Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Cell ; 184(19): 4857-4873, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34534463

ABSTRACT

The hidden world of amyloid biology has suddenly snapped into atomic-level focus, revealing over 80 amyloid protein fibrils, both pathogenic and functional. Unlike globular proteins, amyloid proteins flatten and stack into unbranched fibrils. Stranger still, a single protein sequence can adopt wildly different two-dimensional conformations, yielding distinct fibril polymorphs. Thus, an amyloid protein may define distinct diseases depending on its conformation. At the heart of this conformational variability lies structural frustrations. In functional amyloids, evolution tunes frustration levels to achieve either stability or sensitivity according to the fibril's biological function, accounting for the vast versatility of the amyloid fibril scaffold.


Subject(s)
Amyloidogenic Proteins/chemistry , Amyloidogenic Proteins/metabolism , Amyloidogenic Proteins/genetics , Animals , Disease/genetics , Evolution, Molecular , Humans , Polymorphism, Genetic , Protein Folding , Protein Stability
2.
Annu Rev Biochem ; 86: 69-95, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28125289

ABSTRACT

Dozens of proteins are known to convert to the aggregated amyloid state. These include fibrils associated with systemic and neurodegenerative diseases and cancer, functional amyloid fibrils in microorganisms and animals, and many denatured proteins. Amyloid fibrils can be much more stable than other protein assemblies. In contrast to globular proteins, a single protein sequence can aggregate into several distinctly different amyloid structures, termed polymorphs, and a given polymorph can reproduce itself by seeding. Amyloid polymorphs may be the molecular basis of prion strains. Whereas the Protein Data Bank contains some 100,000 globular protein and 3,000 membrane protein structures, only a few dozen amyloid protein structures have been determined, and most of these are short segments of full amyloid-forming proteins. Regardless, these amyloid structures illuminate the architecture of the amyloid state, including its stability and its capacity for formation of polymorphs.


Subject(s)
Amyloidogenic Proteins/chemistry , Prion Proteins/chemistry , Protein Aggregation, Pathological/metabolism , Amino Acid Motifs , Amyloidogenic Proteins/genetics , Amyloidogenic Proteins/metabolism , Animals , Cryoelectron Microscopy , Gene Expression , Humans , Nuclear Magnetic Resonance, Biomolecular , Prion Proteins/genetics , Prion Proteins/metabolism , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/pathology , Protein Denaturation , Protein Multimerization , Protein Stability , Protein Structure, Secondary , X-Ray Diffraction
4.
Nature ; 605(7909): 304-309, 2022 05.
Article in English | MEDLINE | ID: mdl-35344984

ABSTRACT

Frontotemporal lobar degeneration (FTLD) is the third most common neurodegenerative condition after Alzheimer's and Parkinson's diseases1. FTLD typically presents in 45 to 64 year olds with behavioural changes or progressive decline of language skills2. The subtype FTLD-TDP is characterized by certain clinical symptoms and pathological neuronal inclusions with TAR DNA-binding protein (TDP-43) immunoreactivity3. Here we extracted amyloid fibrils from brains of four patients representing four of the five FTLD-TDP subclasses, and determined their structures by cryo-electron microscopy. Unexpectedly, all amyloid fibrils examined were composed of a 135-residue carboxy-terminal fragment of transmembrane protein 106B (TMEM106B), a lysosomal membrane protein previously implicated as a genetic risk factor for FTLD-TDP4. In addition to TMEM106B fibrils, we detected abundant non-fibrillar aggregated TDP-43 by immunogold labelling. Our observations confirm that FTLD-TDP is associated with amyloid fibrils, and that the fibrils are formed by TMEM106B rather than TDP-43.


Subject(s)
Amyloid , DNA-Binding Proteins , Frontotemporal Lobar Degeneration , Membrane Proteins , Nerve Tissue Proteins , Amyloid/ultrastructure , Cryoelectron Microscopy , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/ultrastructure , Frontotemporal Lobar Degeneration/metabolism , Frontotemporal Lobar Degeneration/pathology , Humans , Membrane Proteins/metabolism , Membrane Proteins/ultrastructure , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/ultrastructure
5.
Proc Natl Acad Sci U S A ; 120(7): e2217835120, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36757890

ABSTRACT

The amyloid aggregation of alpha-synuclein within the brain is associated with the pathogenesis of Parkinson's disease (PD) and other related synucleinopathies, including multiple system atrophy (MSA). Alpha-synuclein aggregates are a major therapeutic target for treatment of these diseases. We identify two small molecules capable of disassembling preformed alpha-synuclein fibrils. The compounds, termed CNS-11 and CNS-11g, disaggregate recombinant alpha-synuclein fibrils in vitro, prevent the intracellular seeded aggregation of alpha-synuclein fibrils, and mitigate alpha-synuclein fibril cytotoxicity in neuronal cells. Furthermore, we demonstrate that both compounds disassemble fibrils extracted from MSA patient brains and prevent their intracellular seeding. They also reduce in vivo alpha-synuclein aggregates in C. elegans. Both compounds also penetrate brain tissue in mice. A molecular dynamics-based computational model suggests the compounds may exert their disaggregating effects on the N terminus of the fibril core. These compounds appear to be promising therapeutic leads for targeting alpha-synuclein for the treatment of synucleinopathies.


Subject(s)
Multiple System Atrophy , Parkinson Disease , Synucleinopathies , Mice , Animals , alpha-Synuclein/metabolism , Synucleinopathies/pathology , Caenorhabditis elegans/metabolism , Parkinson Disease/pathology , Multiple System Atrophy/pathology , Brain/metabolism , Amyloid/metabolism
6.
Proc Natl Acad Sci U S A ; 120(41): e2300258120, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37801475

ABSTRACT

Despite much effort, antibody therapies for Alzheimer's disease (AD) have shown limited efficacy. Challenges to the rational design of effective antibodies include the difficulty of achieving specific affinity to critical targets, poor expression, and antibody aggregation caused by buried charges and unstructured loops. To overcome these challenges, we grafted previously determined sequences of fibril-capping amyloid inhibitors onto a camel heavy chain antibody scaffold. These sequences were designed to cap fibrils of tau, known to form the neurofibrillary tangles of AD, thereby preventing fibril elongation. The nanobodies grafted with capping inhibitors blocked tau aggregation in biosensor cells seeded with postmortem brain extracts from AD and progressive supranuclear palsy (PSP) patients. The tau capping nanobody inhibitors also blocked seeding by recombinant tau oligomers. Another challenge to the design of effective antibodies is their poor blood-brain barrier (BBB) penetration. In this study, we also designed a bispecific nanobody composed of a nanobody that targets a receptor on the BBB and a tau capping nanobody inhibitor, conjoined by a flexible linker. We provide evidence that the bispecific nanobody improved BBB penetration over the tau capping inhibitor alone after intravenous administration in mice. Our results suggest that the design of synthetic antibodies that target sequences that drive protein aggregation may be a promising approach to inhibit the prion-like seeding of tau and other proteins involved in AD and related proteinopathies.


Subject(s)
Alzheimer Disease , Single-Domain Antibodies , Supranuclear Palsy, Progressive , Humans , Animals , Mice , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , tau Proteins/metabolism , Single-Domain Antibodies/pharmacology , Single-Domain Antibodies/metabolism , Neurofibrillary Tangles/metabolism , Supranuclear Palsy, Progressive/metabolism , Antibodies/metabolism , Brain/metabolism
7.
J Biol Chem ; 300(2): 105531, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38072051

ABSTRACT

Heterogeneous nuclear ribonucleoprotein A2 (hnRNPA2) is a human ribonucleoprotein that transports RNA to designated locations for translation via its ability to phase separate. Its mutated form, D290V, is implicated in multisystem proteinopathy known to afflict two families, mainly with myopathy and Paget's disease of bone. Here, we investigate this mutant form of hnRNPA2 by determining cryo-EM structures of the recombinant D290V low complexity domain. We find that the mutant form of hnRNPA2 differs from the WT fibrils in four ways. In contrast to the WT fibrils, the PY-nuclear localization signals in the fibril cores of all three mutant polymorphs are less accessible to chaperones. Also, the mutant fibrils are more stable than WT fibrils as judged by phase separation, thermal stability, and energetic calculations. Similar to other pathogenic amyloids, the mutant fibrils are polymorphic. Thus, these structures offer evidence to explain how a D-to-V missense mutation diverts the assembly of reversible, functional amyloid-like fibrils into the assembly of pathogenic amyloid, and may shed light on analogous conversions occurring in other ribonucleoproteins that lead to neurological diseases such as amyotrophic lateral sclerosis and frontotemporal dementia.


Subject(s)
Cryoelectron Microscopy , Heterogeneous-Nuclear Ribonucleoprotein Group A-B , Models, Molecular , Humans , Phase Separation , Protein Domains , Mutation , Hydrogen-Ion Concentration , Protein Stability , Protein Structure, Tertiary , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/chemistry , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism
8.
Annu Rev Neurosci ; 40: 189-210, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28772101

ABSTRACT

A pathway from the natively unfolded microtubule-associated protein Tau to a highly structured amyloid fibril underlies human Tauopathies. This ordered assembly causes disease and represents the gain of toxic function. In recent years, evidence has accumulated to suggest that Tau inclusions form first in a small number of brain cells, from where they propagate to other regions, resulting in neurodegeneration and disease. Propagation of pathology is often called prion-like, which refers to the capacity of an assembled protein to induce the same abnormal conformation in a protein of the same kind, initiating a self-amplifying cascade. In addition, prion-like encompasses the release of protein aggregates from brain cells and their uptake by neighboring cells. In mice, the intracerebral injection of Tau inclusions induces the ordered assembly of monomeric Tau, followed by its spreading to distant brain regions. Conformational differences between Tau aggregates from transgenic mouse brain and in vitro assembled recombinant protein account for the greater seeding potency of brain aggregates. Short fibrils constitute the major species of seed-competent Tau in the brains of transgenic mice. The existence of multiple human Tauopathies with distinct fibril morphologies has led to the suggestion that different molecular conformers (or strains) of aggregated Tau exist.


Subject(s)
Nerve Degeneration/metabolism , Neurofibrillary Tangles/metabolism , Tauopathies/metabolism , tau Proteins/metabolism , Animals , Brain/metabolism , Brain/pathology , Disease Models, Animal , Humans , Nerve Degeneration/pathology , Neurofibrillary Tangles/pathology , Phosphorylation , Tauopathies/pathology
9.
Proc Natl Acad Sci U S A ; 119(15): e2119952119, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35377792

ABSTRACT

In neurodegenerative diseases including Alzheimer's and amyotrophic lateral sclerosis, proteins that bind RNA are found in aggregated forms in autopsied brains. Evidence suggests that RNA aids nucleation of these pathological aggregates; however, the mechanism has not been investigated at the level of atomic structure. Here, we present the 3.4-Å resolution structure of fibrils of full-length recombinant tau protein in the presence of RNA, determined by electron cryomicroscopy (cryo-EM). The structure reveals the familiar in-register cross-ß amyloid scaffold but with a small fibril core spanning residues Glu391 to Ala426, a region disordered in the fuzzy coat in all previously studied tau polymorphs. RNA is bound on the fibril surface to the positively charged residues Arg406 and His407 and runs parallel to the fibril axis. The fibrils dissolve when RNase is added, showing that RNA is necessary for fibril integrity. While this structure cannot exist simultaneously with the tau fibril structures extracted from patients' brains, it could conceivably account for the nucleating effects of RNA cofactors followed by remodeling as fibrils mature.


Subject(s)
Amyloid , RNA , tau Proteins , Amyloid/chemistry , Cryoelectron Microscopy , Humans , RNA/chemistry , tau Proteins/chemistry
10.
Proc Natl Acad Sci U S A ; 119(34): e2206240119, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35969734

ABSTRACT

Neurodegenerative diseases are characterized by the pathologic accumulation of aggregated proteins. Known as amyloid, these fibrillar aggregates include proteins such as tau and amyloid-ß (Aß) in Alzheimer's disease (AD) and alpha-synuclein (αSyn) in Parkinson's disease (PD). The development and spread of amyloid fibrils within the brain correlates with disease onset and progression, and inhibiting amyloid formation is a possible route toward therapeutic development. Recent advances have enabled the determination of amyloid fibril structures to atomic-level resolution, improving the possibility of structure-based inhibitor design. In this work, we use these amyloid structures to design inhibitors that bind to the ends of fibrils, "capping" them so as to prevent further growth. Using de novo protein design, we develop a library of miniprotein inhibitors of 35 to 48 residues that target the amyloid structures of tau, Aß, and αSyn. Biophysical characterization of top in silico designed inhibitors shows they form stable folds, have no sequence similarity to naturally occurring proteins, and specifically prevent the aggregation of their targeted amyloid-prone proteins in vitro. The inhibitors also prevent the seeded aggregation and toxicity of fibrils in cells. In vivo evaluation reveals their ability to reduce aggregation and rescue motor deficits in Caenorhabditis elegans models of PD and AD.


Subject(s)
Amyloid beta-Peptides/antagonists & inhibitors , Protein Aggregation, Pathological/drug therapy , alpha-Synuclein/antagonists & inhibitors , tau Proteins/antagonists & inhibitors , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid/chemistry , Amyloid beta-Peptides/metabolism , Amyloidosis , Humans , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Protein Aggregation, Pathological/metabolism , alpha-Synuclein/metabolism , tau Proteins/chemistry
11.
Nature ; 563(7732): 508-513, 2018 11.
Article in English | MEDLINE | ID: mdl-30464263

ABSTRACT

A dominant histopathological feature in neuromuscular diseases, including amyotrophic lateral sclerosis and inclusion body myopathy, is cytoplasmic aggregation of the RNA-binding protein TDP-43. Although rare mutations in TARDBP-the gene that encodes TDP-43-that lead to protein misfolding often cause protein aggregation, most patients do not have any mutations in TARDBP. Therefore, aggregates of wild-type TDP-43 arise in most patients by an unknown mechanism. Here we show that TDP-43 is an essential protein for normal skeletal muscle formation that unexpectedly forms cytoplasmic, amyloid-like oligomeric assemblies, which we call myo-granules, during regeneration of skeletal muscle in mice and humans. Myo-granules bind to mRNAs that encode sarcomeric proteins and are cleared as myofibres mature. Although myo-granules occur during normal skeletal-muscle regeneration, myo-granules can seed TDP-43 amyloid fibrils in vitro and are increased in a mouse model of inclusion body myopathy. Therefore, increased assembly or decreased clearance of functionally normal myo-granules could be the source of cytoplasmic TDP-43 aggregates that commonly occur in neuromuscular disease.


Subject(s)
Amyloid/metabolism , DNA-Binding Proteins/metabolism , Muscle, Skeletal/physiology , RNA, Messenger/metabolism , Regeneration , TDP-43 Proteinopathies/metabolism , Amyloid/chemistry , Amyloid/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Cytoplasm/metabolism , DNA-Binding Proteins/chemistry , Female , Humans , Male , Mice , Models, Biological , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , RNA, Messenger/genetics , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Sarcomeres/metabolism , TDP-43 Proteinopathies/pathology
12.
J Biol Chem ; 298(10): 102396, 2022 10.
Article in English | MEDLINE | ID: mdl-35988647

ABSTRACT

Amyloid protein aggregation is commonly associated with progressive neurodegenerative diseases, however not all amyloid fibrils are pathogenic. The neuronal cytoplasmic polyadenylation element binding protein is a regulator of synaptic mRNA translation and has been shown to form functional amyloid aggregates that stabilize long-term memory. In adult Drosophila neurons, the cytoplasmic polyadenylation element binding homolog Orb2 is expressed as 2 isoforms, of which the Orb2B isoform is far more abundant, but the rarer Orb2A isoform is required to initiate Orb2 aggregation. The N terminus is a distinctive feature of the Orb2A isoform and is critical for its aggregation. Intriguingly, replacement of phenylalanine in the fifth position of Orb2A with tyrosine (F5Y) in Drosophila impairs stabilization of long-term memory. The structure of endogenous Orb2B fibers was recently determined by cryo-EM, but the structure adopted by fibrillar Orb2A is less certain. Here we use micro-electron diffraction to determine the structure of the first 9 N-terminal residues of Orb2A, at a resolution of 1.05 Å. We find that this segment (which we term M9I) forms an amyloid-like array of parallel in-register ß-sheets, which interact through side chain interdigitation of aromatic and hydrophobic residues. Our structure provides an explanation for the decreased aggregation observed for the F5Y mutant and offers a hypothesis for how the addition of a single atom (the tyrosyl oxygen) affects long-term memory. We also propose a structural model of Orb2A that integrates our structure of the M9I segment with the published Orb2B cryo-EM structure.


Subject(s)
Amyloid beta-Peptides , Amyloid , Drosophila Proteins , Drosophila melanogaster , Protein Aggregates , Transcription Factors , mRNA Cleavage and Polyadenylation Factors , Animals , Amyloid/chemistry , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Electrons , mRNA Cleavage and Polyadenylation Factors/chemistry , mRNA Cleavage and Polyadenylation Factors/genetics , mRNA Cleavage and Polyadenylation Factors/metabolism , Neurons/metabolism , Protein Conformation, beta-Strand , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Transcription Factors/chemistry , Transcription Factors/genetics , Transcription Factors/metabolism , Drosophila melanogaster/metabolism
13.
J Biol Chem ; 298(5): 101920, 2022 05.
Article in English | MEDLINE | ID: mdl-35405097

ABSTRACT

Low-complexity domains (LCDs) of proteins have been shown to self-associate, and pathogenic mutations within these domains often drive the proteins into amyloid aggregation associated with disease. These domains may be especially susceptible to amyloidogenic mutations because they are commonly intrinsically disordered and function in self-association. The question therefore arises whether a search for pathogenic mutations in LCDs of the human proteome can lead to identification of other proteins associated with amyloid disease. Here, we take a computational approach to identify documented pathogenic mutations within LCDs that may favor amyloid formation. Using this approach, we identify numerous known amyloidogenic mutations, including several such mutations within proteins previously unidentified as amyloidogenic. Among the latter group, we focus on two mutations within the TRK-fused gene protein (TFG), known to play roles in protein secretion and innate immunity, which are associated with two different peripheral neuropathies. We show that both mutations increase the propensity of TFG to form amyloid fibrils. We therefore conclude that TFG is a novel amyloid protein and propose that the diseases associated with its mutant forms may be amyloidoses.


Subject(s)
Amyloidogenic Proteins , Amyloidosis , Computational Biology , Amyloid/genetics , Amyloid/metabolism , Amyloidogenic Proteins/genetics , Amyloidosis/metabolism , Amyloidosis/pathology , Humans , Mutation , Proteome/genetics
14.
Mol Cell ; 57(6): 1011-1021, 2015 Mar 19.
Article in English | MEDLINE | ID: mdl-25728769

ABSTRACT

Eosinophils are white blood cells that function in innate immunity and participate in the pathogenesis of various inflammatory and neoplastic disorders. Their secretory granules contain four cytotoxic proteins, including the eosinophil major basic protein (MBP-1). How MBP-1 toxicity is controlled within the eosinophil itself and activated upon extracellular release is unknown. Here we show how intragranular MBP-1 nanocrystals restrain toxicity, enabling its safe storage, and characterize them with an X-ray-free electron laser. Following eosinophil activation, MBP-1 toxicity is triggered by granule acidification, followed by extracellular aggregation, which mediates the damage to pathogens and host cells. Larger non-toxic amyloid plaques are also present in tissues of eosinophilic patients in a feedback mechanism that likely limits tissue damage under pathological conditions of MBP-1 oversecretion. Our results suggest that MBP-1 aggregation is important for innate immunity and immunopathology mediated by eosinophils and clarify how its polymorphic self-association pathways regulate toxicity intra- and extracellularly.


Subject(s)
DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Eosinophils/metabolism , Animals , Cell Death/drug effects , Cell Line/drug effects , Cell Membrane/drug effects , Cellulitis/metabolism , Cellulitis/pathology , DNA-Binding Proteins/toxicity , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/pathology , Eosinophilia/metabolism , Eosinophilia/pathology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Escherichia coli/drug effects , Host-Pathogen Interactions , Humans , Immunity, Innate/physiology , Mice, Inbred C57BL , Nanoparticles/metabolism , Nanoparticles/toxicity , Secretory Vesicles/metabolism , Skin/drug effects , Skin/pathology
15.
Proc Natl Acad Sci U S A ; 117(7): 3592-3602, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32015135

ABSTRACT

Aggregation of α-synuclein is a defining molecular feature of Parkinson's disease, Lewy body dementia, and multiple systems atrophy. Hereditary mutations in α-synuclein are linked to both Parkinson's disease and Lewy body dementia; in particular, patients bearing the E46K disease mutation manifest a clinical picture of parkinsonism and Lewy body dementia, and E46K creates more pathogenic fibrils in vitro. Understanding the effect of these hereditary mutations on α-synuclein fibril structure is fundamental to α-synuclein biology. We therefore determined the cryo-electron microscopy (cryo-EM) structure of α-synuclein fibrils containing the hereditary E46K mutation. The 2.5-Å structure reveals a symmetric double protofilament in which the molecules adopt a vastly rearranged, lower energy fold compared to wild-type fibrils. We propose that the E46K misfolding pathway avoids electrostatic repulsion between K46 and K80, a residue pair which form the E46-K80 salt bridge in the wild-type fibril structure. We hypothesize that, under our conditions, the wild-type fold does not reach this deeper energy well of the E46K fold because the E46-K80 salt bridge diverts α-synuclein into a kinetic trap-a shallower, more accessible energy minimum. The E46K mutation apparently unlocks a more stable and pathogenic fibril structure.


Subject(s)
Lewy Body Disease/genetics , Mutation, Missense , Parkinson Disease/genetics , alpha-Synuclein/chemistry , alpha-Synuclein/genetics , Amino Acid Motifs , Cryoelectron Microscopy , Humans , Lewy Body Disease/congenital , Lewy Body Disease/metabolism , Parkinson Disease/congenital , Parkinson Disease/metabolism , Protein Folding , alpha-Synuclein/metabolism
16.
J Biol Chem ; 297(4): 101194, 2021 10.
Article in English | MEDLINE | ID: mdl-34537246

ABSTRACT

Membraneless organelles (MLOs) are vital and dynamic reaction centers in cells that compartmentalize the cytoplasm in the absence of a membrane. Multivalent interactions between protein low-complexity domains contribute to MLO organization. Previously, we used computational methods to identify structural motifs termed low-complexity amyloid-like reversible kinked segments (LARKS) that promote phase transition to form hydrogels and that are common in human proteins that participate in MLOs. Here, we searched for LARKS in the proteomes of six model organisms: Homo sapiens, Drosophila melanogaster, Plasmodium falciparum, Saccharomyces cerevisiae, Mycobacterium tuberculosis, and Escherichia coli to gain an understanding of the distribution of LARKS in the proteomes of various species. We found that LARKS are abundant in M. tuberculosis, D. melanogaster, and H. sapiens but not in S. cerevisiae or P. falciparum. LARKS have high glycine content, which enables kinks to form as exemplified by the known LARKS-rich amyloidogenic structures of TDP43, FUS, and hnRNPA2, three proteins that are known to participate in MLOs. These results support the idea of LARKS as an evolved structural motif. Based on these results, we also established the LARKSdb Web server, which permits users to search for LARKS in their protein sequences of interest.


Subject(s)
Amyloid/chemistry , Drosophila Proteins/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/chemistry , Amino Acid Motifs , Amyloid/genetics , Animals , Drosophila Proteins/genetics , Drosophila melanogaster , Humans , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
17.
Nature ; 539(7628): 227-235, 2016 11 10.
Article in English | MEDLINE | ID: mdl-27830791

ABSTRACT

The aggregation of proteins into structures known as amyloids is observed in many neurodegenerative diseases, including Alzheimer's disease. Amyloids are composed of pairs of tightly interacting, many stranded and repetitive intermolecular ß-sheets, which form the cross-ß-sheet structure. This structure enables amyloids to grow by recruitment of the same protein and its repetition can transform a weak biological activity into a potent one through cooperativity and avidity. Amyloids therefore have the potential to self-replicate and can adapt to the environment, yielding cell-to-cell transmissibility, prion infectivity and toxicity.


Subject(s)
Amyloid/chemistry , Amyloid/metabolism , Amyloid/biosynthesis , Amyloid/toxicity , Amyloid beta-Peptides/biosynthesis , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/toxicity , Animals , Humans , Models, Molecular , Prions/biosynthesis , Prions/chemistry , Prions/classification , Prions/toxicity , Protein Structure, Secondary , alpha-Synuclein/biosynthesis , alpha-Synuclein/chemistry , alpha-Synuclein/toxicity
18.
Nature ; 539(7627): 43-47, 2016 11 03.
Article in English | MEDLINE | ID: mdl-27680699

ABSTRACT

BinAB is a naturally occurring paracrystalline larvicide distributed worldwide to combat the devastating diseases borne by mosquitoes. These crystals are composed of homologous molecules, BinA and BinB, which play distinct roles in the multi-step intoxication process, transforming from harmless, robust crystals, to soluble protoxin heterodimers, to internalized mature toxin, and finally to toxic oligomeric pores. The small size of the crystals-50 unit cells per edge, on average-has impeded structural characterization by conventional means. Here we report the structure of Lysinibacillus sphaericus BinAB solved de novo by serial-femtosecond crystallography at an X-ray free-electron laser. The structure reveals tyrosine- and carboxylate-mediated contacts acting as pH switches to release soluble protoxin in the alkaline larval midgut. An enormous heterodimeric interface appears to be responsible for anchoring BinA to receptor-bound BinB for co-internalization. Remarkably, this interface is largely composed of propeptides, suggesting that proteolytic maturation would trigger dissociation of the heterodimer and progression to pore formation.


Subject(s)
Bacillus/chemistry , Bacterial Toxins/chemistry , Culicidae , Insecticides/chemistry , Larva , Lasers , Animals , Binding Sites , Crystallization , Crystallography, X-Ray , Culicidae/metabolism , Hydrogen-Ion Concentration , Larva/chemistry , Larva/metabolism , Models, Molecular , Protein Multimerization , Proteolysis , Tyrosine/chemistry
19.
J Biol Chem ; 295(31): 10662-10676, 2020 07 31.
Article in English | MEDLINE | ID: mdl-32493775

ABSTRACT

Soluble oligomers of aggregated tau accompany the accumulation of insoluble amyloid fibrils, a histological hallmark of Alzheimer disease (AD) and two dozen related neurodegenerative diseases. Both oligomers and fibrils seed the spread of Tau pathology, and by virtue of their low molecular weight and relative solubility, oligomers may be particularly pernicious seeds. Here, we report the formation of in vitro tau oligomers formed by an ionic liquid (IL15). Using IL15-induced recombinant tau oligomers and a dot blot assay, we discovered a mAb (M204) that binds oligomeric tau, but not tau monomers or fibrils. M204 and an engineered single-chain variable fragment (scFv) inhibited seeding by IL15-induced tau oligomers and pathological extracts from donors with AD and chronic traumatic encephalopathy. This finding suggests that M204-scFv targets pathological structures that are formed by tau in neurodegenerative diseases. We found that M204-scFv itself partitions into oligomeric forms that inhibit seeding differently, and crystal structures of the M204-scFv monomer, dimer, and trimer revealed conformational differences that explain differences among these forms in binding and inhibition. The efficiency of M204-scFv antibodies to inhibit the seeding by brain tissue extracts from different donors with tauopathies varied among individuals, indicating the possible existence of distinct amyloid polymorphs. We propose that by binding to oligomers, which are hypothesized to be the earliest seeding-competent species, M204-scFv may have potential as an early-stage diagnostic for AD and tauopathies, and also could guide the development of promising therapeutic antibodies.


Subject(s)
Alzheimer Disease , Protein Multimerization , Single-Chain Antibodies/chemistry , tau Proteins/chemistry , Crystallography, X-Ray , Humans
20.
Nature ; 525(7570): 486-90, 2015 Sep 24.
Article in English | MEDLINE | ID: mdl-26352473

ABSTRACT

The protein α-synuclein is the main component of Lewy bodies, the neuron-associated aggregates seen in Parkinson disease and other neurodegenerative pathologies. An 11-residue segment, which we term NACore, appears to be responsible for amyloid formation and cytotoxicity of human α-synuclein. Here we describe crystals of NACore that have dimensions smaller than the wavelength of visible light and thus are invisible by optical microscopy. As the crystals are thousands of times too small for structure determination by synchrotron X-ray diffraction, we use micro-electron diffraction to determine the structure at atomic resolution. The 1.4 Å resolution structure demonstrates that this method can determine previously unknown protein structures and here yields, to our knowledge, the highest resolution achieved by any cryo-electron microscopy method to date. The structure exhibits protofibrils built of pairs of face-to-face ß-sheets. X-ray fibre diffraction patterns show the similarity of NACore to toxic fibrils of full-length α-synuclein. The NACore structure, together with that of a second segment, inspires a model for most of the ordered portion of the toxic, full-length α-synuclein fibril, presenting opportunities for the design of inhibitors of α-synuclein fibrils.


Subject(s)
Nanoparticles/chemistry , Nanoparticles/toxicity , alpha-Synuclein/chemistry , alpha-Synuclein/toxicity , Amyloid/chemistry , Cryoelectron Microscopy , Electrons , Humans , Lewy Bodies/chemistry , Models, Molecular , Parkinson Disease , Protein Structure, Tertiary , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL