciferase in rifampin-treated HepG2 cells, finding only 10 (4.4%) that exhibited drug-dependent activity. As this result suggested a role for distal enhancer modules, we searched more broadly to identify 1,297 genomic regions bearing a conditional PXR occupancy as well as all three active regulatory marks. These regions are enriched near genes that function in the metabolism of xenobiotics, specifically members of the cytochrome P450 family. We performed enhancer assays in rifampin-treated HepG2 cells for 42 of these sequences as well as 7 sequences that overlap linkage-disequilibrium blocks defined by lead SNPs from pharmacogenomic GWAS studies, revealing 15/42 and 4/7 to be functional enhancers, respectively. A common African haplotype in one of these enhancers in the GSTA locus was found to exhibit potential rifampin hypersensitivity. Combined, our results further suggest that enhancers are the predominant targets of rifampin-induced PXR activation, provide a genome-wide catalog of PXR targets and serve as a model for the identification of drug-responsive regulatory elements.


Subject(s)
Gene Expression Regulation/drug effects , Liver/drug effects , Liver/physiology , Receptors, Steroid/genetics , Regulatory Sequences, Nucleic Acid , Cells, Cultured , Cytochrome P-450 CYP3A/genetics , Genome, Human , Hep G2 Cells/drug effects , Hepatocytes/drug effects , Hepatocytes/physiology , Histones/metabolism , Humans , Polymorphism, Single Nucleotide , Pregnane X Receptor , Promoter Regions, Genetic , Receptors, Steroid/metabolism , Reproducibility of Results , Rifampin/pharmacology , p300-CBP Transcription Factors/metabolism
12.
BMC Genomics ; 17: 339, 2016 05 05.
Article in English | MEDLINE | ID: mdl-27150582

ABSTRACT

BACKGROUND: Lizards are evolutionarily the most closely related vertebrates to humans that can lose and regrow an entire appendage. Regeneration in lizards involves differential expression of hundreds of genes that regulate wound healing, musculoskeletal development, hormonal response, and embryonic morphogenesis. While microRNAs are able to regulate large groups of genes, their role in lizard regeneration has not been investigated. RESULTS: MicroRNA sequencing of green anole lizard (Anolis carolinensis) regenerating tail and associated tissues revealed 350 putative novel and 196 known microRNA precursors. Eleven microRNAs were differentially expressed between the regenerating tail tip and base during maximum outgrowth (25 days post autotomy), including miR-133a, miR-133b, and miR-206, which have been reported to regulate regeneration and stem cell proliferation in other model systems. Three putative novel differentially expressed microRNAs were identified in the regenerating tail tip. CONCLUSIONS: Differentially expressed microRNAs were identified in the regenerating lizard tail, including known regulators of stem cell proliferation. The identification of 3 putative novel microRNAs suggests that regulatory networks, either conserved in vertebrates and previously uncharacterized or specific to lizards, are involved in regeneration. These findings suggest that differential regulation of microRNAs may play a role in coordinating the timing and expression of hundreds of genes involved in regeneration.


Subject(s)
Gene Expression Regulation , Lizards/physiology , MicroRNAs/genetics , Regeneration/genetics , Tail/physiology , Animals , Computational Biology/methods , Gene Expression Profiling , Gene Ontology , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Organ Specificity/genetics , RNA Interference , RNA, Messenger/genetics
13.
bioRxiv ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38895236

ABSTRACT

Type 2 diabetes mellitus (T2DM) is associated with poor outcome after stroke. Peripheral monocytes play a critical role in the secondary injury and recovery of damaged brain tissue after stroke, but the underlying mechanisms are largely unclear. To investigate transcriptome changes and molecular networks across monocyte subsets in response to T2DM and stroke, we performed single-cell RNA-sequencing (scRNAseq) from peripheral blood mononuclear cells and bulk RNA-sequencing from blood monocytes from four groups of adult mice, consisting of T2DM model db/db and normoglycemic control db/+ mice with or without ischemic stroke. Via scRNAseq we found that T2DM expands the monocyte population at the expense of lymphocytes, which was validated by flow cytometry. Among the monocytes, T2DM also disproportionally increased the inflammatory subsets with Ly6C+ and negative MHC class II expression (MO.6C+II-). Conversely, monocytes from control mice without stroke are enriched with steady-state classical monocyte subset of MO.6C+II+ but with the least percentage of MO.6C+II- subtype. Apart from enhancing inflammation and coagulation, enrichment analysis from both scRNAseq and bulk RNAseq revealed that T2DM specifically suppressed type-1 and type-2 interferon signaling pathways crucial for antigen presentation and the induction of ischemia tolerance. Preconditioning by lipopolysaccharide conferred neuroprotection against ischemic brain injury in db/+ but not in db/db mice and coincided with a lesser induction of brain Interferon-regulatory-factor-3 in the brains of the latter mice. Our results suggest that the increased diversity and altered transcriptome in the monocytes of T2DM mice underlie the worse stroke outcome by exacerbating secondary injury and potentiating stroke-induced immunosuppression. Significance Statement: The mechanisms involved in the detrimental diabetic effect on stroke are largely unclear. We show here, for the first time, that peripheral monocytes have disproportionally altered the subsets and changed transcriptome under diabetes and/or stroke conditions. Moreover, genes in the IFN-related signaling pathways are suppressed in the diabetic monocytes, which underscores the immunosuppression and impaired ischemic tolerance under the T2DM condition. Our data raise a possibility that malfunctioned monocytes may systemically and focally affect the host, leading to the poor outcome of diabetes in the setting of stroke. The results yield important clues to molecular mechanisms involved in the detrimental diabetic effect on stroke outcome.

14.
bioRxiv ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38798460

ABSTRACT

T cells have emerged as sex-dependent orchestrators of pain chronification but the sexually dimorphic mechanisms by which T cells control pain sensitivity is not resolved. Here, we demonstrate an influence of regulatory T cells (Tregs) on pain processing that is distinct from their canonical functions of immune regulation and tissue repair. Specifically, meningeal Tregs (mTregs) express the endogenous opioid, enkephalin, and mTreg-derived enkephalin exerts an antinociceptive action through a presynaptic opioid receptor signaling mechanism that is dispensable for immunosuppression. mTregs are both necessary and sufficient for suppressing mechanical pain sensitivity in female but not male mice. Notably, the mTreg modulation of pain thresholds depends on sex-hormones and expansion of enkephalinergic mTregs during gestation imparts a remarkable pregnancy-induced analgesia in a pre-existing, chronic, unremitting neuropathic pain model. These results uncover a fundamental sex-specific, pregnancy-pronounced, and immunologically-derived endogenous opioid circuit for nociceptive regulation with critical implications for pain biology and maternal health.

15.
Nat Commun ; 15(1): 5483, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38942804

ABSTRACT

Dexamethasone is the standard of care for critically ill patients with COVID-19, but the mechanisms by which it decreases mortality and its immunological effects in this setting are not understood. Here we perform bulk and single-cell RNA sequencing of samples from the lower respiratory tract and blood, and assess plasma cytokine profiling to study the effects of dexamethasone on both systemic and pulmonary immune cell compartments. In blood samples, dexamethasone is associated with decreased expression of genes associated with T cell activation, including TNFSFR4 and IL21R. We also identify decreased expression of several immune pathways, including major histocompatibility complex-II signaling, selectin P ligand signaling, and T cell recruitment by intercellular adhesion molecule and integrin activation, suggesting these are potential mechanisms of the therapeutic benefit of steroids in COVID-19. We identify additional compartment- and cell- specific differences in the effect of dexamethasone that are reproducible in publicly available datasets, including steroid-resistant interferon pathway expression in the respiratory tract, which may be additional therapeutic targets. In summary, we demonstrate compartment-specific effects of dexamethasone in critically ill COVID-19 patients, providing mechanistic insights with potential therapeutic relevance. Our results highlight the importance of studying compartmentalized inflammation in critically ill patients.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Cytokines , Dexamethasone , Lung , SARS-CoV-2 , Dexamethasone/therapeutic use , Dexamethasone/pharmacology , Humans , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/drug effects , Lung/drug effects , Lung/virology , Cytokines/metabolism , Cytokines/blood , Critical Illness , Male , Single-Cell Analysis , Female , Middle Aged , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Aged , Lymphocyte Activation/drug effects
16.
bioRxiv ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39211079

ABSTRACT

Monocyte-derived macrophages recruited to injured tissues induce a maladaptive fibrotic response characterized by excessive production of collagen by local fibroblasts. Macrophages initiate this programming via paracrine factors, but it is unknown whether reciprocal responses from fibroblasts enhance profibrotic polarization of macrophages. We identify macrophage-fibroblast crosstalk necessary for injury-associated fibrosis, in which macrophages induced interleukin 6 ( IL-6 ) expression in fibroblasts via purinergic receptor P2rx4 signaling, and IL-6, in turn, induced arginase 1 ( Arg1 ) expression in macrophages. Arg1 contributed to fibrotic responses by metabolizing arginine to ornithine, which fibroblasts used as a substrate to synthesize proline, a uniquely abundant constituent of collagen. Imaging of idiopathic pulmonary fibrosis (IPF) lung samples confirmed expression of ARG1 in myeloid cells, and arginase inhibition suppressed collagen expression in cultured precision-cut IPF lung slices. Taken together, we define a circuit between macrophages and fibroblasts that facilitates cross-feeding metabolism necessary for injury-associated fibrosis.

17.
J Clin Invest ; 134(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38690733

ABSTRACT

BACKGROUNDPatients hospitalized for COVID-19 exhibit diverse clinical outcomes, with outcomes for some individuals diverging over time even though their initial disease severity appears similar to that of other patients. A systematic evaluation of molecular and cellular profiles over the full disease course can link immune programs and their coordination with progression heterogeneity.METHODSWe performed deep immunophenotyping and conducted longitudinal multiomics modeling, integrating 10 assays for 1,152 Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) study participants and identifying several immune cascades that were significant drivers of differential clinical outcomes.RESULTSIncreasing disease severity was driven by a temporal pattern that began with the early upregulation of immunosuppressive metabolites and then elevated levels of inflammatory cytokines, signatures of coagulation, formation of neutrophil extracellular traps, and T cell functional dysregulation. A second immune cascade, predictive of 28-day mortality among critically ill patients, was characterized by reduced total plasma Igs and B cells and dysregulated IFN responsiveness. We demonstrated that the balance disruption between IFN-stimulated genes and IFN inhibitors is a crucial biomarker of COVID-19 mortality, potentially contributing to failure of viral clearance in patients with fatal illness.CONCLUSIONOur longitudinal multiomics profiling study revealed temporal coordination across diverse omics that potentially explain the disease progression, providing insights that can inform the targeted development of therapies for patients hospitalized with COVID-19, especially those who are critically ill.TRIAL REGISTRATIONClinicalTrials.gov NCT04378777.FUNDINGNIH (5R01AI135803-03, 5U19AI118608-04, 5U19AI128910-04, 4U19AI090023-11, 4U19AI118610-06, R01AI145835-01A1S1, 5U19AI062629-17, 5U19AI057229-17, 5U19AI125357-05, 5U19AI128913-03, 3U19AI077439-13, 5U54AI142766-03, 5R01AI104870-07, 3U19AI089992-09, 3U19AI128913-03, and 5T32DA018926-18); NIAID, NIH (3U19AI1289130, U19AI128913-04S1, and R01AI122220); and National Science Foundation (DMS2310836).


Subject(s)
COVID-19 , Severity of Illness Index , Adult , Aged , Female , Humans , Male , Middle Aged , COVID-19/immunology , COVID-19/mortality , COVID-19/blood , Cytokines/blood , Cytokines/immunology , Longitudinal Studies , Multiomics
18.
Dev Biol ; 363(1): 308-19, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22178152

ABSTRACT

The axial skeleton is a defining feature of vertebrates and is patterned during somitogenesis. Cyclically expressed members of the notch and other signaling pathways, described as the 'segmentation clock', regulate the formation of somite boundaries. Comparisons among vertebrate model systems have revealed fundamental shifts in the regulation of expression among critical genes in the notch pathway. However, insights into the evolution of these expression differences have been limited by the lack of information from non-avian reptiles. We analyzed the segmentation clock of the first Lepidosaurian reptile sequenced, the green anole lizard, Anolis carolinensis, for comparison with avian and mammalian models. Using genomic sequence, RNA-Seq transcriptomic data, and in situ hybridization analysis of somite-stage embryos, we carried out comparative analyses of key genes and found that the anole segmentation clock displays features common to both amniote and anamniote vertebrates. Shared features with anamniotes, represented by Xenopus laevis and Danio rerio, include an absence of lunatic fringe (lfng) expression within the presomitic mesoderm (PSM), a hes6a gradient in the PSM not observed in the chicken or mouse, and EGF repeat structure of the divergent notch ligand, dll3. The anole and mouse share cycling expression of dll1 ligand in the PSM. To gain insight from an Archosaurian reptile, we analysed LFNG and DLL1 expressions in the American alligator. LFNG expression was absent in the alligator PSM, like the anole but unlike the chicken. In contrast, DLL1 expression does not cycle in the PSM of the alligator, similar to the chicken but unlike the anole. Thus, our analysis yields novel insights into features of the segmentation clock that are evolutionarily basal to amniotes versus those that are specific to mammals, Lepidosaurian reptiles, or Archosaurian reptiles.


Subject(s)
Alligators and Crocodiles/genetics , Genetic Variation , Lizards/genetics , Somites/metabolism , Alligators and Crocodiles/embryology , Amino Acid Sequence , Animals , Basic Helix-Loop-Helix Transcription Factors/classification , Basic Helix-Loop-Helix Transcription Factors/genetics , CLOCK Proteins/classification , CLOCK Proteins/genetics , Embryo, Nonmammalian/embryology , Embryo, Nonmammalian/metabolism , Evolution, Molecular , Female , Gene Expression Regulation, Developmental , In Situ Hybridization , Intracellular Signaling Peptides and Proteins/classification , Intracellular Signaling Peptides and Proteins/genetics , Lizards/embryology , Male , Mesoderm/embryology , Mesoderm/metabolism , Molecular Sequence Data , Phylogeny , Somites/embryology , Transcriptome/genetics
19.
BMC Genomics ; 14: 49, 2013 Jan 23.
Article in English | MEDLINE | ID: mdl-23343042

ABSTRACT

BACKGROUND: The green anole lizard, Anolis carolinensis, is a key species for both laboratory and field-based studies of evolutionary genetics, development, neurobiology, physiology, behavior, and ecology. As the first non-avian reptilian genome sequenced, A. carolinesis is also a prime reptilian model for comparison with other vertebrate genomes. The public databases of Ensembl and NCBI have provided a first generation gene annotation of the anole genome that relies primarily on sequence conservation with related species. A second generation annotation based on tissue-specific transcriptomes would provide a valuable resource for molecular studies. RESULTS: Here we provide an annotation of the A. carolinensis genome based on de novo assembly of deep transcriptomes of 14 adult and embryonic tissues. This revised annotation describes 59,373 transcripts, compared to 16,533 and 18,939 currently for Ensembl and NCBI, and 22,962 predicted protein-coding genes. A key improvement in this revised annotation is coverage of untranslated region (UTR) sequences, with 79% and 59% of transcripts containing 5' and 3' UTRs, respectively. Gaps in genome sequence from the current A. carolinensis build (Anocar2.0) are highlighted by our identification of 16,542 unmapped transcripts, representing 6,695 orthologues, with less than 70% genomic coverage. CONCLUSIONS: Incorporation of tissue-specific transcriptome sequence into the A. carolinensis genome annotation has markedly improved its utility for comparative and functional studies. Increased UTR coverage allows for more accurate predicted protein sequence and regulatory analysis. This revised annotation also provides an atlas of gene expression specific to adult and embryonic tissues.


Subject(s)
Embryo, Nonmammalian/metabolism , Gene Expression Profiling , Genomics , High-Throughput Nucleotide Sequencing , Lizards/embryology , Lizards/genetics , Molecular Sequence Annotation/methods , Animals , Humans , Mice , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Analysis, RNA
20.
Cell Genom ; 3(1): 100229, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36777184

ABSTRACT

Epithelial responses to the cytokine interleukin-13 (IL-13) cause airway obstruction in asthma. Here we utilized multiple genomic techniques to identify IL-13-responsive regulatory elements in bronchial epithelial cells and used these data to develop a CRISPR interference (CRISPRi)-based therapeutic approach to downregulate airway obstruction-inducing genes in a cell type- and IL-13-specific manner. Using single-cell RNA sequencing (scRNA-seq) and acetylated lysine 27 on histone 3 (H3K27ac) chromatin immunoprecipitation sequencing (ChIP-seq) in primary human bronchial epithelial cells, we identified IL-13-responsive genes and regulatory elements. These sequences were functionally validated and optimized via massively parallel reporter assays (MPRAs) for IL-13-inducible activity. The top secretory cell-selective sequence from the MPRA, a novel, distal enhancer of the sterile alpha motif pointed domain containing E-26 transformation-specific transcription factor (SPDEF) gene, was utilized to drive CRISPRi and knock down SPDEF or mucin 5AC (MUC5AC), both involved in pathologic mucus production in asthma. Our work provides a catalog of cell type-specific genes and regulatory elements involved in IL-13 bronchial epithelial response and showcases their use for therapeutic purposes.

SELECTION OF CITATIONS
SEARCH DETAIL