Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Cell Mol Biol (Noisy-le-grand) ; 70(7): 1-7, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39097902

ABSTRACT

Improving crop plants using biotechnological implications is a promising and modern approach compared to traditional methods. High-temperature exposure to the reproductive stage induces flower abortion and declines grain filling performance, leading to smaller grain production and low yield in lentil and other legumes. Thus, cloning effective candidate genes and their implication in temperature stress tolerance in lentil (Lens culinaris Medik.) using biotechnological tools is highly demandable. The 12-oxophytodienoic acid reductases (OPRs) are flavin mononucleotide-dependent oxidoreductases with vital roles in plants. They are members of the old yellow enzyme (OYE) family. These enzymes are involved in the octadecanoid pathway, which contributes to jasmonic acid biosynthesis and is essential in plant stress responses. Lentil is one of the vital legume crops affected by the temperature fluctuations caused by global warming. Therefore, in this study, the LcOPR1 gene was successfully cloned and isolated from lentils using RT-PCR to evaluate its functional responses in lentil under heat stress. The bioinformatics analysis revealed that the full-length cDNA of LcOPR1 was 1303 bp, containing an 1134 bp open reading frames (ORFs), encoding 377 amino acids with a predicted molecular weight of 41.63 and a theoretical isoelectric point of 5.61. Bioinformatics analyses revealed that the deduced LcOPR1 possesses considerable homology with other plant 12-oxophytodienoic acid reductases (OPRs). Phylogenetic tree analysis showed that LcOPR1 has an evolutionary relationship with other OPRs in different plant species of subgroup I, containing enzymes that are not required for jasmonic acid biosynthesis. The expression analysis of LcOPR1 indicated that this gene is upregulated in response to the heat-stress condition and during recovery in lentil. This study finding might be helpful to plant breeders and biotechnologists in LcOPR1 engineering and/or plant breeding programs in revealing the biological functions of LcOPR1 in lentils and the possibility of enhancing heat stress tolerance by overexpressing LcOPR1 in lentil and other legume plants under high temperature.


Subject(s)
Cloning, Molecular , Gene Expression Regulation, Plant , Lens Plant , Phylogeny , Lens Plant/genetics , Lens Plant/enzymology , Cloning, Molecular/methods , Gene Expression Regulation, Plant/genetics , Oxidoreductases/genetics , Oxidoreductases/metabolism , Amino Acid Sequence , Plant Proteins/genetics , Plant Proteins/metabolism , Hot Temperature , Genes, Plant , Heat-Shock Response/genetics , Oxylipins/metabolism , Oxidoreductases Acting on CH-CH Group Donors
2.
BMC Plant Biol ; 21(1): 303, 2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34187364

ABSTRACT

BACKGROUND: Organic mulches are widely used in crop production systems. Due to their benefits in improving soil fertility, retention of soil moisture and weed control. Field experiments were conducted during wheat growing seasons of 2018-2019 and 2019-2020 to evaluate the effects of Jatropha leaves mulch on the growth of wheat varieties 'Wadan-17' (rainfed) and 'Pirsabaq-2013' (irrigated) under well irrigated and water stress conditions (non-irrigated maintaining 40% soil field capacity). Jatropha mulch was applied to the soil surface at 0, 1, 3 and 5 Mg ha-1 before sowing grains in the field. Under conditions of water stress, Jatropha mulch significantly maintained the soil moisture content necessary for normal plant growth. RESULTS: We noted a decrease in plant height, shoot and root fresh/dry weight, leaf area, leaf relative water content (LRWC), chlorophyll, and carotenoid content due to water stress. However, water stress caused an increase in leaf and root phenolics content, leaf soluble sugars and electrolytes leakage. We observed that Jatropha mulch maintained LRWC, plant height, shoot and root fresh/dry weight, leaf area and chlorophyll content under water stress. Moreover, water stress adverse effects on leaf soluble sugar content and electrolyte leakage were reversed to normal by Jatropha mulch. CONCLUSION: Therefore, it may be concluded that Jatropha leaves mulch will minimize water stress adverse effects on wheat by maintaining soil moisture and plant water status.


Subject(s)
Crop Production/methods , Jatropha , Plant Leaves , Triticum/growth & development , Carbohydrate Metabolism , Carotenoids/metabolism , Chlorophyll/metabolism , Dehydration , Plant Roots/growth & development , Soil , Triticum/metabolism , Triticum/physiology
3.
Int J Phytoremediation ; 18(7): 738-46, 2016.
Article in English | MEDLINE | ID: mdl-26771455

ABSTRACT

The potential use of human P450-transgenic plants for phytoremediation of pesticide contaminated soils was tested in laboratory and greenhouse experiments. The transgenic P450 CYP1A2 gene Arabidopsis thaliana plants metabolize number of herbicides, insecticides and industrial chemicals. The P450 isozymes CYP1A2 expressed in A. thaliana were examined regarding the herbicide simazine (SIM). Transgenic A. thaliana plants expressing CYP1A2 gene showed significant resistance to SIM supplemented either in plant growth medium or sprayed on foliar parts. The results showed that SIM produces harmful effect on both rosette diameter and primary root length of the wild type (WT) plants. In transgenic A. thaliana lines, the rosette diameter and primary root length were not affected by SIM concentrations used in this experiment. The results indicate that CYP1A2 can be used as a selectable marker for plant transformation, allowing efficient selection of transgenic lines in growth medium and/or in soil-grown plants. The transgenic A. thaliana plants exhibited a healthy growth using doses of up to 250 µmol SIM treatments, while the non-transgenic A. thaliana plants were severely damaged with doses above 50 µmol SIM treatments. The transgenic A. thaliana plants can be used as phytoremediator of environmental SIM contaminants.


Subject(s)
Arabidopsis/metabolism , Herbicides/metabolism , Simazine/metabolism , Arabidopsis/genetics , Biodegradation, Environmental , Cytochrome P-450 CYP1A2/genetics , Cytochrome P-450 CYP1A2/metabolism , Humans , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
4.
Saudi J Biol Sci ; 29(5): 3114-3121, 2022 May.
Article in English | MEDLINE | ID: mdl-35360500

ABSTRACT

The use of natural substances for pest control in agriculture is economically viable. It benefits both the human being and the environment due to its low persistence and toxicity. Therefore, the biopesticidal potential of three- plants-derived extracts (clove [Syzygium aromaticum], Hing [Hing (Asafetida)], and Wood Ash [Eucalyptus globulas]) was evaluated against different ' 'insect's pests on five okra varieties. All the treatments were sprayed at two stages, 1st before flowering and 2nd at the fruit-bearing stage. The results of the 24 h pre-spray revealed that the mean density of Aphis gossypii, Erias insulana, and Bemisia tabaci were significantly lower on a Shehzadi variety. However, among the treatments mean density of the A. gossypii and E. insulana after 1st and 2nd treatments were substantially more bass with E. globulas. Moreover, the Mean density of aphids was significantly lower after 72 h and 1-week time intervals. Furthermore, after 1st and 2nd treatments, the B. tabaci was considerably lower with hing on Shehzadi variety. It was found in the present study that the yield of five okra varieties was affected significantly by the application of the three treatments-pesticides. Among the various treatments, the application with E. globulas recorded a considerably higher crop yield. Therefore, clove, hing and E. globulas could be effective as alternative pest management methods. Furthermore, biopesticides generally are encouraged since they can proffer the solution of controlling insect pests without any environmental concern.

5.
Plants (Basel) ; 11(6)2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35336672

ABSTRACT

Drought stress restricts the growth of okra (Abelmoschus esculentus L.) primarily by disrupting its physiological and biochemical functions. This study evaluated the role of Ascophyllum nodosum extract (ANE) in improving the drought tolerance of okra. Drought stress (3 days (control), 6 days (mild stress), and 9 days (severe stress)) and 4 doses of ANE (0, 0.1%, 0.2%, and 0.3%) were imposed after 30 days of cultivation. The results indicate that drought stress decreases the chlorophyll content (total chlorophyll, chlorophyll a, chlorophyll b, and carotenoid) but increases the activity of anthocyanin, proline, and antioxidant enzymes such as ascorbate peroxidase (APX), peroxidase (POD), and catalase (CAT). Physiological and biochemical plant disturbances and visible growth reduction in okra under drought stress were significantly decreased by the application of ANE foliar spray. ANE spray (0.3%) significantly increased the chlorophyll abundance and activity of anthocyanin, proline, and antioxidants (APX, POD, and CAT). ANE regulated and improved biochemical and physiological functions in okra under both drought and control conditions. The results of the current study show that ANE foliar spray may improve the growth performance of okra and result in the development of drought tolerance in okra.

6.
Saudi J Biol Sci ; 29(3): 1653-1667, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35280533

ABSTRACT

Biofertilizers are a promising approach to substantially improve nutrient recovery and crop production. Moreover, zinc (Zn) deficiency is one of the key abiotic factors limiting global rice production. However, the effect of Zn-biochemical co-fertilization on rice production and nutrients recovery and surplus under semi-arid environmental conditions is not fully obvious. Two years field experiment was conducted to evaluate the effect of Zn-biochemical (nitrogen "N", phosphorus "P", and potassium "K") co-fertilization on yield and yield components, physico-chemical characteristics, and nutrient recovery and surplus as well as farm profitability of four rice (Oryza sativa L.) cultivars treated with two Zn levels (no Zn application, and 600 mg chelated Zn L-1 as a foliar application) and six fertilization regimes (no fertilizers application, biofertilizers, 25% NPK plus biofertilizers, 50% NPK plus biofertilizers, 75% NPK plus biofertilizers, and 100% NPK). Biofertilizers mixture (cerealin, phosphorine, and potassiomage) were used. The results revealed that chemical constituents, growth attributes, yield, yield components, nutrients uptake (N, P, K, and Zn), and nutrients recovery (N, P, and K) significantly increased due to Zn foliar application. Biofertilizers replacement for 25% of inorganic NPK combined with Zn provides the highest nutrients uptake through increasing N, P, and K recovery by 57-94%, 61-128%, and 45-69%, respectively in the four rice cultivars compared with 100% NPK treatment. This improvement in nutrients uptake and recovery was attributed to decrease nutrients surplus by 64-78%, 46-53%, and 50-59%, respectively. Additionally, Zn-biochemical co-fertilization improves growth attributes, yield, and yield components of rice cultivars through producing more contents of chlorophyll a and b, carotenoids, total carbohydrates, and total amino acids than using 100% NPK alone. All previous characteristics significantly affected by the cultivated rice variety. The net return under the treatment of 75% NPK plus biofertilizers plus Zn foliar application was 21.5-27.5% higher than the treatment of 100% NPK. Therefore, our findings suggest that biofertilizers replacement for 25% of inorganic NPK combined with Zn foliar application supplies a financially attractive choice to substantially enhance nutrient recovery and production of rice, while effectively reducing nutrients loss.

7.
Biology (Basel) ; 11(8)2022 Aug 04.
Article in English | MEDLINE | ID: mdl-36009800

ABSTRACT

Pot trials were performed to explore the impacts of seed priming (SPr) plus leaf treatment (LTr) with trans-zeatin-type cytokinin (tZck; 0.05 mM) and silymarin (Sim; 0.5 mM) on growth, yield, physio-biochemical responses, and antioxidant defense systems in Cd-stressed wheat. tZck + Sim applied as SPr + LTr was more effective than individual treatments, and the impacts were more pronounced under stress conditions. Cd stress (0.6 mM) severely declined growth and yield traits, and photosynthesis efficiency (pigment contents, instantaneous carboxylation efficiency, and photochemical activity) compared to the control. These negative impacts coincided with increased levels of Cd2+, O2•- (superoxide), H2O2 (hydrogen peroxide), MDA (malondialdehyde), and EL (electrolyte leakage). Non-enzymatic and enzymatic antioxidant activities, and tZck and Sim contents were also increased. However, tZck + Sim increased photosynthesis efficiency, and further boosted antioxidant activities, and contents of tZck and Sim, while minimizing Cd2+ levels in roots, leaves, and grains. The levels of O2•-, H2O2, MDA, and EL were also minimized, reflecting positively on growth and productivity. tZck + Sim applied as SPr + LTr was highly effective in promoting antioxidants and photosynthesis machineries, minimizing oxidative stress biomarkers and Cd2+ levels, boosting tolerance to Cd stress, and improving wheat productivity under Cd stress.

8.
Saudi J Biol Sci ; 29(2): 822-830, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35197750

ABSTRACT

The objective of this present research is to use agricultural residues as a source of energy for heating greenhouses during winter seasons and sequestrating soil carbon dioxide through adding biochar to the soil media. To fulfill the objective of the research work, summer squash was transplanted in a constructed greenhouse and heated using an attached biomass-burning system. The performance of the attached biomass-burning system was experimentally studied under different agricultural residues (corn stalks, cotton stalks and okra stalks), heating fluids (water and oil) and air fan operating periods (10, 15 and 20 min/h). Results indicated that the biomass-burning system allowed increasing temperature and relative humidity inside the greenhouse up to 27.2 and 80 %, respectively. The maximum biomass-burning system efficiency of 81 % was achieved with the use of okra stalks as a source of energy and oil as a heating fluid side by side with adjusting the suction fan operating period at 15 min/h. Adding bio-charcoal to the soil media, enhanced the soil carbon, resulting in a total fresh yield of 3.7 and 2.9 kg/pot with a total number of leaves per plant of 55 and 47 leaves under conditions of with and without charcoal addition, respectively.

9.
Saudi J Biol Sci ; 29(2): 955-962, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35197763

ABSTRACT

This work aims to study the effect of foliar spraying of three anti-transpirants i.e., A-1: tryptophan (Tri), A2: potassium silicate (KS), A3: chitosan (Chi) as well as A0: control (Tap water) under three irrigation regimes, I1: 2400, I2: 3600, and I3: 4800 m3ha-1 on the quality and production of faba bean crop and its nutrient contents. The study was carried out during two successive winter seasons of 2018/2019 and 2019/2020. Drought stress affected the average performance of all studied traits as it reduced seed yield and traits, as a result of the decrease in chlorophyll related to photosynthesis, protein, carbohydrates, total phenols, amino acids, macronutrients (N, P, and K), micronutrient contents (Fe, Mn, and Zn) and their absorption. The single foliar spraying of faba bean with tryptophan 75 ppm, potassium silicate at 100 ppm, or chitosan at 750 ppm significantly increased all studied traits and reduced the drought stress compared to control under different irrigation systems. We recommended using a foliar spray of chitosan (750 ppm) on faba bean plants under an irrigation level of 4800 m3 led to an improvement in the physiological properties of the plant, i.e., plant height, the number of branches/plants, and the number of plants, pods plant-1, the number of seed pods-1, the weight of 100 seeds and seed yield ha-1 increased with relative increase about 42.29, 89.47, 28.85, 75.91, 24.43, and 306.48% compared to control. The quality properties also improved, as the total chlorophyll, protein, carbohydrates, total phenols, and amino acids were higher than the control with a relative increase of 63.83, 29.58, 27.72, 37.54, and 64.19%. Additionally, an increase in the contents and uptake of macronutrients (N, P, and K), and micronutrients (Fe, Mn, Zn) and their absorption. The increase was estimated with 29.41, 75.00, 16.56, 431.17, 630.48, 72.68%, 22.37, 35.69, 42.33, 397.63, 452.58, and 485.94% about the control. This was followed by potassium silicate (100 ppm), then tryptophan (75 ppm) compared to the control, which recorded the minimum values ​​in plant traits.

10.
Saudi J Biol Sci ; 29(1): 534-540, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35002449

ABSTRACT

Soil salinity is a major constraint to wheat production; it causes a severe reduction in wheat growth and yield. Alleviation of salinity effects on physiological, biochemical, and yield of wheat cultivars; Sids 14 and Misr 3 using some soil additions (control, Molasses and Humic acid), compatible solutes, and growth regulators (water as control, Naphthalene acetic acid, and Glycine betaine) were investigated in salt-affected soils. Results indicated that Misr 3 was superior to Sids 14 in all studied characteristics except flag leaf area, relative water content, plant height and recorded lower and desirable value of leaf temperature. The addition of Molasses (24 L ha-1) or Humic acid (12 L ha-1) significantly increased physiological and biochemical characteristics. At the same time, flag leaf temperature, proline, and malondialdehyde (MDA) content were decreased, yield and its attributes also increased except No. kernel spike-1. Foliar spray of Naphthalene acetic acid (NAA) at 30 mg L-1. or glycine betaine (GB 100 mM) also positively affected the studied characteristics, where Glycine betaine recorded the highest Relative water content and Fv/Fm. In contrast, NAA recorded the most increased Catalase (CAT) activity, and the Number of spikes m-2 and insignificant differences were observed between them in grain yield. It could be recommended the cultivation of Misr 3 with Molasses and GB under saline soils.

11.
Plants (Basel) ; 11(9)2022 Apr 24.
Article in English | MEDLINE | ID: mdl-35567151

ABSTRACT

Soil salinity is a major constraint to rice production in coastal areas around the globe, and modern high-yielding rice cultivars are more sensitive to high salt stress, which limits rice productivity. Traditional breeding programs find it challenging to develop stable salt-tolerant rice cultivars with other stress-tolerant for the saline environment in Bangladesh due to large yield variations caused by excessive salinity fluctuations during the dry (boro) season. We examined trait characterization of 18 advanced breeding lines using SNP genotyping and among them, we found line G6 (BR9621-B-1-2-11) (single breeding line with multiple-stress-tolerant QTL/genes) possessed 9 useful QTLs/genes, and two lines (G4:BR9620-2-7-1-1 and G14: IR 103854-8-3-AJY1) carried 7 QTLs/genes that control the desirable traits. To evaluate yield efficiency and stability of 18 rice breeding lines, two years of field experiment data were analyzed using AMMI (additive main effect and multiplicative interaction) and GGE (Genotype, Genotype Environment) biplot analysis. The AMMI analysis of variance demonstrated significant genotype, environment, and their interaction, accounting for 14.48%, 62.38%, and 19.70% of the total variation, respectively, and revealed that among the genotypes G1, G13, G14, G17, and G18 were shown to some extent promising. Genotype G13 (IR 104002-CMU 28-CMU 1-CMU 3) was the most stable yield based on the AMMI stability value. The GGE biplot analysis indicates 76% of the total variation (PC1 48.5% and PC2 27.5%) which is performed for revealing genotype × environment interactions. In the GGE biplot analysis, genotypes were checked thoroughly in two mega-environments (ME). Genotype G14 (IR103854-8-3-AJY1) was the winning genotype in ME I, whereas G1 (BR9627-1-3-1-10) in ME II. Because of the salinity and stability factors, as well as the highest averages of grain yield, the GGE and AMMI biplot model can explain that G1 and G13 are the best genotypes. These (G1, G6, G13, G14, G17, and G18) improved multiple-stress-tolerant breeding lines with stable grain yield could be included in the variety release system in Bangladesh and be used as elite donor parents for the future breeding program as well as for commercial purposes with sustainable production.

12.
Membranes (Basel) ; 11(8)2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34436408

ABSTRACT

A potent selective acrylamide liquid sensor based on the reaction of acrylamide with 2-(5-Bromo-2-pyridylazo)-5-[N-n-Propyl-N-(3-Sulfopropyl) amino] aniline reagent is successfully designed. The characteristics slope (52.33 mV/decade), linearity usable range from 1.0 × 10-7-1.0 × 10-1 molar, limit of detection (1.6 × 10-8) molar, selectivity attitude to several inorganic cations, amino acids and sugars, time of response (8 s), lifetime (four months), pH effect on the electrode potential and the basic validation parameters were studied. The desirable pH applicable range was 3.0-6.5, and the restraint of the developed sensor is independent on this working pH range. The deployed electrode was effectively applied for rapid inexpensive analysis of acrylamide cations in food products with comparison to high-performance liquid chromatographic method and the results were agreeable with each other. The obtained data by the suggested electrode were treated statistically and compared with the various recently published acrylamide sensors.

13.
Saudi J Biol Sci ; 28(9): 4884-4890, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34466062

ABSTRACT

Moths are phytophagous, cosmopolitan, agricultural pests, night pollinators, chiefly nocturnal and potential bio-indicators. The current study will be the first report on species diversity, species composition, abundance, and distributional pattern of moth fauna in Aravalli Hill Range Rajasthan. During the survey period of 2018-2019, 758 specimens of moths were collected pertaining to 34 species, 26 genera belonging to 05 families, and 13 subfamilies from three different sites of Aravalli Hill Range. Based on the number of genera, family Sphingidae was most dominant with 9 genera, and family Crambidae was least dominant with 2 genera. Based on the number of species, the family Sphingidae was the most dominant, representing 13 species, followed by Erebidae representing 11 species, Saturniidae and Noctuidae with 4 species each, the least dominant was Crambidae with 2 species. The diversity indices for moths have been calculated for the first time from the Aravalli Range of Rajasthan. Across the survey, Simpson's Diversity Index (D'), Shannon Diversity Index (H'), Dominance & Evenness was calculated as 0.95, 3.3, 0.04, and 0.8, respectively, which reflects that moth fauna is diverse in the surveyed areas.

14.
Antibiotics (Basel) ; 10(5)2021 May 12.
Article in English | MEDLINE | ID: mdl-34065896

ABSTRACT

Synbiotic (SYN) additives were assessed as an antibiotic alternative on the effects on the nonspecific immune response and disease resistance of O. niloticus to P. aeruginosa. Healthy fish (n = 120, average initial weight 18 ± 2 g) were allotted randomly into four experimental groups (3 replicates for each); 1) a control group with no additives (CON), 2) basal diet complemented with 0.1 g kg-1 diets of norfloxacin, NFLX, 3) basal diet fortified with 1 mL kg-1 diet of SYN, and 4) basal diet complemented with a mixture of NFLX and SYN, which was carried out for eight weeks. Results showed a significant increase (p < 0.01) in the serum immune parameters (total protein, globulin and albumin, nitric oxide (NO), and lysozyme activity) in the SYN group and the NFLX+SYN group compared with the CON and NFLX groups. The serum glucose, cholesterol, and triglycerides were higher in NFLX and NFLX+SYN groups than the CON and SYN groups. The catalase (CAT), superoxide dismutase, glutathione peroxidase (GPX) activities were significantly augmented in the NFLX+SYN group, followed by the SYN group compared with CON and NFLX groups. The cumulative mortality rate (CMR) of O. niloticus following the P. aeruginosa challenge was decreased in the SYN group compared to other groups. The results emphasize that synbiotic could be used as a norfloxacin alternative to enhance the related immunological parameters, including antioxidant activity and disease resistance against P. aeruginosa infection of O. niloticus.

15.
Foods ; 10(5)2021 May 20.
Article in English | MEDLINE | ID: mdl-34065246

ABSTRACT

The eastern sub-Himalayan plain of India is a popular potato growing belt in which vast scope exists to introduce processing grade cultivars. The selection and introduction of a better quality processing grade cultivar in this region may pave the way for the processing industries. Keeping these in the backdrop, this study was conducted at Instructional Farm of Uttar Banga Krishi Viswavidyalaya (UBKV), Pundibari, Cooch Behar, West Bengal, India under eastern sub-Himalayan plains during winter seasons of 2016-17 and 2017-18 in which seven processing type potato cultivars (Kufri Chipsona-1, Kufri Chipsona-3, Kufri Chipsona-4, Kufri Frysona, Kufri Himsona, Kufri Surya and Kufri Chandramukhi) were evaluated in terms of different quality parameters pre-requisite for chips processing viz., dry matter content, specific gravity, starch content, chips colour score, crispiness and hardness of chips through randomised complete block design (RCBD). The study revealed wide variation in all quality parameters amongst the cultivars. Cultivar 'Kufri Frysona' showed the highest specific gravity (1.121) as well as dry matter content (23.35%) followed by 'Kufri Chipsona-3'. The cultivar 'Kufri Frysona' showed the highest starch content (28.52%) too. Chips prepared from 'Kufri Chipsona-1' were recorded to be crispier with a relatively lower value of deformation before the first break and less hardness value. All processing type potato cultivar reflected the chips colour score <3 (evaluated, based on 1-10 scale, 10 being the darkest and least desirable) though 'Kufri Frysona' had the lowest chips colour score (1.50) signifying its superiority for the region. 'Kufri Frysona' cultivation could be recommended in this agro-climatic region particularly for chips manufacturing potato industries.

16.
Animals (Basel) ; 11(4)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923635

ABSTRACT

Cisplatin (Cis) a drug commonly used as a chemotherapeutic agent to treat various types of cancer, inducing testicular damage. The present study aimed to investigate the inhibitory potential of bone marrow-derived mesenchymal stem cells (BM-MSCs) and beetroot extract (BRE) in albino rats after testicular toxicity induced by cisplatin. Thirty adult male albino rats were grouped into: the control group, Cis group receiving a single dose of 7 mg/kg i.p. (intraperitoneal) to induce testicular toxicity, Cis plus BM-MSCs injected Cis followed by 2 × 106 of BM-MSCs; Cis plus BRE group receiving Cis followed by 300 mg/kg body weight/day of BRE, and Cis plus BM-MSCs and BRE group. In the current study, Cis reduced sperm count, serum testosterone level, and testicular activity of alkaline phosphatase (AKP), besides a marked inhibition of succinate dehydrogenase (SDH) activity. In addition, it significantly increased malondialdehyde (MDA) and along with a marked decrease in testis reduced glutathione content and total antioxidant capacity (TAC). At the same time, Cis administration resulted in a marked elevation in interleukine-6 and the iNOS and caspase-3 genes; however, it decreased the expression of steroidogenic acute regulatory protein (StAR). Combined treatment with BM-MSCs and BRE resulted in great improvement of all previous parameters. These results were also confirmed by histopathological and immunohistochemical examination. In conclusion, both MSCs and BRE were found to have potent potentials to inhibit testicular damage induced by cisplatin.

17.
Sci Rep ; 11(1): 15688, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34344946

ABSTRACT

Hepatitis is one of earlier, but serious, signs of liver damage. High doses of statins for a long time can induce hepatitis. This study aimed to evaluate and compare the therapeutic potential of thymoquinone (TQ) and bee pollen (BP) on fluvastatin (F)-induced hepatitis in rats. Rats were randomly divided into: group 1 (G1, control), G2 (F, hepatitis), G3 (F + TQ), G4 (F + BP), and G5 (F + TQ + BP). Single treatment with TQ or BP relieved fluvastatin-induced hepatitis, with best effect for the combined therapy. TQ and/or BP treatment significantly (1) reduced serum levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, gamma glutamyl transpeptidase, and total bilirubin, (2) decreased malondialdehyde levels and increased level of reduced glutathione, and activities of glutathione peroxidase and catalase in the liver, (3) improved liver histology with mild deposition of type I collagen, (4) increased mRNA levels of transforming growth factor beta 1, nuclear factor Kappa B, and cyclooxygenase 1 and 2, and (5) decreased tumor necrosis factor alpha and upregulated interleukin 10 protein in the liver. These data clearly highlight the ability of TQ and BP combined therapy to cause better ameliorative effects on fluvastatin-induced hepatitis than individual treatment by each alone.


Subject(s)
Bees , Benzoquinones/pharmacology , Chemical and Drug Induced Liver Injury/drug therapy , Fluvastatin/adverse effects , Hepatitis, Animal/drug therapy , Pollen , Animals , Antioxidants/metabolism , Biomarkers , Chemical and Drug Induced Liver Injury/diagnosis , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Disease Management , Disease Susceptibility , Gene Expression , Hepatitis, Animal/diagnosis , Hepatitis, Animal/etiology , Hepatitis, Animal/metabolism , Immunohistochemistry , Liver Function Tests , Oxidative Stress/drug effects , Rats , Treatment Outcome
18.
Animals (Basel) ; 11(6)2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34203579

ABSTRACT

The need to replace antibiotics in aquafeed is increasing, and alternative safe substances are now encouraged for sustainable aquaculture activity. Curcumin is regarded as a multifunctional feed additive with growth-promoting and immunostimulant potential. Thus, this study evaluated dietary inclusion of curcumin at rates of 0, 1.5, 2, 2.5, and 3% in the diets of Gilthead seabream for 150 days. The results showed an improved final body weight, weight gain, specific growth rate, and feed conversion ratio in fish treated with curcumin, in a dose-dependent manner. The highest growth performance was observed in fish fed a diet supplemented with 3% curcumin. The results also showed lowered activity of pathogenic bacteria (Vibrio spp. and Faecal coliform) in the intestines of Gilthead seabream fed a diet with curcumin inclusion, in a dose-dependent manner. The hematological indices were within the normal range for healthy fish, without meaningful effects except for hematocrit, hemoglobin, red blood cells (RBCs), and white blood cells (WBCs), which were markedly increased by dietary curcumin. Phagocytic activity was obviously enhanced by dietary curcumin, compared with the control. The biochemical blood metabolites related to liver function (alkaline phosphatase (ALP), aspartate aminotransferase (AST), alanine aminotransferase (ALT)), renal tissue (urea), and total cholesterol were within the normal values, without significant differences. Overall, the inclusion of curcumin at a rate of 2-3% improved the growth performance and well-being of Gilthead seabream.

19.
Animals (Basel) ; 11(6)2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34204508

ABSTRACT

This experiment was carried out to explore the efficiency of an individual or combined doses of vitamin C (Vit. C) and vitamin E (Vit. E) in alleviating biochemical, genotoxicity, and pathological changes in the liver induced by copper sulfate (CuSO4) toxicity in broiler chickens. Two hundred and fifty-one-day-old broiler chicks were haphazardly allotted into five groups (five replicates/group, ten chicks/replicate). The birds were fed five experimental diets; (1) basal diet with no additives (CON), (2) basal diets supplemented with 300 mg CuSO4/kg diet (CuSO4), (3) basal diets supplemented with 300 mg CuSO4/kg diet + 250 mg Vit. C /kg diet, (4) basal diets supplemented with 300 mg CuSO4/kg diet +250 mg Vit. E /kg diet, (5) basal diets supplemented with 300 mg CuSO4/kg diet + 250 mg Vit. C /kg diet + 250 mg Vit. E /kg diet for six weeks. The results displayed that CuSO4-intoxicated birds had significantly (p < 0.05) decreased bodyweight, weight gain, and feed intake with increased feed conversion ratio from the 2nd week till the 6th week compared with the CON. However, these changes were minimized by single or combined supplementation of vitamin C and E. The FCR was insignificantly different in birds-fed diets complemented with vitamin C and E singly or in combination from the 3rd week of age compared to the CON. Serum aminotransferases (ALT, AST) and alkaline phosphatase (ALP) were elevated in CuSO4-intoxicated birds (p < 0.05). Additionally, they showed a drop in serum total protein (TP), albumin, globulins, triglycerides (TG), total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C), very low-density lipoprotein-cholesterol (VLDL-C), and high-density lipoprotein-cholesterol (HDL-C) levels compared to the CON (p < 0.05). Concomitantly, histopathological and DNA changes were perceived in the liver of CuSO4-intoxicated birds. Co-supplementation of Vit. C and Vit. E single-handedly or combined with CuSO4-intoxicated chickens enhanced the performance traits and abovementioned changes, especially with those given combinations of vitamins. From the extant inquiry, it could be established that supplementation of vitamin C and E was beneficial for mitigating the harmful effects of CuSO4 toxicity on growth performance and liver histoarchitecture in broiler chickens.

20.
Animals (Basel) ; 11(7)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34208803

ABSTRACT

Q fever is a zoonotic disease caused by Coxiella burnetii (C. burnetii), an intracellular, Gram-negative bacterium that infects humans and domestic ruminants. Information on flock management factors associated with Q fever seropositivity in Saudi Arabia is very scarce. Therefore, the objective of this study was to identify the animal and flock management factors associated with Q fever seropositivity. For the assessment of risk factors, a case-control study was carried out. Cases (n = 25) were flocks that had recent abortions within the previous two weeks and were PCR positive for C. burnetii. Control flocks (n = 25) had no history of recent abortion and were PCR negative for C. burnetii. A questionnaire was developed to collect information about the flock management risk factors possibly associated with Q fever exposure in sheep. A total of 2437 sheep serum samples, collected from infected (n = 1610, 10-150 samples/flock) and non-infected (n = 827, 10-65 samples/flock) flocks, were tested for C. burnetii antibodies using a commercial ELISA kit between May 2018 and April 2019. In addition, 521 samples, including 50 aborted materials, 173 vaginal swabs, 134 faecal, and 164 milk samples, were collected for PCR testing. Infected flocks were 100% seropositive (within-flock seroprevalence ranging between 13.8% and 60%) and 100% PCR positive (with animal shedders of C. burnetii through aborted materials and/or vaginal fluids, feces, and milk). However, in non-infected control flocks, 28% were seropositive (within-flock seroprevalence ranging between 6.7% and 20%) and none had C. burnetii shedders. Epidemiological data were analyzed using mixed-effect logistic regression with a random effect for the flock. The results identified three protective factors: flocks with a lambing pen (odds ratio (OR): 0.46; 95% CI: 0.28-0.76), change bedding after removing aborted materials (OR: 0.42; 95% CI: 0.23-0.76), and flocks that isolated aborted ewes (OR: 0.41; 95% CI: 0.25-0.67), as well as two risk factors: flocks infested with ticks (OR: 2.78; 95% CI: 1.65-4.70) and flocks with a history of Q fever (OR: 3.03; 95% CI: 1.42-6.50). These results could be used to improve sheep flock biosecurity measures to prevent the introduction and reduce exposure of sheep and humans to Q fever infection.

SELECTION OF CITATIONS
SEARCH DETAIL