Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Bioorg Chem ; 143: 107009, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38070474

ABSTRACT

Joining the global effort to eradicate tuberculosis, one of the deadliest infectious killers in the world, we disclose in this paper the design and synthesis of new indolinone-tethered benzothiophene hybrids 6a-i and 7a-i as potential anti-tubercular agents. The MICs were determined in vitro for the synthesized compounds against the sensitive M. tuberculosis strain ATCC 25177. Potent compounds 6b, 6d, 6f, 6h, 7a, 7b, 7d, 7f, 7h and 7i were furtherly assessed versus resistant MDR-TB and XDR-TB. Structure activity relationship investigation of the synthesized compounds was illustrated, accordingly. Superlative potency was unveiled for compound 6h (MIC = 0.48, 1.95 and 7.81 µg/mL for ATCC 25177 sensitive TB strain, resistant MDR-TB and XDR-TB, respectively). Moreover, validated in vivo pharmacokinetic study was performed for the most potent derivative 6h revealing superior pharmacokinetic profile over the reference drug. For further exploration of the anti-tubercular mechanism of action, molecular docking was carried out for the former compound in DprE1 active site as one of the important biological targets of TB. The binding mode and the docking score uncovered exceptional binding when compared to the co-crystallized ligand suggesting that it maybe the underlying target for its outstanding anti-tubercular potency.


Subject(s)
Extensively Drug-Resistant Tuberculosis , Mycobacterium tuberculosis , Thiophenes , Tuberculosis, Multidrug-Resistant , Humans , Antitubercular Agents/chemistry , Molecular Docking Simulation , Tuberculosis, Multidrug-Resistant/drug therapy , Structure-Activity Relationship , Microbial Sensitivity Tests
2.
J Enzyme Inhib Med Chem ; 39(1): 2292482, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38086785

ABSTRACT

This study aims to investigate the phytoconstituents of the chloroform fraction of three Cystoseira spp. namely C. myrica, C. trinodis, and C. tamariscifolia using UPLC/ESI/MS technique. The results revealed the identification of 19, 20 and 11 metabolites in C. myrica, C. trinodis, and C. tamariscifolia, respectively mainly terpenoids, flavonoids, phenolic acids and fatty acids. Also, an in vitro antioxidant study using FRAP and DPPH assays was conducted where the chloroform fraction of C. trinodis displayed the highest antioxidant activity in both assays, which would be attributed to its highest total phenolics and total flavonoids. Besides, the investigation of COX-1, α-glucosidase and α-amylase inhibitory activities were performed. Regarding C. trinodis, it showed the strongest inhibitory activity towards COX-1. Moreover, it showed potent inhibitory activity towards α-glucosidase and α-amylase enzymes. According to the molecular docking studies, the major compounds characterised showed efficient binding to the active sites of the target enzymes.


Subject(s)
Chloroform , alpha-Glucosidases , Molecular Docking Simulation , Chromatography, High Pressure Liquid , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Flavonoids/chemistry , alpha-Amylases
3.
J Enzyme Inhib Med Chem ; 39(1): 2293639, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38153110

ABSTRACT

The Libyan Strawberry, Arbutus pavarii Pampan (ARB), is an endemic Jebel Akhdar plant used for traditional medicine. This study presents the antioxidant and hepatoprotective properties of ARB fruit-extract. ARB phytochemical analysis indicated the presence of 354.54 GAE and 36.2 RE of the phenolics and flavonoids. LC-MS analysis identified 35 compounds belonging to phenolic acids, procyanidins, and flavonoid glycosides. Gallic acid, procyanidin dimer B3, ß-type procyanidin trimer C, and quercetin-3-O-glucoside were the major constituents of the plant extract. ARB administration to paracetamol (PAR)-intoxicated rats reduced serum ALT, AST, bilirubin, hepatic tissue MDA and proinflammatory markers; TNF-α and IL-6 with an increase in tissue GSH level and SOD activity. Histological and immunohistochemical studies revealed that ARB restored the liver histology and significantly reduced the tissue expression of caspase 3, IL-1B, and NF-KB in PAR-induced liver damage. Docking analysis disclosed good binding affinities of some compounds with XO, COX-1, 5-LOX, and PI3K.


Subject(s)
Antioxidants , Fruit , Rats , Animals , Antioxidants/chemistry , Angiotensin Receptor Antagonists/metabolism , Angiotensin-Converting Enzyme Inhibitors/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Liver/metabolism , Flavonoids/pharmacology , Oxidative Stress
4.
Arch Pharm (Weinheim) ; 357(3): e2300599, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38100160

ABSTRACT

Humanity is currently facing various diseases with significant mortality rates, particularly those associated with malignancies. Numerous enzymes and proteins have been identified as highly promising targets for the treatment of cancer. The poly(ADP-ribose) polymerases (PARPs) family comprises 17 members which are essential in DNA damage repair, allowing the survival of cancer cells. Unlike other PARP family members, PARP-1 and, to a lesser extent, PARP-2 show more than 90% activity in response to DNA damage. PARP-1 levels were shown to be elevated in various tumor cells, including breast, lung, ovarian, and prostate cancer and melanomas. Accordingly, novel series of phthalimide-tethered isatins (6a-n, 10a-e, and 11a-e) were synthesized as potential PARP-1 inhibitors endowed with anticancer activity. All the synthesized molecules were assessed against PARP-1, where compounds 6f and 10d showed nanomolar activities with IC50 = 15.56 ± 2.85 and 13.65 ± 1.42 nM, respectively. Also, the assessment of the antiproliferative effects of the synthesized isatins was conducted on four cancer cell lines: leukemia (K-562), liver (HepG2), and breast (MCF-7 and HCC1937) cancers. Superiorly, compounds 6f and 10d demonstrated submicromolar IC50 values against breast cancer MCF-7 (IC50 = 0.92 ± 0.18 and 0.67 ± 0.12 µM, respectively) and HCC1937 (IC50 = 0.88 ± 0.52 and 0.53 ± 0.11 µM, respectively) cell lines. In addition, compounds 6f and 10d induced arrest in the G2/M phase of the cell cycle as compared to untreated cells. Finally, in silico studies, including docking and molecular dynamic simulations, were performed to justify the biological results.


Subject(s)
Isatin , Poly(ADP-ribose) Polymerase Inhibitors , Male , Humans , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Structure-Activity Relationship , Phthalimides/pharmacology , Cell Line, Tumor
5.
J Enzyme Inhib Med Chem ; 38(1): 2224944, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37369580

ABSTRACT

Callistemon is an aromatic genus of flowering plants belonging to family Myrtaceae. The essential oils of C. subulatus leaves were collected in four seasons and analyzed using GC/MS. The oils demonstrated monoterpenes as the predominant class. Eucalyptol was the main component in all seasons; summer (66.87%), autumn (58.33%), winter (46.74%) and spring (44.63%), followed by α-pinene; spring (31.41%), winter (28.69%), summer (26.34%) and autumn (24.68%). Winter oil, the highest yield (0.53 mL/100g), was further investigated for its inhibitory activity against enzymes associated with ageing; elastase and acetylcholinesterase. It remarkably inhibited elastase and acetylcholinesterase with IC50 values of 1.05 and 0.20 µg/ml, respectively. A molecular docking study was conducted for the major oil components on the active sites of target enzymes. Eucalyptol revealed the best binding affinity for both enzymes. C. subualtus oil could be used as supplement for management of ageing disorders like skin wrinkles and dementia.


Subject(s)
Myrtaceae , Oils, Volatile , Oils, Volatile/pharmacology , Oils, Volatile/analysis , Oils, Volatile/chemistry , Seasons , Acetylcholinesterase , Eucalyptol/pharmacology , Eucalyptol/analysis , Egypt , Molecular Docking Simulation , Plant Leaves/chemistry , Myrtaceae/chemistry , Pancreatic Elastase
6.
J Enzyme Inhib Med Chem ; 38(1): 2250575, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37649381

ABSTRACT

In this study, new benzothiazole-pyrimidine hybrids (5a-c, 6, 7a-f, and 8-15) were designed and synthesised. Two different functionalities on the pyrimidine moiety of lead compound 4 were subjected to a variety of chemical changes with the goal of creating various functionalities and cyclisation to further elucidate the target structures. The potency of the new molecules was tested against different tuberculosis (TB) strains. The results indicated that compounds 5c, 5b, 12, and 15 (MIC = 0.24-0.98 µg/mL) are highly active against the first-line drug-sensitive strain of Mycobacterium tuberculosis (ATCC 25177). Thereafter, the anti-tubercular activity was evaluated against the two drug-resistant TB strains; ATCC 35822 and RCMB 2674, where, many compounds exhibited good activity with MIC = 0.98-62.5 3 µg/mL and 3.9-62.5 µg/mL, respectively. Compounds 5c and 15 having the highest anti-tubercular efficiency towards sensitive strain, displayed the best activity for the resistant strains by showing the MIC = 0.98 and 1.95 µg/mL for MDR TB, and showing the MIC = 3.9 and 7.81 µg/mL for XDR TB, consecutively. Finally, molecular docking studies were performed for the two most active compounds 5c and 15 to explore their enzymatic inhibitory activities.


Subject(s)
Mycobacterium tuberculosis , Molecular Docking Simulation , Benzothiazoles/pharmacology , Antihypertensive Agents , Pyrimidines/pharmacology
7.
J Enzyme Inhib Med Chem ; 38(1): 2234665, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37434404

ABSTRACT

SARS-CoV-2 pandemic in the end of 2019 led to profound consequences on global health and economy. Till producing successful vaccination strategies, the healthcare sectors suffered from the lack of effective therapeutic agents that could control the spread of infection. Thus, academia and the pharmaceutical sector prioritise SARS-CoV-2 antiviral drug discovery. Here, we exploited previous reports highlighting the anti-SARS-CoV-2 activities of isatin-based molecules to develop novel triazolo-isatins for inhibiting main protease (Mpro) of the virus, a crucial enzyme for its replication in the host cells. Particularly, sulphonamide 6b showed promising inhibitory activity with an IC50= 0.249 µM. Additionally, 6b inhibited viral cell proliferation with an IC50 of 4.33 µg/ml, and was non-toxic to VERO-E6 cells (CC50 = 564.74 µg/ml) displaying a selectivity index of 130.4. In silico analysis of 6b disclosed its ability to interact with key residues in the enzyme active site, supporting the obtained in vitro findings.


Subject(s)
COVID-19 , Isatin , Humans , SARS-CoV-2 , Sulfanilamide , Sulfonamides/pharmacology
8.
J Enzyme Inhib Med Chem ; 38(1): 2199950, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37080775

ABSTRACT

Trypanosomiasis is a protozoan disease transmitted via Trypanosoma brucei. This study aimed to examine the metabolic profile and anti-trypanosomal effect of methanol extract of Thunbergia grandifolia leaves. The liquid chromatography-high resolution electrospray ionisation mass spectrometry (LC-HRESIMS) revealed the identification of fifteen compounds of iridoid, flavonoid, lignan, phenolic acid, and alkaloid classes. The extract displayed a promising inhibitory activity against T. brucei TC 221 with MIC value of 1.90 µg/mL within 72 h. A subsequent in silico analysis of the dereplicated compounds (i.e. inverse docking, molecular dynamic simulation, and absolute binding free energy) suggested both rhodesain and farnesyl diphosphate synthase as probable targets for two compounds among those dereplicated ones in the plant extract (i.e. diphyllin and avacennone B). The absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiling of diphyllin and avacennone were calculated accordingly, where both compounds showed acceptable drug-like properties. This study highlighted the antiparasitic potential of T. grandifolia leaves.


Subject(s)
Acanthaceae , Lignans , Trypanosoma brucei brucei , Molecular Docking Simulation , Lignans/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry
9.
J Enzyme Inhib Med Chem ; 38(1): 2278022, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37982203

ABSTRACT

Significant advancements have been made in the domain of targeted anticancer therapy for the management of malignancies in recent times. VEGFR-2 is characterised by its pivotal involvement in angiogenesis and subsequent mechanisms that promote tumour cells survival. Herein, novel N-arylmethyl-aniline/chalcone hybrids 5a-5n were designed and synthesised as potential anticancer and VEGFR-2 inhibitors. The anticancer activity was evaluated at the NCI-USA, resulting in the identification of 10 remarkably potent molecules 5a-5j that were further subjected to the five-dose assays. Thereafter, they were explored for their VEGFR-2 inhibitory activity where 5e and 5h emerged as the most potent inhibitors. 5e and 5h induced apoptosis with cell cycle arrest at the SubG0-G1 phase within HCT-116 cells. Moreover, their impact on some key apoptotic genes was assessed, suggesting caspase-dependent apoptosis. Furthermore, molecular docking and molecular dynamics simulations were conducted to explore the binding modes and stability of the protein-ligand complexes.


Subject(s)
Chalcone , Chalcones , Molecular Dynamics Simulation , Chalcones/pharmacology , Molecular Docking Simulation , Vascular Endothelial Growth Factor Receptor-2 , Aniline Compounds/pharmacology , Chalcone/pharmacology
10.
J Liposome Res ; : 1-13, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37856332

ABSTRACT

Thermoresponsive drug delivery systems have been used to treat diseases that cause hyperthermia or elevated body tissue temperatures, viz., rheumatoid arthritis and different cancers. The aim of the study was to enhance berberine (BER) release using thermosensitive nanostructured lipid carriers (TNLCs) through intra-articular administration for the management of arthritis. TNLCs were prepared using binary mixtures of stearic acid and decanoic acid as solid and liquid lipids, respectively. Lipid mixtures with an optimum melting point were assessed using differential scanning calorimetry studies. In vitro characterization of the BER TNLCs included particle size, zeta potential, entrapment efficiency, and drug release at 37 °C and 41 °C. Joint diameter measurement, real-time polymerase chain reaction (RT-PC) analysis, enzyme-linked immunosorbent assay (ELISA) for inflammatory markers, and histological evaluation of the dissected joints were all performed in vivo on rats with adjuvant-induced arthritis. In vitro characterization revealed negatively charged BER-loaded TNLCs with a spherical shape, particle size less than 500 nm, BER entrapment efficiency up to 79%, and a high drug release rate at an elevated temperature of 41 °C. In silico studies revealed the affinity of BER to different formula components and to the measured biomarkers. In vivo assessment of the optimum TNLCs showed that BER TNLCs were superior to the BER solution suspension regarding their effect on inflammatory biomarkers, joint diameter, and histological studies.

11.
Arch Pharm (Weinheim) ; 356(9): e2300244, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37404064

ABSTRACT

Merging isatin and arylhydrazone moieties constitutes an efficient strategy to access new potential anticancer derivatives. Consequently, 14 hydrazone-isatin derivatives were synthesized and evaluated for their antiproliferative activity against the NCI-60 cancer cell line panel. A kinase assay demonstrated that compound VIIIb inhibited the epidermal growth factor receptor (EGFR), which was confirmed by docking studies, molecular dynamics, and binding free energy calculations. Further characterizations showed that this compound possesses drug-likeness properties, showed a significant decrease of the cell population in the G2/M phase and led to a significant increase in early and late apoptosis, comparable to erlotinib. Also, VIIIb increased the expression of caspase-3 and Bax and decreased the expression of Bcl-2, confirming its potential as a new proapoptotic compound.

12.
Molecules ; 28(7)2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37049966

ABSTRACT

Human health is experiencing several obstacles in the modern medical era, particularly cancer. As a result, the cancer therapeutic arsenal should be continually expanded with innovative small molecules that preferentially target tumour cells. In this study, we describe the development of two small molecule series (7a-d and 12a-e) based on the 1-benzyl-5-bromoindolin-2-one scaffold that connected through a hydrazone linker to a 4-arylthiazole (7a-d) or 4-methyl-5-(aryldiazenyl)thiazole (12a-e) moiety. The anticancer activity of all the reported indolin-2-one derivatives was assessed against breast (MCF-7) and lung (A-549) cancer cell lines. The 4-arylthiazole-bearing derivatives 7c and 7d revealed the best anticancer activity toward MCF-7 cells (IC50 = 7.17 ± 0.94 and 2.93 ± 0.47, respectively). Furthermore, the VEGFR-2 inhibitory activity for 7c and 7d was evaluated. Both molecules disclosed good inhibitory activity, and their IC50 values were equal to 0.728 µM and 0.503 µM, respectively. Additionally, the impacts of 7d on the cell cycle phases as well as on the levels of different apoptotic markers (caspase-3, caspase-9, Bax, and Bcl-2) were assessed. Molecular docking and dynamic simulations are carried out to explore the binding mode of 7d within the VEGFR-2 active site.


Subject(s)
Antineoplastic Agents , Vascular Endothelial Growth Factor Receptor-2 , Humans , Molecular Structure , Structure-Activity Relationship , Molecular Docking Simulation , Cell Proliferation , Antineoplastic Agents/chemistry , MCF-7 Cells , Drug Screening Assays, Antitumor , Protein Kinase Inhibitors/pharmacology
13.
Molecules ; 28(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36903440

ABSTRACT

The genus Moricandia (Brassicaceae) comprises about eight species that were used in traditional medicine. Moricandia sinaica is used to alleviate certain disorders such as syphilis and exhibits analgesic, anti-inflammatory, antipyretic, antioxidant, and antigenotoxic properties. Throughout this study, we aimed to figure out the chemical composition of lipophilic extract and essential oil obtained from M. sinaica aerial parts using GC/MS analysis, as well as their cytotoxic and antioxidant activities correlated with the major detected compounds' molecular docking. The results revealed that both the lipophilic extract and the oil were found to be rich in aliphatic hydrocarbons, accounting for 72.00% and 79.85%, respectively. Furthermore, the lipophilic extract's major constituents are octacosanol, γ-sitosterol, α-amyrin, ß-amyrin acetate, and α-tocopherol. Contrarily, monoterpenes and sesquiterpenes accounted for the majority of the essential oil. The essential oil and the lipophilic extract of M. sinaica showed cytotoxic properties towards human liver cancer cells (HepG2) with IC50 values of 126.65 and 220.21 µg/mL, respectively. The lipophilic extract revealed antioxidant activity in the DPPH assay with an IC50 value of 2679 ± 128.13 µg/mL and in the FRAP assay, moderate antioxidant potential was expressed as 44.30 ± 3.73 µM Trolox equivalent/mg sample. The molecular docking studies revealed that ꞵ-amyrin acetate, α -tocopherol, γ-sitosterol, and n-pentacosaneachieved the best docking scores for NADPH oxidase, phosphoinositide-3 kinase, and protein kinase B. Consequently, M. sinaica essential oil and lipophilic extract can be employed as a viable management strategy for oxidative stress conditions and the formulation of improved cytotoxic treatment regimens.


Subject(s)
Antineoplastic Agents , Oils, Volatile , Humans , Oils, Volatile/chemistry , Antioxidants/chemistry , Molecular Docking Simulation , Plant Extracts
14.
Bioorg Chem ; 129: 106172, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36182865

ABSTRACT

The overexpression of EGFR has been recognized as the driver mechanism in the development of several human malignancies and the clinical use of EGFR inhibitors currently constitutes the standard of care for a wide range of malignancies, including colorectal cancer. However, the clinical efficacy of EGFR targeted inhibitors is limited by the development of intrinsic or acquired resistance, requiring the discovery of new compounds with different structural characteristics from those already developed. In this context, we explored the replacement of the aminoquinazoline pharmacophore of several FDA-approved EGFR inhibitors by its bioisosteric hydrazinothiazole moiety. A series of 14 new compounds were designed, synthesized, and evaluated as potential EGFR inhibitors. Compound 5i was active against 12 different cell lines in the NCI-60 cell line panel and showed an IC50 of 6.9 ± 0.013 µM against HCT-116 cells, with no significant toxicity against normal human fibroblasts (WI-38). Further studies showed that this compound showed submicromolar activity against EGFR and was able to induce tumor cell cycle arrest and cell apoptosis. Additionally, docking experiments, molecular dynamics and binding free energy calculations were performed and confirmed the potential of 2-hydrazino-2,3-dihydrothiazole derivatives as new EGFR inhibitors.


Subject(s)
Antineoplastic Agents , Protein Kinase Inhibitors , Humans , Protein Kinase Inhibitors/chemistry , Drug Screening Assays, Antitumor , ErbB Receptors , Antineoplastic Agents/chemistry , Structure-Activity Relationship , Molecular Docking Simulation , Cell Proliferation , Molecular Structure , Cell Line, Tumor , Drug Design
15.
J Enzyme Inhib Med Chem ; 37(1): 1610-1619, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35642325

ABSTRACT

Helicobacter pylori can cause chronic gastritis, peptic ulcer, and gastric carcinoma. This study compares chemical composition and anti-H. pylori activity of mandarin leaves and marjoram herb essential oils, and their combined oil. GC/MS analysis of mandarin oil revealed six compounds (100% identified), mainly methyl-N-methyl anthranilate (89.93%), and 13 compounds (93.52% identified) of marjoram oil, mainly trans-sabinene hydrate (36.11%), terpinen-4-ol (17.97%), linalyl acetate (9.18%), and caryophyllene oxide (8.25%)). Marjoram oil (MIC = 11.40 µg/mL) demonstrated higher activity than mandarin oil (MIC = 31.25 µg/mL). The combined oil showed a synergistic effect at MIC of 1.95 µg/mL (same as clarithromycin). In-silico molecular docking on H. pylori urease, CagA, pharmacokinetic and toxicity studies were performed on major compounds from both oils. The best scores were for caryophyllene oxide then linalyl acetate and methyl-N-methyl anthranilate. Compounds revealed high safety and desirable properties. The combined oil can be an excellent candidate to manage H. pylori.


Subject(s)
Helicobacter pylori , Oils, Volatile , Origanum , Gas Chromatography-Mass Spectrometry , Molecular Docking Simulation , Oils, Volatile/chemistry , Oils, Volatile/pharmacology
16.
J Enzyme Inhib Med Chem ; 37(1): 563-572, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35012384

ABSTRACT

On account of its crucial role in the virus life cycle, SARS-COV-2 NSP13 helicase enzyme was exploited as a promising target to identify a novel potential inhibitor using multi-stage structure-based drug discovery approaches. Firstly, a 3D pharmacophore was generated based on the collected data from a protein-ligand interaction fingerprint (PLIF) study using key interactions between co-crystallised fragments and the NSP13 helicase active site. The ZINC database was screened through the generated 3D-pharmacophore retrieving 13 potential hits. All the retrieved hits exceeded the benchmark score of the co-crystallised fragments at the molecular docking step and the best five-hit compounds were selected for further analysis. Finally, a combination between molecular dynamics simulations and MM-PBSA based binding free energy calculations was conducted on the best hit (compound FWM-1) bound to NSP13 helicase enzyme, which identified FWM-1 as a potential potent NSP13 helicase inhibitor with binding free energy equals -328.6 ± 9.2 kcal/mol.


Subject(s)
COVID-19 Drug Treatment , Drug Discovery , Exoribonucleases/antagonists & inhibitors , High-Throughput Screening Assays/methods , Molecular Docking Simulation , SARS-CoV-2/drug effects , Viral Nonstructural Proteins/antagonists & inhibitors , COVID-19/virology , Catalytic Domain , Humans , Ligands , Molecular Dynamics Simulation , Quantitative Structure-Activity Relationship
17.
J Enzyme Inhib Med Chem ; 37(1): 2265-2282, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36000167

ABSTRACT

New series of thiazolyl-pyrazoline derivatives (7a-7d, 10a-10d and 13a-13f) have been synthesised and assessed for their potential EGFR and VEGFR-2 inhibitory activities. Compounds 10b and 10d exerted potent and selective inhibitory activity towards the two receptor tyrosine kinases; EGFR (IC50 = 40.7 ± 1.0 and 32.5 ± 2.2 nM, respectively) and VEGFR-2 (IC50 = 78.4 ± 1.5 and 43.0 ± 2.4 nM, respectively). The best anti-proliferative activity for the examined thiazolyl-pyrazolines was observed against the non-small lung cancer cells (NSCLC). Compounds 10b and 10d displayed pronounced efficacy against A549 (IC50 = 4.2 and 2.9 µM, respectively) and H441 cell lines (IC50 = 4.8 and 3.8 µM, respectively). Moreover, our results indicated that 10b and 10d were much more effective towards EGFR-mutated NSCLC cell lines (NCI-H1650 and NCI-H1975 cells) than gefitinib. Finally, compounds 10b and 10d induce G2/M cell cycle arrest and apoptosis and inhibit migration in A549 cancerous cells.


Subject(s)
Antineoplastic Agents , Lung Neoplasms , Pyrazoles/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Proliferation , Drug Screening Assays, Antitumor , ErbB Receptors/metabolism , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Molecular Docking Simulation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyrazoles/chemistry , Structure-Activity Relationship , Vascular Endothelial Growth Factor Receptor-2
18.
Chem Biodivers ; 19(2): e202100719, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34813168

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication depends on the interaction between the viral proteins and the human translation machinery. The cytotoxic peptide plitidepsin was found to inhibit CoV-2 up to 90 % at a concentration of 0.88 nM. In vitro studies suggest that this activity may be attributed to the inhibition of the eukaryotic translation elongation factor 1A (eEF1A). However, recent reports raised the potential for other cellular targets which plitidepsin may use to exert its potent antiviral activity. The lack of data about these potential targets represents a major limitation for its structural optimization. This work describes the use of a molecular modeling approach to rationalize the in vitro antiviral activity of plitidepsin and to identify potential cellular targets. The developed protocol involves an initial molecular docking step followed by molecular dynamics and binding free energy calculations. The results reveal the potential for plitidepsin to bind to the active site of the key enzyme SARS-CoV-2 RdRp. The results also highlight the importance of van der Waals interactions for proper binding with the enzyme. We believe that the results presented in this study could provide the grounds for the optimization of plitidepsin analogs as SARS-CoV-2 inhibitors.


Subject(s)
Antiviral Agents , Depsipeptides/chemistry , Peptides, Cyclic/chemistry , SARS-CoV-2 , Antiviral Agents/chemistry , COVID-19 , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2/drug effects
19.
Int J Mol Sci ; 23(13)2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35805916

ABSTRACT

In continuation of our antecedent work against COVID-19, three natural compounds, namely, Luteoside C (130), Kahalalide E (184), and Streptovaricin B (278) were determined as the most promising SARS-CoV-2 main protease (Mpro) inhibitors among 310 naturally originated antiviral compounds. This was performed via a multi-step in silico method. At first, a molecular structure similarity study was done with PRD_002214, the co-crystallized ligand of Mpro (PDB ID: 6LU7), and favored thirty compounds. Subsequently, the fingerprint study performed with respect to PRD_002214 resulted in the election of sixteen compounds (7, 128, 130, 156, 157, 158, 180, 184, 203, 204, 210, 237, 264, 276, 277, and 278). Then, results of molecular docking versus Mpro PDB ID: 6LU7 favored eight compounds (128, 130, 156, 180, 184, 203, 204, and 278) based on their binding affinities. Then, in silico toxicity studies were performed for the promising compounds and revealed that all of them have good toxicity profiles. Finally, molecular dynamic (MD) simulation experiments were carried out for compounds 130, 184, and 278, which exhibited the best binding modes against Mpro. MD tests revealed that luteoside C (130) has the greatest potential to inhibit SARS-CoV-2 main protease.


Subject(s)
COVID-19 Drug Treatment , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Cysteine Endopeptidases/metabolism , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Hydrolases/metabolism , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2 , Viral Nonstructural Proteins/metabolism
20.
Int J Mol Sci ; 23(20)2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36293055

ABSTRACT

The increasing prevalence of obesity has become a demanding issue in both high-income and low-income countries. Treating obesity is challenging as the treatment options have many limitations. Recently, diet modification has been commonly applied to control or prevent obesity and its risks. In this study, we investigated novel therapeutic approaches using a combination of a potential probiotic source with prebiotics. Forty-eight adult male Sprague-Dawley rats were selected and divided into seven groups (eight rats per group). The first group was fed a high-fat diet, while the second group was a negative control. The other five groups were orally administered with a probiotic, Lactiplantibacillus plantarum (L. plantarum), and potential prebiotics sources (chia seeds, green tea, and chitosan) either individually or in combination for 45 days. We collected blood samples to analyze the biochemical parameters and dissected organs, including the liver, kidney, and pancreas, to evaluate obesity-related injuries. We observed a more significant decrease in the total body weight by combining these approaches than with individual agents. Moreover, treating the obese rats with this combination decreased serum catalase, superoxide dismutase, and liver malondialdehyde levels. A histopathological examination revealed a reduction in obesity-related injuries in the liver, kidney, and pancreas. Further docking studies indicated the potential role of chia seeds and green tea components in modulating obesity and its related problems. Therefore, we suggest that the daily administration of a pre- and probiotic combination may reduce obesity and its related problems.


Subject(s)
Chitosan , Hyperlipidemias , Rats , Male , Animals , Tea , Catalase , Chitosan/pharmacology , Chitosan/therapeutic use , Rats, Sprague-Dawley , Obesity/drug therapy , Obesity/pathology , Diet, High-Fat/adverse effects , Seeds , Inflammation/drug therapy , Superoxide Dismutase , Malondialdehyde
SELECTION OF CITATIONS
SEARCH DETAIL