Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 143
Filter
1.
Chemistry ; 30(9): e202302798, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38093560

ABSTRACT

The electrochemical reaction of carbon dioxide (CO2 ) in aqueous electrolyte solutions is attracting increasing attention for sustainable chemical production. Boron-doped diamond (BDD) electrodes have been previously shown to be very effective for the stable electrochemical production of formic acid from CO2 . Typically, the electrochemical production of formic acid by CO2 reduction (CO2 R) reaction is performed with a dual-compartment flow reactor equipped with a membrane separator. The problems caused by the membrane separator, such as scaling-up, complicated operational control and materials costs can be solved using a membrane free single-compartment reactor. Here we demonstrate anode reaction control for a single-compartment CO2 R flow reactor using a surface-activated BDD cathode and achieve a Faradaic efficiency for formic acid production of over 70 %.

2.
Anal Bioanal Chem ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834789

ABSTRACT

We developed a sensing strategy that mimics the bead-based electrogenerated chemiluminescence immunoassay. However, instead of the most common metal complexes, such as Ru or Ir, the luminophore is luminol. The electrogenerated chemiluminescence of luminol was promoted by in situ electrochemical generation of hydrogen peroxide at a boron-doped diamond electrode. The electrochemical production of hydrogen peroxide was achieved in a carbonate solution by an oxidation reaction, while at the same time, microbeads labelled with luminol were deposited on the electrode surface. For the first time, we proved that was possible to obtain light emission from luminol without its direct oxidation at the electrode. This new emission mechanism is obtained at higher potentials than the usual luminol electrogenerated chemiluminescence at 0.3-0.5 V, in conjunction with hydrogen peroxide production on boron-doped diamond at around 2-2.5 V (vs Ag/AgCl).

3.
Phys Chem Chem Phys ; 26(20): 14825-14831, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38721684

ABSTRACT

Polycrystalline phosphorus-doped diamond was fabricated by the quartz-tube-type microwave plasma-assisted chemical vapor deposition method. Significantly, red phosphorus was used as a source of phosphorous, instead of PH3. Phosphorus-doped diamond electrodes with hydrogen-terminated and oxygen-terminated surfaces were investigated for the redox reactions of K3[Fe(CN)6] and [Ru(NH3)6]Cl3. The carrier concentration was estimated as 2.1-5.3 × 1018 cm-3 from electrochemical impedance measurements. Polycrystalline phosphorus-doped diamond shows great promise as chemical electrode materials.

4.
Acc Chem Res ; 55(24): 3605-3615, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36475616

ABSTRACT

Boron-doped diamond (BDD) electrodes have emerged as next-generation electrode materials for various applications in electrochemistry such as electrochemical sensors, electrochemical organic synthesis, CO2 reduction, ozone water generation, electrochemiluminescence, etc. An optimal BDD electrode design is necessary to realize these applications. The electrochemical properties of BDD electrodes are determined by important parameters such as (1) surface termination, (2) surface orientation, and (3) boron doping level.In this Account, we discuss how these parameters contribute to the function of BDD electrodes. First, control of the surface termination (hydrogen/oxygen) is described. The electrochemical conditions such as the solution pH and the application potential were studied precisely. It was confirmed that an acidic solution and the application of negative potential accelerate hydrogenation, and the mechanism behind this is discussed. For oxygenation, we directly observed changes in surface functional groups by in situ attenuated total reflection infrared spectroscopy and electrochemical X-ray photoelectron spectroscopy measurements.Next, the difference in surface orientation was examined. We prepared homoepitaxial single-crystal diamond electrodes comprising (100) and (111) facets with similar boron concentrations and resistivities and evaluated their electrochemical properties. Experimental results and theoretical calculations revealed that (100)-oriented single-crystal BDD has a wider space charge layer than (111)-oriented BDD, resulting in a slower response. Furthermore, isolated single-crystal microparticles of BDD with exposed (100) and (111) crystal facets were grown, and we studied the electrochemical properties of the respective facets by combination with hopping-mode scanning electrochemical cell microscopy.We also systematically investigated how the boron concentration and sp2 species affect the electrochemical properties. The results showed that the appropriate composition (boron and sp2 species level) is dependent on the application. The transmission electron microscopy images and electron energy loss spectra of highly boron-doped BDD are shown, and the relationship between the composition and electrochemical properties is discussed. Finally, we investigated in detail the effect of the sp2 component on low-doped BDD. Surprisingly, although the sp2 component is usually expected to induce a narrowing of the potential window and an increase in the charging current, low-doped BDD showed the opposite trend depending on the degree of sp2 carbon.The results and discussion presented in this Account will hopefully promote a better understanding of the fundamentals of BDD electrodes and be useful for the optimal development of electrodes for future applications.


Subject(s)
Boron , Ozone , Boron/chemistry , Electrodes , Electrochemistry , Oxygen
5.
Analyst ; 148(18): 4396-4405, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37551933

ABSTRACT

Urinalysis is attracting interest in personal healthcare management as part of a general move to improve quality of life. Urine contains various metabolites and the protein level in urine is an indicator of kidney function. In this study, a novel electrochemical sensing system based on boron-doped diamond (BDD) electrodes was developed for the detection of protein concentrations in human urine. BDD electrodes have the advantages of a wide electrochemical potential window and low non-specific adsorption, making them ideal for simple, rapid, and compact devices for home detection of bio-relevant substances. Coomassie brilliant blue (CBB), a dye that selectively and strongly binds to urine proteins, was found to be a redox-active indicator to show a decrease in its redox currents in relation to the concentration of protein in urine samples. Our detailed studies of BDD electrodes showed their limit of detection to be 2.57 µg mL-1 and that they have a linear response that ranges from 0 to 400 µg mL-1 in urine samples. We also investigated the detection of urine protein in different urine samples. Our results agreed with those obtained using conventional colorimetric analysis. We believe this to be the first study of electrochemical detection of urine protein in urine samples on BDD electrodes, which is of great significance to be able to obtain results with electrical signals rapidly compared to conventional colorimetric analysis. This CBB-BDD technique has the potential to assist healthcare management in the form of a rapid daily diagnostic test to judge whether a more detailed examination is needed.


Subject(s)
Boron , Quality of Life , Humans , Boron/chemistry , Urinalysis , Electrodes , Oxidation-Reduction
6.
Angew Chem Int Ed Engl ; 62(18): e202301925, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-36866977

ABSTRACT

Spin manipulation of transition-metal catalysts has great potential in mimicking enzyme electronic structures to improve activity and/or selectivity. However, it remains a great challenge to manipulate room-temperature spin state of catalytic centers. Herein, we report a mechanical exfoliation strategy to in situ induce partial spin crossover from high-spin (s=5/2) to low-spin (s=1/2) of the ferric center. Due to spin transition of catalytic center, mixed-spin catalyst exhibits a high CO yield of 19.7 mmol g-1 with selectivity of 91.6 %, much superior to that of high-spin bulk counterpart (50 % selectivity). Density functional theory calculations reveal that low-spin 3d-orbital electronic configuration performs a key function in promoting CO2 adsorption and reducing activation barrier. Hence, the spin manipulation highlights a new insight into designing highly efficient biomimetic catalysts via optimizing spin state.

7.
Anal Chem ; 94(9): 3948-3955, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35192326

ABSTRACT

The electrochemical behavior of oxygen (O2) in blood was studied using boron-doped diamond (BDD) electrodes. Cyclic voltammogram of O2 in a 0.1 M phosphate buffer solution solution containing 1 × 10-6 M of bovine hemoglobin exhibits a reduction peak at -1.4 V (vs Ag/AgCl). Moreover, the scan rate dependence was investigated to study the reduction reaction mechanism, which was attributable to the reduction of O2 to H2O2 via two electrons. A linear calibration curve was observed in the concentration range of 86.88-314.63 mg L-1 (R2 = 0.99) with a detection limit of 1.0 mg L-1 (S/B = 3). The analytical performance was better than those with glassy carbon or platinum electrodes as the working electrode. In addition, an application to bovine blood was performed. The O2 concentration in the blood measured on the BDD electrodes was compared to that measured using an OxyLite Pro fiber-optic oxygen sensor device. Both methods gave similar values of the O2 concentration in the range of ∼40 to 150 mmHg. This result confirms that BDD electrodes could potentially be used to detect the O2 concentration in blood.


Subject(s)
Boron , Hydrogen Peroxide , Carbon , Electrodes , Oxygen
8.
Anal Chem ; 94(48): 16831-16837, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36404758

ABSTRACT

As a working electrode, boron-doped diamond (BDD) has been studied in detail in electrochemical processes because of its superior electrochemical properties. However, these characteristics have rarely been mentioned when BDD is used as a quasi-reference electrode (QRE). Herein, we conducted a systematic investigation on BDD electrodes, with different boron-doping levels (1 and 0.1%) and different surface terminations (hydrogen and oxygen) for their application as a QRE. A BDD electrode with 1% boron and a hydrogen-terminated surface achieved the best stability. Its open-circuit potential (OCP) exhibited less than 100 mV of potential drift over 6000 s and showed a minuscule half-wave potential difference (E1/2) of 0.0037 V in 0.1 mM K3[Fe(CN)6]/1 M KCl solution before and after the OCP measurement. Based on these observations, anions are found to contribute to the potential, which we preliminarily speculate as related to the capacitance caused by electrostatic adsorption on the positively charged hydrogen-terminated surface. The repeatability of measurement was verified through continuous cyclic voltammetry tests in 0.1 mM K3[Fe(CN)6]/1 M KCl, showing a maximum E1/2 difference of 0.042 V. The contribution of the redox couples was excluded, and the repeatability was considered to originate from its surface stability. Finally, a linear response of the optimized BDD as a QRE was validated (R2 > 0.99) by determination of free chlorine and dopamine concentrations, respectively. These results consolidate the existing fundamental research on BDD electrodes and promote the possibility of its application as a QRE in harsh environments or in vivo biological monitoring.


Subject(s)
Boron , Diamond , Diamond/chemistry , Boron/chemistry , Electrochemical Techniques , Electrodes , Hydrogen/chemistry
9.
Analyst ; 147(12): 2696-2702, 2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35608289

ABSTRACT

Electrogenerated chemiluminescence (ECL) of luminol at a boron-doped diamond electrode has been used for hypochlorite determination. The presence of H2O2 induces the generation of the ECL signals of luminol. In contrast, the presence of hypochlorite oxidizes luminol directly to decrease the ECL signals of luminol. Accordingly, a decrease of the ECL signals of luminol in the presence of H2O2 was used as the signal response for hypochlorite detection. A linear decrease of ECL signals with the NaClO concentration in the range from 0 to 20 µM was observed with a sensitivity of 18.56 a.u. µM-1 cm-2. An estimated detection limit of 0.88 µM was achieved, which is around one order lower than the detection limit obtained using the normal electrochemical method with the same electrode. The system also provides a good selectivity towards Cu2+ and Na+. A reproducibility of 3.40%RSD was noted for 15 repetitive measurements. The analytical performance was found to be favourable in comparison to those of other typical electrochemical and electrochemiluminescence methods, indicating that it is applicable for real sample detection.


Subject(s)
Biosensing Techniques , Luminol , Biosensing Techniques/methods , Boron , Electrochemical Techniques/methods , Electrodes , Gold , Hydrogen Peroxide , Hypochlorous Acid , Limit of Detection , Luminescence , Luminescent Measurements/methods , Reproducibility of Results
10.
Analyst ; 147(8): 1655-1662, 2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35311863

ABSTRACT

O3 and free chlorine play significant roles in disinfection and organic degradation. There are numerous reports about their mixed-use, yet detection of the residual concentrations is not easily accomplished, whilst the interactions between them remain unclear. Herein, we develop a detection method using a boron-doped diamond (BDD) electrode to achieve the simultaneous determination of O3 and free chlorine, which benefits from the unique property of the wide potential window of BDD electrodes. It is indicated that O3 can always be accurately determined at 0.35 V vs. Ag/AgCl in an acidic solution (pH = 4-5), whether or not free chlorine is present in the solution, whereas free chlorine can be precisely monitored at -0.78 V vs. Ag/AgCl only after the O3 is completely depleted. Furthermore, in a basic solution (pH = 9-10), the reduction peak of O3 at 0.57 V vs. Ag/AgCl promptly disappears accompanied by a decrease in the peak current of free chlorine at 1.41 V. All the phenomena observed in the acidic and basic solutions are concurrently confirmed in a quasi-neutral solution. Based on these complementary measurements, a mechanism is proposed, in which the O3 reduction results in partial oxidation of the BDD surface, hindering the reduction of free chlorine in the acidic mixture; whereas O3 reacts quickly with free chlorine in the basic solution, which causes the co-consumption of both of them. It is hoped these results will give us a guide as to how better utilize mixtures and more precisely simultaneously determine O3 and free chlorine in the mixture.


Subject(s)
Boron , Ozone , Boron/chemistry , Chlorine , Electrodes , Oxidation-Reduction
11.
Analyst ; 147(20): 4442-4449, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36129310

ABSTRACT

Monitoring drug concentration in blood and reflecting this in the dosage are crucial for safe and effective drug treatment. Most drug assays are based on total concentrations of bound and unbound proteins in the serum, although only the unbound concentration causes beneficial and adverse events. Monitoring the unbound concentration alone is expected to provide a means for further optimisation of drug treatment. However, unbound concentration monitoring has not been routinely used for drug treatment due to the long analysis time and the high cost of conventional methods. Here, we have developed a rapid electrochemical method to determine the unbound concentration in ultrafiltered human serum using boron-doped diamond (BDD) electrodes. When the anticancer drug doxorubicin was used as the test drug, the catalytic doxorubicin-mediated reduction of dissolved oxygen provided a sensitive electrochemical signal, with a detection limit of 0.14 nM. In contrast, the sensitivity of glassy carbon (GC) was inferior under the same conditions due to interference from the dissolved oxygen reduction current. The signal background ratio (S/B) of BDD and GC was 11.5 (10 nM doxorubicin) and 1.1 (50 nM), respectively. The results show that a fast measurement time within ten seconds is possible in the clinical concentration range. Additionally, in the ultrafiltered human serum, the obtained values of unbound doxorubicin concentration showed good agreement with those quantified by conventional liquid chromatography-mass spectrometry. This approach has the potential for application in clinical settings where rapid and simple analysis methods would be beneficial.


Subject(s)
Boron , Carbon , Boron/chemistry , Doxorubicin , Electrodes , Humans , Oxidation-Reduction , Oxygen
12.
Beilstein J Org Chem ; 18: 1154-1158, 2022.
Article in English | MEDLINE | ID: mdl-36128427

ABSTRACT

A straightforward electro-conversion of cumene into acetophenone has been reported using boron-doped diamond (BDD) electrodes. This particular conversion is driven by the addition reaction of a cathodically generated hydroperoxide anion to an anodically generated cumyl cation, where the BDD's wide potential window enables the direct anodic oxidation of cumene into the cumyl cation. Since electricity is directly employed as the oxidizing and reducing reagents, the present protocol is easy to use, suitable for scale-up, and inherently safe.

13.
Anal Chem ; 93(4): 2336-2341, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33296176

ABSTRACT

The electrogenerated chemiluminescence of luminol is a process by which light generation is triggered by adding hydrogen peroxide and then applying a suitable electrode potential. Here, we take this phenomenon one step forward by avoiding the addition of hydrogen peroxide using a smart combination of a boron-doped diamond electrode and a carbonate electrolyte to generate the hydrogen peroxide directly in situ. The reaction occurs because of the carbonate electrochemical oxidation to peroxydicarbonate and the following hydrolysis to hydrogen peroxide, which triggers the emission from luminol. The electrogenerated chemiluminescence emission has been optimized by an investigation of the applied potentials, the carbonate concentration, and the pH. Furthermore, these results have been used to shine a light on the reaction mechanisms. Because this method does not require the addition of hydrogen peroxide, it might find application in efforts to avoid instability of hydrogen peroxide or its interference with the analytes of interest.

14.
Anal Chem ; 93(14): 5831-5838, 2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33783208

ABSTRACT

Boron-doped diamond (BDD) is most often grown by chemical vapor deposition (CVD) in polycrystalline form, where the electrochemical response is averaged over the whole surface. Deconvoluting the impact of crystal orientation, surface termination, and boron-doped concentration on the electrochemical response is extremely challenging. To tackle this problem, we use CVD to grow isolated single-crystal microparticles of BDD with the crystal facets (100, square-shaped) and (111, triangle-shaped) exposed and combine with hopping mode scanning electrochemical cell microscopy (HM-SECCM) for electrochemical interrogation of the individual crystal faces (planar and nonplanar). Measurements are made on both hydrogen- (H-) and oxygen (O-)-terminated single-crystal facets with two different redox mediators, [Ru(NH3)6]3+/2+ and Fe(CN)64-/3-. Extraction of the half-wave potential from linear sweep and cyclic voltammetric experiments at all measurement (pixel) points shows unequivocally that electron transfer is faster at the H-terminated (111) surface than at the H-terminated (100) face, attributed to boron dopant differences. The most dramatic differences were seen for [Ru(NH3)6]3+/2+ when comparing the O-terminated (100) surface to the H-terminated (100) face. Removal of the H-surface conductivity layer and a potential-dependent density of states were thought to be responsible for the behavior observed. Finally, a bimodal distribution in the electrochemical activity on the as-grown H-terminated polycrystalline BDD electrode is attributed to the dominance of differently doped (100) and (111) facets in the material.

15.
Chem Rec ; 21(9): 2254-2268, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33759336

ABSTRACT

Natural products have played a significant role not only in discovery of drugs but also in development of organic chemistry by providing the synthetic challenges. Inspired by biosynthesis where enzymes catalyze a multi-step reaction, we have investigated the natural product synthesis utilizing electrochemical reactions as the key step. Electrochemical organic synthesis, so-called electro-organic synthesis, enables to control the reactivity of substrates simply by tuning electrolysis conditions. In this Personal Account, we overview the recent progress of our research projects about natural product synthesis, in which anodic oxidation of phenol compounds affords the important frameworks such as diaryl ether, spirodienone, and spiroisoxazoline.


Subject(s)
Biological Products , Phenols , Catalysis , Electrodes , Oxidation-Reduction
16.
Analyst ; 146(9): 2842-2850, 2021 May 04.
Article in English | MEDLINE | ID: mdl-33949364

ABSTRACT

Modification of boron-doped diamond (BDD) with gold-palladium nanoparticles (Au@PdNPs) was successfully performed. Prior to the modification, BDD was modified with allylamine to provide active sites for the attachment of nanoparticles, while the synthesis of Au@PdNPs was performed by chemical reduction of a palladium salt solution in a colloidal solution of gold nanoparticles. Characterization using TEM images showed that by controlling the palladium concentration, flower and core-shell shaped Au@PdNPs can be prepared. XPS studies confirmed that the nanoparticles with a flower shape could be attached better on the BDD surface. The Au@PdNPs-modified BDD (Au@PdNPs-BDD) electrodes were then examined for the oxygen reduction reaction in comparison with gold and palladium-based electrodes. One order higher current response was observed at Au@PdNPs-BDD compared to AuNPs-BDD, indicating the contribution of palladium in the oxygen reduction reaction. Good linearity with comparable limits of detection suggested that Au@PdNPs-BDD electrodes are promising for use as oxygen sensors. Furthermore, their application as BOD sensors was demonstrated.

17.
Phys Chem Chem Phys ; 23(29): 15628-15634, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34264252

ABSTRACT

Boron-doped diamond (BDD) has attracted much attention in semi-/superconductor physics and electrochemistry, where the surface structures and electronic states play crucial roles. Herein, we systematically examine the structural and electronic properties of the unterminated and H-terminated diamond(111) surfaces by using density functional theory calculations, and the effect of the boron position on them. The surface energy increases compared to that of the undoped case when the boron is located at a deeper position in the diamond bulk, which indicates that boron near the surface can facilitate the surface stability of the BDD in addition to the H-termination. Moreover, the surface energy and projected density of state analyses suggest that the boron can enhance the graphitization of the pristine (ideal) unterminated (111) surface thanks to the alternative sp2-sp3 arrangement on that surface. Finally, we found that surface electronic states depend on the boron's position, i.e., the Fermi energy (EF) is located around the mid-gap position when the boron lies near the surface, instead of showing a p-type semiconductor behavior where the EF lies closer to the valence band maximum.

18.
J Am Chem Soc ; 142(3): 1518-1525, 2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31922404

ABSTRACT

An electrogenerated chemiluminescence (ECL) system by in situ coreactant production, where Ru(bpy)32+ emission is generated at a boron-doped diamond (BDD) electrode, is presented. The system takes advantage of the unique properties of BDD to promote oxidation of carbonate (CO32-) into peroxydicarbonate (C2O62-), which further reacts with water to form hydrogen peroxide (H2O2), which acts as a coreactant for Ru(bpy)32+ ECL. Investigation of the mechanism reveals that ECL emission is triggered by the reduction of H2O2 to hydroxyl radicals (OH•), which later react with the reduced Ru(bpy)3+ molecules to form excited states, followed by light emission. The ECL signal was found to increase with the concentration of CO32-; therefore, with the concentration of electrogenerated H2O2, although at the same time, higher concentrations of H2O2 can quench the ECL emission, resulting in a decrease in intensity. The carbonate concentration, pH, and oxidation parameters, such as potential and time, were optimized to find the best emission conditions.

19.
J Am Chem Soc ; 142(5): 2310-2316, 2020 02 05.
Article in English | MEDLINE | ID: mdl-31927922

ABSTRACT

Unexpected phenomena displayed by low-boron-doped diamond (BDD) electrodes are disclosed in the present work. Generally, the presence of sp2 nondiamond carbon impurities in BDD electrodes causes undesirable electrochemical properties, such as a reduced potential window and increased background current, etc. However, we found that the potential window and redox reaction in normally doped (1%) BDD and low-doped (0.1%) BDD exhibited opposite tendencies depending on the extent of sp2 carbon. Moreover, we found that contrary to the usual expectations, low-doped BDD containing sp2 carbon hinders electron transfer, whereas in line with expectations, normally doped BDD containing sp2 exhibits enhanced electron transfer. Surface analyses by X-ray/ultraviolet photoelectron spectroscopy (XPS/UPS) and electrochemical methods are utilized to explain these unusual phenomena. This work indicates that the electrochemical properties of low-doped BDD containing sp2 might be due partially to the high level of surface oxygen, the large work function, the low carrier density, and the existence of different types of sp2 carbon.

20.
Anal Chem ; 92(20): 13742-13749, 2020 10 20.
Article in English | MEDLINE | ID: mdl-32786440

ABSTRACT

Methylcobalamin, which is used for the clinical treatment of patients with neuropathy, can have an impact on the sensorineural components associated with the cochlea, and it is possible that the auditory threshold in a certain population of patients with deafness may be recovered. Nonetheless, it remains uncertain whether the action site of methylcobalamin is localized inside or outside the cochlea and which cellular or tissue element is targeted by the drug. In the present work, we developed a method to realize in vivo real-time simultaneous examination of the drug kinetics in two separate locations using boron-doped diamond microelectrodes. First, the analytical performance of methylcobalamin was studied and the measurement protocol was optimized in vitro. Then, the optimized protocol was applied to carry out real-time measurements inside the cochlea and the leg muscle in live guinea pigs while systemically administering methylcobalamin. The results showed that the methylcobalamin concentration in the cochlea was below the limit of detection for the microelectrodes or the drug did not reach the cochlea, whereas the compound clearly reached the leg muscle.


Subject(s)
Electrochemical Techniques/methods , Vitamin B 12/analogs & derivatives , Animals , Boron/chemistry , Cochlea/chemistry , Cochlea/metabolism , Diamond/chemistry , Guinea Pigs , Limit of Detection , Microelectrodes , Muscle, Skeletal/chemistry , Muscle, Skeletal/metabolism , Vitamin B 12/analysis , Vitamin B 12/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL