Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Magn Reson Med ; 90(3): 1151-1165, 2023 09.
Article in English | MEDLINE | ID: mdl-37093746

ABSTRACT

PURPOSE: We aimed to compare multiple MRI parameters, including relaxation rates ( R 1 $$ {R}_1 $$ , R 2 $$ {R}_2 $$ , and R 1 ρ $$ {R}_{1\rho } $$ ), ADC from diffusion weighted imaging, pool size ratio (PSR) from quantitative magnetization transfer, and measures of exchange from spin-lock imaging ( S ρ $$ {S}_{\rho } $$ ), for assessing and predicting the severity of polycystic kidney disease (PKD) over time. METHODS: Pcy/Pcy mice with CD1 strain, a mouse model of autosomal dominant PKD, were imaged at 5, 9, and 26 wk of age using a 7T MRI system. Twelve-week normal CD1 mice were used as controls. Post-mortem paraffin tissue sections were stained using hematoxylin and eosin and picrosirius red to identify histological changes. RESULTS: Histology detected segmental cyst formation in the early stage (week 5) and progression of PKD over time in Pcy kidneys. In T 2 $$ {T}_2 $$ -weighted images, small cysts appeared locally in cystic kidneys in week 5 and gradually extended to the whole cortex and outer stripe of outer medulla region from week 5 to week 26. Regional PSR, R 1 $$ {R}_1 $$ , R 2 $$ {R}_2 $$ , and R 1 ρ $$ {R}_{1\rho } $$ decreased consistently over time compared to normal kidneys, with significant changes detected in week 5. Among all the MRI measures, R 2 $$ {R}_2 $$ and R 1 ρ $$ {R}_{1\rho } $$ allow highest detectability to PKD, while PSR and R 1 $$ {R}_1 $$ have highest correlation with pathological indices of PKD. Using optimum MRI parameters as regressors, multiple linear regression provides reliable prediction of PKD progression. CONCLUSION: R 2 $$ {R}_2 $$ , R 1 $$ {R}_1 $$ , and PSR are sensitive indicators of the presence of PKD. Multiparametric MRI allows a comprehensive analysis of renal changes caused by cyst formation and expansion.


Subject(s)
Cysts , Multiparametric Magnetic Resonance Imaging , Polycystic Kidney Diseases , Mice , Animals , Polycystic Kidney Diseases/diagnostic imaging , Polycystic Kidney Diseases/pathology , Kidney/diagnostic imaging , Kidney/pathology , Magnetic Resonance Imaging , Cysts/pathology , Disease Models, Animal
2.
Nucleic Acids Res ; 41(12): 6347-59, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23625968

ABSTRACT

The adaptive immunity of bacteria against foreign nucleic acids, mediated by CRISPR (clustered regularly interspaced short palindromic repeats), relies on the specific incorporation of short pieces of the invading foreign DNA into a special genomic locus, termed CRISPR array. The stored sequences (spacers) are subsequently used in the form of small RNAs (crRNAs) to interfere with the target nucleic acid. We explored the DNA-binding mechanism of the immunization protein Csn2 from the human pathogen Streptococcus agalactiae using different biochemical techniques, atomic force microscopic imaging and molecular dynamics simulations. The results demonstrate that the ring-shaped Csn2 tetramer binds DNA ends through its central hole and slides inward, likely by a screw motion along the helical path of the enclosed DNA. The presented data indicate an accessory function of Csn2 during integration of exogenous DNA by end-joining.


Subject(s)
Bacterial Proteins/chemistry , DNA-Binding Proteins/chemistry , DNA/chemistry , Bacterial Proteins/metabolism , Calcium/metabolism , DNA/metabolism , DNA/ultrastructure , DNA-Binding Proteins/metabolism , Microscopy, Atomic Force , Molecular Dynamics Simulation , Motion , Protein Binding , Streptococcus agalactiae
3.
Clin Exp Med ; 24(1): 122, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856863

ABSTRACT

Regulatory T cells (Tregs) are known to facilitate tumor progression by suppressing CD8+ T cells within the tumor microenvironment (TME), thereby also hampering the effectiveness of immune checkpoint inhibitors (ICIs). While systemic depletion of Tregs can enhance antitumor immunity, it also triggers undesirable autoimmune responses. Therefore, there is a need for therapeutic agents that selectively target Tregs within the TME without affecting systemic Tregs. In this study, as shown also by others, the chemokine (C-C motif) receptor 8 (CCR8) was found to be predominantly expressed on Tregs within the TME of both humans and mice, representing a unique target for selective depletion of tumor-residing Tregs. Based on this, we developed BAY 3375968, a novel anti-human CCR8 antibody, along with respective surrogate anti-mouse CCR8 antibodies, and demonstrated their in vitro mode-of-action through induction of potent antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP) activities. In vivo, anti-mouse CCR8 antibodies effectively depleted Tregs within the TME primarily via ADCP, leading to increased CD8+ T cell infiltration and subsequent tumor growth inhibition across various cancer models. This monotherapeutic efficacy was significantly enhanced in combination with ICIs. Collectively, these findings suggest that CCR8 targeting represents a promising strategy for Treg depletion in cancer therapies. BAY 3375968 is currently under investigation in a Phase I clinical trial (NCT05537740).


Subject(s)
Receptors, CCR8 , T-Lymphocytes, Regulatory , Tumor Microenvironment , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Receptors, CCR8/immunology , Receptors, CCR8/antagonists & inhibitors , Animals , Mice , Humans , Tumor Microenvironment/immunology , Tumor Microenvironment/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , CD8-Positive T-Lymphocytes/immunology , Female , Antibody-Dependent Cell Cytotoxicity , Lymphocyte Depletion , Cell Line, Tumor , Phagocytosis/drug effects , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use
4.
J Biol Chem ; 287(18): 15087-99, 2012 Apr 27.
Article in English | MEDLINE | ID: mdl-22399289

ABSTRACT

Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated Cl(-) channel expressed in the apical plasma membrane of fluid-transporting epithelia, where the plasma membrane abundance of CFTR is in part controlled by clathrin-mediated endocytosis. The protein networks that control CFTR endocytosis in epithelial cells have only been partially explored. The assembly polypeptide-2 complex (AP-2) is the prototypical endocytic adaptor critical for optimal clathrin coat formation. AP-2 is essential for recruitment of cargo proteins bearing the YXXΦ motif. Although AP-2 interacts directly with CFTR in vitro and facilitates CFTR endocytosis in some cell types, it remains unknown whether it is critical for CFTR uptake into clathrin-coated vesicles (CCVs). Disabled-2 (Dab2) is a clathrin-associated sorting protein (CLASP) that contributes to clathrin recruitment, vesicle formation, and cargo selection. In intestinal epithelial cells Dab2 was not found to play a direct role in CFTR endocytosis. By contrast, AP-2 and Dab2 were shown to facilitate CFTR endocytosis in human airway epithelial cells, although the specific mechanism remains unknown. Our data demonstrate that Dab2 mediates AP-2 independent recruitment of CFTR to CCVs in polarized human airway epithelial cells. As a result, it facilitates CFTR endocytosis and reduces CFTR abundance and stability in the plasma membrane. These effects are mediated by the DAB homology domain. Moreover, we show that in human airway epithelial cells AP-2 is not essential for CFTR recruitment to CCVs.


Subject(s)
Adaptor Protein Complex 2/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Cell Polarity/physiology , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/metabolism , Respiratory Mucosa/metabolism , Transport Vesicles/metabolism , Adaptor Protein Complex 2/genetics , Adaptor Proteins, Signal Transducing/genetics , Amino Acid Motifs , Apoptosis Regulatory Proteins , Cell Line , Cell Membrane/genetics , Cell Membrane/metabolism , Clathrin/genetics , Clathrin/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Endocytosis/physiology , Epithelial Cells/cytology , Humans , Protein Stability , Protein Structure, Tertiary , Respiratory Mucosa/cytology , Transport Vesicles/genetics , Tumor Suppressor Proteins
5.
Biol Chem ; 394(11): 1475-83, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23893688

ABSTRACT

Prion diseases are fatal neurodegenerative diseases which occur as sporadic, genetic, and transmissible disorders. A molecular hallmark of prion diseases is the conformational conversion of the host-encoded cellular form of the prion protein (PrPC) into its misfolded pathogenic isoform (PrPSc). PrPSc is the main component of the pathological and infectious prion agent. The study of the conversion mechanism from PrPC to PrPSc is a major field in prion research. PrPC is glycosylated and attached to the plasma membrane via its glycosyl phosphatidyl inositol (GPI)-anchor. In this study we established and characterised the expression of fully posttranslationally modified mammalian Syrian golden hamster PrPC in the yeast Pichia pastoris using native PrPC-specific N- and C-terminal signal sequences. In vivo as well as in vitro-studies demonstrated that the signal sequences controlled posttranslational processing and trafficking of native PrPC, resulting in PrPC localised in the plasma membrane of P. pastoris. In addition, the glycosylation pattern of native PrPC could be confirmed.


Subject(s)
Pichia/chemistry , Pichia/genetics , PrPSc Proteins/chemistry , PrPSc Proteins/genetics , Protein Processing, Post-Translational , Animals , Cell Line, Transformed , Cricetinae , Genetic Vectors , Glycosylation , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Mesocricetus , Pichia/metabolism , PrPSc Proteins/metabolism , Protein Processing, Post-Translational/genetics , Protein Sorting Signals/genetics , Protein Transport/genetics , Transfection
6.
Liver Int ; 33(10): 1527-35, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23758865

ABSTRACT

BACKGROUND & AIMS: The bile salt export pump (BSEP, ABCB11) is essential for bile salt secretion at the canalicular membrane of liver cells. Clinical phenotypes associated with BSEP mutations are commonly categorized as benign recurrent intrahepatic cholestasis (BRIC-2) or progressive familial intrahepatic cholestasis (PFIC-2). METHODS: The molecular basis of BSEP-associated liver disease in a sibling pair was characterized by immunostaining, gene sequencing, bile salt analysis and recombinant expression in mammalian cells and yeast for localization and in vitro activity studies respectively. RESULTS: Benign recurrent intrahepatic cholestasis was considered in a brother and sister who both suffered from intermittent cholestasis since childhood. Gene sequencing of ABCB11 identified the novel missense mutation p.G374S, which is localized in the putative sixth transmembrane helix of BSEP. Liver fibrosis was present in the brother at the age of 18 with progression to cirrhosis within 3 years. Immunofluorescence of liver tissue showed clear canalicular BSEP expression; however, biliary concentration of bile salts was drastically reduced. In line with these in vivo findings, HEK293 cells showed regular membrane targeting of human BSEP(G374S), whereas in vitro transport measurements revealed a strongly reduced transport activity. CONCLUSIONS: The novel mutation p.G374S impairs transport function without disabling membrane localization of BSEP. While all other known BSEP mutations within transmembrane helices are associated with PFIC-2, the new p.G374S mutation causes a transitional phenotype between BRIC-2 and PFIC-2.


Subject(s)
ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Liver Cirrhosis, Biliary/genetics , Models, Molecular , Protein Conformation , ATP Binding Cassette Transporter, Subfamily B, Member 11 , ATP-Binding Cassette Transporters/chemistry , Base Sequence , Bile Acids and Salts/analysis , Blotting, Western , Chromatography, High Pressure Liquid , Cloning, Molecular , DNA Primers/genetics , Female , Fluorescent Antibody Technique , HEK293 Cells , Humans , Liver Cirrhosis, Biliary/pathology , Male , Molecular Sequence Data , Mutagenesis , Mutation, Missense/genetics , Sequence Analysis, DNA , Siblings , Tandem Mass Spectrometry , Yeasts , Young Adult
7.
J Struct Biol ; 178(3): 350-62, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22531577

ABSTRACT

The prokaryotic immune system, CRISPR, confers an adaptive and inheritable defense mechanism against invasion by mobile genetic elements. Guided by small CRISPR RNAs (crRNAs), a diverse family of CRISPR-associated (Cas) proteins mediates the targeting and inactivation of foreign DNA. Here, we demonstrate that Csn2, a Cas protein likely involved in spacer integration, forms a tetramer in solution and structurally possesses a ring-like structure. Furthermore, co-purified Ca(2+) was found important for the DNA binding property of Csn2, which contains a helicase fold, with highly conserved DxD and RR motifs found throughout Csn2 proteins. We could verify that Csn2 binds ds-DNA. In addition molecular dynamics simulations suggested a Csn2 conformation that can "sit" on the DNA helix and binds DNA in a groove on the outside of the ring.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Crystallography, X-Ray/methods , Streptococcus agalactiae/metabolism , DNA/metabolism , Protein Binding
8.
Transl Vis Sci Technol ; 11(10): 36, 2022 10 03.
Article in English | MEDLINE | ID: mdl-36282118

ABSTRACT

Purpose: To evaluate the molecular, pharmacokinetic, and pharmacological properties of three anti-vascular endothelial growth factor (VEGF) agents-aflibercept, brolucizumab, and ranibizumab-and to provide a prediction of the optimal design of an intravitreal VEGF challenge in rabbits to assess the preclinical in vivo activity of the different anti-VEGF agents. Methods: Biochemical analyses and cellular and animal models of retinopathy were used to characterize anti-VEGF efficacy. Anti-VEGF biochemical binding affinity was determined through a kinetic exclusion assay. The in vitro potency was investigated by a calcium mobilization assay. Pharmacokinetic parameters were estimated for each drug to predict intraocular exposure relationships among the agents. The in silico modeling efforts informed the design of an in vivo rabbit model of VEGF-induced retinal hyperpermeability to determine the extent of VEGF neutralization in vivo. Consequently, data generated from the in vivo study enabled pharmacokinetic analysis and the generation of a logistical model describing the impact of the anti-VEGF agents on the VEGF-induced vascular leakage in rabbits. Results: The three anti-VEGF agents ranked from most efficacious to least efficacious as aflibercept, brolucizumab, and ranibizumab, with results consistent and significant within each individual characterization experiment. Conclusions: This composite study demonstrated how the molecular properties of aflibercept, brolucizumab, and ranibizumab translate into differences of in vivo efficacy, with results in line with the reported literature. Translational Relevance: In silico, in vitro, and in vivo integrated studies provide information that enables the enhanced characterization of translational properties of anti-VEGF agents currently used for the treatment of retinal diseases.


Subject(s)
Calcium , Ranibizumab , Animals , Rabbits , Ranibizumab/pharmacology , Ranibizumab/therapeutic use , Endothelial Growth Factors , Bevacizumab/pharmacology , Bevacizumab/therapeutic use , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , Intravitreal Injections , Vascular Endothelial Growth Factor A/metabolism
9.
Cancer Rep (Hoboken) ; 5(9): e1566, 2022 09.
Article in English | MEDLINE | ID: mdl-34791835

ABSTRACT

BACKGROUND: CD148 is a transmembrane protein tyrosine phosphatase that is expressed in multiple cell types. Previous studies have shown that CD148 dephosphorylates growth factor receptors and their signaling molecules, including EGFR and ERK1/2, and negatively regulates cancer cell growth. Furthermore, research of clinical patients has shown that highly linked CD148 gene polymorphisms, Gln276Pro (Q276P) and Arg326Gln (R326Q), are associated with an increased risk of several types of cancer. However, the biological effects of these missense mutations have not been studied. AIM: We aimed to determine the biological effects of CD148 Q276P/R326Q mutations in cancer cell proliferation and growth factor signaling, with emphasis on EGFR signaling. METHODS: CD148 forms, wild-type (WT) or Q276P/R326Q, were retrovirally introduced into A431D epidermoid carcinoma cells that lacks CD148 expression. The stable cells that express comparable levels of CD148 were sorted by flow cytometry. A431D cells infected with empty retrovirus was used as a control. CD148 localization, cell proliferation rate, EGFR signaling, and the response to thrombospondin-1 (TSP1), a CD148 ligand, were assessed by immunostaining, cell proliferation assay, enzyme-linked immunosorbent assay, and Western blotting. RESULTS: Both CD148 forms (WT, Q276P/R326Q) were distributed to cell surface and all three cell lines expressed same level of EGFR. Compared to control cells, the A431D cells that express CD148 forms showed significantly lower cell proliferation rates. EGF-induced EGFR and ERK1/2 phosphorylation as well as cell proliferation were also significantly reduced in these cells. Furthermore, TSP1 inhibited cell proliferation in CD148 (WT, Q276P/R326Q)-expressing A431D cells, while it showed no effects in control cells. However, significant differences were not observed between CD148 WT and Q276P/R326Q cells. CONCLUSION: Our data demonstrates that Q276P/R326Q mutations do not have major effects on TSP1-CD148 interaction as well as on CD148's cellular localization and activity to inhibit EGFR signaling and cell proliferation.


Subject(s)
Carcinoma, Squamous Cell , Receptor-Like Protein Tyrosine Phosphatases, Class 3 , Carcinoma, Squamous Cell/genetics , Cell Proliferation/genetics , ErbB Receptors/genetics , Humans , Polymorphism, Genetic , Receptor-Like Protein Tyrosine Phosphatases, Class 3/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 3/metabolism
10.
Nat Commun ; 11(1): 2992, 2020 06 12.
Article in English | MEDLINE | ID: mdl-32532974

ABSTRACT

Activated protein C (APC) is a plasma serine protease with antithrombotic and cytoprotective functions. Based on the hypothesis that specific inhibition of APC's anticoagulant but not its cytoprotective activity can be beneficial for hemophilia therapy, 2 types of inhibitory monoclonal antibodies (mAbs) are tested: A type I active-site binding mAb and a type II mAb binding to an exosite on APC (required for anticoagulant activity) as shown by X-ray crystallography. Both mAbs increase thrombin generation and promote plasma clotting. Type I blocks all APC activities, whereas type II preserves APC's cytoprotective function. In normal monkeys, type I causes many adverse effects including animal death. In contrast, type II is well-tolerated in normal monkeys and shows both acute and prophylactic dose-dependent efficacy in hemophilic monkeys. Our data show that the type II mAb can specifically inhibit APC's anticoagulant function without compromising its cytoprotective function and offers superior therapeutic opportunities for hemophilia.


Subject(s)
Antibodies, Monoclonal/pharmacology , Hemophilia A/prevention & control , Immunoglobulin Fab Fragments/immunology , Protein C Inhibitor/pharmacology , Protein C/antagonists & inhibitors , Animals , Antibodies, Monoclonal/classification , Antibodies, Monoclonal/immunology , Bleeding Time , Cell Membrane Permeability/drug effects , Cells, Cultured , Crystallography, X-Ray , Hemophilia A/blood , Hemorrhage/prevention & control , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/physiology , Humans , Immunoglobulin Fab Fragments/metabolism , Macaca fascicularis , Male , Protein C/chemistry , Protein C/immunology , Protein C/metabolism , Protein C Inhibitor/blood , Protein C Inhibitor/pharmacokinetics
11.
World J Gastroenterol ; 23(29): 5295-5303, 2017 Aug 07.
Article in English | MEDLINE | ID: mdl-28839429

ABSTRACT

AIM: To investigate the relation of two different mutations to the outcome of partial external biliary diversion (PEBD) in severe bile salt export pump (BSEP) deficiency. METHODS: Mutations in the gene encoding BSEP leading to severe BSEP deficiency in two unrelated patients were identified by genomic sequencing. Native liver biopsies and transiently transfected human embryonic kidney (HEK) 293 cells expressing either wild-type or mutated BSEP were subjected to immunofluorescence analysis to assess BSEP transporter localization. Bile acid profiles of patient and control bile samples were generated by ultra-performance liquid chromatography-tandem mass spectrometry. Wild-type and mutant BSEP transport of [3H]-labeled taurocholate (TC) and taurochenodeoxycholate (TCDC) was assessed by vesicular transport assays. RESULTS: A girl (at 2 mo) presented with pruritus, jaundice and elevated serum bile salts (BS). PEBD stabilized liver function and prevented liver transplantation. She was heterozygous for the BSEP deletion p.T919del and the nonsense mutation p.R1235X. At the age of 17 years relative amounts of conjugated BS in her bile were normal, while total BS were less than 3% as compared to controls. An unrelated boy (age 1.5 years) presenting with severe pruritus and elevated serum BS was heterozygous for the same nonsense and another missense mutation, p.G1032R. PEBD failed to alleviate pruritus, eventually necessitating liver transplantation. BS concentration in bile was about 5% of controls. BS were mainly unconjugated with an unusual low amount of chenodeoxycholate derivatives (< 5%). The patients' native liver biopsies showed canalicular BSEP expression. Both BSEP p.T919del and p.G1032R were localized in the plasma membrane in HEK293 cells. In vitro transport assays showed drastic reduction of transport by both mutations. Using purified recombinant BSEP as quantifiable reference, per-molecule transport rates for TC and TCDC were determined to be 3 and 2 BS molecules per wild-type BSEP transporter per minute, respectively. CONCLUSION: In summary, our findings suggest that residual function of BSEP as well as substrate specificity influence the therapeutic effectiveness of PEBD in progressive familial intrahepatic cholestasis type 2 (PFIC-2).


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 11/deficiency , Biliary Tract Surgical Procedures/methods , Cholestasis, Intrahepatic/genetics , Cholestasis, Intrahepatic/surgery , ATP Binding Cassette Transporter, Subfamily B, Member 11/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 11/metabolism , Adolescent , Bile Acids and Salts/analysis , Bile Acids and Salts/chemistry , Biological Transport/genetics , Biopsy , Chromatography, High Pressure Liquid , Female , HEK293 Cells , Humans , Infant , Liver/pathology , Liver Transplantation , Male , Mutagenesis , Mutation, Missense , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Analysis, DNA , Substrate Specificity , Tandem Mass Spectrometry , Taurochenodeoxycholic Acid/metabolism , Taurocholic Acid/metabolism , Transfection , Treatment Outcome
12.
PLoS One ; 8(4): e60620, 2013.
Article in English | MEDLINE | ID: mdl-23593265

ABSTRACT

The human liver ATP-binding cassette (ABC) transporters bile salt export pump (BSEP/ABCB11) and the multidrug resistance protein 3 (MDR3/ABCB4) fulfill the translocation of bile salts and phosphatidylcholine across the apical membrane of hepatocytes. In concert with ABCG5/G8, these two transporters are responsible for the formation of bile and mutations within these transporters can lead to severe hereditary diseases. In this study, we report the heterologous overexpression and purification of human BSEP and MDR3 as well as the expression of the corresponding C-terminal GFP-fusion proteins in the yeast Pichia pastoris. Confocal laser scanning microscopy revealed that BSEP-GFP and MDR3-GFP are localized in the plasma membrane of P. pastoris. Furthermore, we demonstrate the first purification of human BSEP and MDR3 yielding ∼1 mg and ∼6 mg per 100 g of wet cell weight, respectively. By screening over 100 detergents using a dot blot technique, we found that only zwitterionic, lipid-like detergents such as Fos-cholines or Cyclofos were able to extract both transporters in sufficient amounts for subsequent functional analysis. For MDR3, fluorescence-detection size exclusion chromatography (FSEC) screens revealed that increasing the acyl chain length of Fos-Cholines improved monodispersity. BSEP purified in n-dodecyl-ß-D-maltoside or Cymal-5 after solubilization with Fos-choline 16 from P. pastoris membranes showed binding to ATP-agarose. Furthermore, detergent-solubilized and purified MDR3 showed a substrate-inducible ATPase activity upon addition of phosphatidylcholine lipids. These results form the basis for further biochemical analysis of human BSEP and MDR3 to elucidate the function of these clinically relevant ABC transporters.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/isolation & purification , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/isolation & purification , Gene Expression , Liver/metabolism , Pichia/genetics , ATP Binding Cassette Transporter, Subfamily B/chemistry , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 11 , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/metabolism , Adenosine Triphosphatases/metabolism , Cloning, Molecular , Detergents/chemistry , Humans , Pichia/metabolism , Protein Transport , Solubility
13.
PLoS One ; 6(5): e20562, 2011.
Article in English | MEDLINE | ID: mdl-21655228

ABSTRACT

Homologous recombination in Saccharomyces cerevisiae is a well-studied process. Here, we describe a yeast-recombination-based approach to construct and mutate plasmids containing the cDNA of the human bile salt export pump (BSEP) that has been shown to be unstable in E. coli. Using this approach, we constructed the necessary plasmids for a heterologous overexpression of BSEP in the yeast Pichia pastoris. We then applied a new site-directed mutagenesis method, DREAM (Directed REcombination-Assisted Mutagenesis) that completely bypasses E. coli by using S. cerevisiae as the plasmid host with high mutagenesis efficiency. Finally, we show how to apply this strategy to unstable non-yeast plasmids by rapidly turning an existing mammalian BSEP expression construct into a S. cerevisiae-compatible plasmid and analyzing the impact of a BSEP mutation in several mammalian cell lines.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Pichia/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 11 , ATP-Binding Cassette Transporters/genetics , Flow Cytometry , HEK293 Cells , Humans , Mutagenesis, Site-Directed , Pichia/genetics , Polymerase Chain Reaction , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL