Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Cell ; 187(5): 1191-1205.e15, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38366592

ABSTRACT

Carbohydrate intolerance, commonly linked to the consumption of lactose, fructose, or sorbitol, affects up to 30% of the population in high-income countries. Although sorbitol intolerance is attributed to malabsorption, the underlying mechanism remains unresolved. Here, we show that a history of antibiotic exposure combined with high fat intake triggered long-lasting sorbitol intolerance in mice by reducing Clostridia abundance, which impaired microbial sorbitol catabolism. The restoration of sorbitol catabolism by inoculation with probiotic Escherichia coli protected mice against sorbitol intolerance but did not restore Clostridia abundance. Inoculation with the butyrate producer Anaerostipes caccae restored a normal Clostridia abundance, which protected mice against sorbitol-induced diarrhea even when the probiotic was cleared. Butyrate restored Clostridia abundance by stimulating epithelial peroxisome proliferator-activated receptor-gamma (PPAR-γ) signaling to restore epithelial hypoxia in the colon. Collectively, these mechanistic insights identify microbial sorbitol catabolism as a potential target for approaches for the diagnosis, treatment, and prevention of sorbitol intolerance.


Subject(s)
Carbohydrate Metabolism, Inborn Errors , Gastrointestinal Microbiome , Sorbitol , Animals , Mice , Anti-Bacterial Agents/pharmacology , Butyrates , Clostridium , Escherichia coli , Sorbitol/metabolism
2.
Nature ; 578(7795): 432-436, 2020 02.
Article in English | MEDLINE | ID: mdl-31968354

ABSTRACT

Our current knowledge about nucleocytoplasmic large DNA viruses (NCLDVs) is largely derived from viral isolates that are co-cultivated with protists and algae. Here we reconstructed 2,074 NCLDV genomes from sampling sites across the globe by building on the rapidly increasing amount of publicly available metagenome data. This led to an 11-fold increase in phylogenetic diversity and a parallel 10-fold expansion in functional diversity. Analysis of 58,023 major capsid proteins from large and giant viruses using metagenomic data revealed the global distribution patterns and cosmopolitan nature of these viruses. The discovered viral genomes encoded a wide range of proteins with putative roles in photosynthesis and diverse substrate transport processes, indicating that host reprogramming is probably a common strategy in the NCLDVs. Furthermore, inferences of horizontal gene transfer connected viral lineages to diverse eukaryotic hosts. We anticipate that the global diversity of NCLDVs that we describe here will establish giant viruses-which are associated with most major eukaryotic lineages-as important players in ecosystems across Earth's biomes.


Subject(s)
Biodiversity , DNA Viruses/classification , DNA Viruses/genetics , Eukaryotic Cells/metabolism , Eukaryotic Cells/virology , Host Microbial Interactions/genetics , Metagenomics , Animals , Capsid Proteins/genetics , Gene Transfer, Horizontal , Genome, Viral/genetics , Giant Viruses/classification , Giant Viruses/genetics , Phylogeny
3.
Nucleic Acids Res ; 52(D1): D164-D173, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37930866

ABSTRACT

Plasmids are mobile genetic elements found in many clades of Archaea and Bacteria. They drive horizontal gene transfer, impacting ecological and evolutionary processes within microbial communities, and hold substantial importance in human health and biotechnology. To support plasmid research and provide scientists with data of an unprecedented diversity of plasmid sequences, we introduce the IMG/PR database, a new resource encompassing 699 973 plasmid sequences derived from genomes, metagenomes and metatranscriptomes. IMG/PR is the first database to provide data of plasmid that were systematically identified from diverse microbiome samples. IMG/PR plasmids are associated with rich metadata that includes geographical and ecosystem information, host taxonomy, similarity to other plasmids, functional annotation, presence of genes involved in conjugation and antibiotic resistance. The database offers diverse methods for exploring its extensive plasmid collection, enabling users to navigate plasmids through metadata-centric queries, plasmid comparisons and BLAST searches. The web interface for IMG/PR is accessible at https://img.jgi.doe.gov/pr. Plasmid metadata and sequences can be downloaded from https://genome.jgi.doe.gov/portal/IMG_PR.


Subject(s)
Metagenome , Microbiota , Humans , Metadata , Software , Databases, Genetic , Plasmids/genetics
4.
Nucleic Acids Res ; 51(D1): D723-D732, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36382399

ABSTRACT

The Integrated Microbial Genomes & Microbiomes system (IMG/M: https://img.jgi.doe.gov/m/) at the Department of Energy (DOE) Joint Genome Institute (JGI) continues to provide support for users to perform comparative analysis of isolate and single cell genomes, metagenomes, and metatranscriptomes. In addition to datasets produced by the JGI, IMG v.7 also includes datasets imported from public sources such as NCBI Genbank, SRA, and the DOE National Microbiome Data Collaborative (NMDC), or submitted by external users. In the past couple years, we have continued our effort to help the user community by improving the annotation pipeline, upgrading the contents with new reference database versions, and adding new analysis functionalities such as advanced scaffold search, Average Nucleotide Identity (ANI) for high-quality metagenome bins, new cassette search, improved gene neighborhood display, and improvements to metatranscriptome data display and analysis. We also extended the collaboration and integration efforts with other DOE-funded projects such as NMDC and DOE Biology Knowledgebase (KBase).


Subject(s)
Data Management , Genomics , Genome, Bacterial , Software , Genome, Archaeal , Databases, Genetic , Metagenome
5.
Nucleic Acids Res ; 51(D1): D733-D743, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36399502

ABSTRACT

Viruses are widely recognized as critical members of all microbiomes. Metagenomics enables large-scale exploration of the global virosphere, progressively revealing the extensive genomic diversity of viruses on Earth and highlighting the myriad of ways by which viruses impact biological processes. IMG/VR provides access to the largest collection of viral sequences obtained from (meta)genomes, along with functional annotation and rich metadata. A web interface enables users to efficiently browse and search viruses based on genome features and/or sequence similarity. Here, we present the fourth version of IMG/VR, composed of >15 million virus genomes and genome fragments, a ≈6-fold increase in size compared to the previous version. These clustered into 8.7 million viral operational taxonomic units, including 231 408 with at least one high-quality representative. Viral sequences in IMG/VR are now systematically identified from genomes, metagenomes, and metatranscriptomes using a new detection approach (geNomad), and IMG standard annotation are complemented with genome quality estimation using CheckV, taxonomic classification reflecting the latest taxonomic standards, and microbial host taxonomy prediction. IMG/VR v4 is available at https://img.jgi.doe.gov/vr, and the underlying data are available to download at https://genome.jgi.doe.gov/portal/IMG_VR.


Subject(s)
Databases, Genetic , Genome, Viral , Metadata , Metagenomics , Software
6.
Environ Microbiol ; 25(9): 1644-1658, 2023 09.
Article in English | MEDLINE | ID: mdl-37032561

ABSTRACT

Many Archaea produce membrane-spanning lipids that enable life in extreme environments. These isoprenoid glycerol dibiphytanyl glycerol tetraethers (GDGTs) may contain up to eight cyclopentyl and one cyclohexyl ring, where higher degrees of cyclization are associated with more acidic, hotter or energy-limited conditions. Recently, the genes encoding GDGT ring synthases, grsAB, were identified in two Sulfolobaceae; however, the distribution and abundance of grs homologs across environments inhabited by these and related organisms remain a mystery. To address this, we examined the distribution of grs homologs in relation to environmental temperature and pH, from thermal springs across Earth, where sequences derive from metagenomes, metatranscriptomes, single-cell and cultivar genomes. The abundance of grs homologs shows a strong negative correlation to pH, but a weak positive correlation to temperature. Archaeal genomes and metagenome-assembled genomes (MAGs) that carry two or more grs copies are more abundant in low pH springs. We also find grs in 12 archaeal classes, with the most representatives in Thermoproteia, followed by MAGs of the uncultured Korarchaeia, Bathyarchaeia and Hadarchaeia, while several Nitrososphaeria encodes >3 copies. Our findings highlight the key role of grs-catalysed lipid cyclization in archaeal diversification across hot and acidic environments.


Subject(s)
Hot Springs , Glycerol , Cyclization , Glyceryl Ethers/chemistry , Archaea/genetics , Archaea/chemistry , Membrane Lipids/chemistry , Hydrogen-Ion Concentration
7.
Nucleic Acids Res ; 49(D1): D764-D775, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33137183

ABSTRACT

Viruses are integral components of all ecosystems and microbiomes on Earth. Through pervasive infections of their cellular hosts, viruses can reshape microbial community structure and drive global nutrient cycling. Over the past decade, viral sequences identified from genomes and metagenomes have provided an unprecedented view of viral genome diversity in nature. Since 2016, the IMG/VR database has provided access to the largest collection of viral sequences obtained from (meta)genomes. Here, we present the third version of IMG/VR, composed of 18 373 cultivated and 2 314 329 uncultivated viral genomes (UViGs), nearly tripling the total number of sequences compared to the previous version. These clustered into 935 362 viral Operational Taxonomic Units (vOTUs), including 188 930 with two or more members. UViGs in IMG/VR are now reported as single viral contigs, integrated proviruses or genome bins, and are annotated with a new standardized pipeline including genome quality estimation using CheckV, taxonomic classification reflecting the latest ICTV update, and expanded host taxonomy prediction. The new IMG/VR interface enables users to efficiently browse, search, and select UViGs based on genome features and/or sequence similarity. IMG/VR v3 is available at https://img.jgi.doe.gov/vr, and the underlying data are available to download at https://genome.jgi.doe.gov/portal/IMG_VR.


Subject(s)
Databases, Genetic , Ecosystem , Evolution, Molecular , Genome, Viral , Viruses/genetics , Base Sequence , Cluster Analysis , Geography , Molecular Sequence Annotation , Sequence Homology, Nucleic Acid , User-Computer Interface
8.
Nucleic Acids Res ; 49(D1): D751-D763, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33119741

ABSTRACT

The Integrated Microbial Genomes & Microbiomes system (IMG/M: https://img.jgi.doe.gov/m/) contains annotated isolate genome and metagenome datasets sequenced at the DOE's Joint Genome Institute (JGI), submitted by external users, or imported from public sources such as NCBI. IMG v 6.0 includes advanced search functions and a new tool for statistical analysis of mixed sets of genomes and metagenome bins. The new IMG web user interface also has a new Help page with additional documentation and webinar tutorials to help users better understand how to use various IMG functions and tools for their research. New datasets have been processed with the prokaryotic annotation pipeline v.5, which includes extended protein family assignments.


Subject(s)
Data Analysis , Data Management , Databases, Genetic , Genome, Archaeal , Genome, Microbial , Metagenome , RNA, Ribosomal, 16S/genetics , Search Engine
9.
Nature ; 536(7617): 425-30, 2016 08 25.
Article in English | MEDLINE | ID: mdl-27533034

ABSTRACT

Viruses are the most abundant biological entities on Earth, but challenges in detecting, isolating, and classifying unknown viruses have prevented exhaustive surveys of the global virome. Here we analysed over 5 Tb of metagenomic sequence data from 3,042 geographically diverse samples to assess the global distribution, phylogenetic diversity, and host specificity of viruses. We discovered over 125,000 partial DNA viral genomes, including the largest phage yet identified, and increased the number of known viral genes by 16-fold. Half of the predicted partial viral genomes were clustered into genetically distinct groups, most of which included genes unrelated to those in known viruses. Using CRISPR spacers and transfer RNA matches to link viral groups to microbial host(s), we doubled the number of microbial phyla known to be infected by viruses, and identified viruses that can infect organisms from different phyla. Analysis of viral distribution across diverse ecosystems revealed strong habitat-type specificity for the vast majority of viruses, but also identified some cosmopolitan groups. Our results highlight an extensive global viral diversity and provide detailed insight into viral habitat distribution and host­virus interactions.


Subject(s)
Earth, Planet , Ecosystem , Genome, Viral/genetics , Metagenomics , Viruses/genetics , Animals , Aquatic Organisms/virology , Bacteriophages/genetics , Biodiversity , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , DNA, Viral/analysis , DNA, Viral/genetics , Datasets as Topic , Genes, Viral , Host Specificity , Host-Pathogen Interactions , Humans , Metagenome/genetics , Phylogeny , Phylogeography , RNA, Transfer/genetics , Sequence Analysis , Viruses/classification , Viruses/isolation & purification
10.
Proc Natl Acad Sci U S A ; 116(29): 14661-14670, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31253704

ABSTRACT

In hypersaline environments, Nanohaloarchaeota (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, Nanohaloarchaeota [DPANN] superphylum) are thought to be free-living microorganisms. We report cultivation of 2 strains of Antarctic Nanohaloarchaeota and show that they require the haloarchaeon Halorubrum lacusprofundi for growth. By performing growth using enrichments and fluorescence-activated cell sorting, we demonstrated successful cultivation of Candidatus Nanohaloarchaeum antarcticus, purification of Ca. Nha. antarcticus away from other species, and growth and verification of Ca. Nha. antarcticus with Hrr. lacusprofundi; these findings are analogous to those required for fulfilling Koch's postulates. We use fluorescent in situ hybridization and transmission electron microscopy to assess cell structures and interactions; metagenomics to characterize enrichment taxa, generate metagenome assembled genomes, and interrogate Antarctic communities; and proteomics to assess metabolic pathways and speculate about the roles of certain proteins. Metagenome analysis indicates the presence of a single species, which is endemic to Antarctic hypersaline systems that support the growth of haloarchaea. The presence of unusually large proteins predicted to function in attachment and invasion of hosts plus the absence of key biosynthetic pathways (e.g., lipids) in metagenome assembled genomes of globally distributed Nanohaloarchaeota indicate that all members of the lineage have evolved as symbionts. Our work expands the range of archaeal symbiotic lifestyles and provides a genetically tractable model system for advancing understanding of the factors controlling microbial symbiotic relationships.


Subject(s)
Halorubrum/physiology , Metagenome , Nanoarchaeota/physiology , Symbiosis/physiology , Antarctic Regions , DNA, Archaeal/genetics , DNA, Archaeal/isolation & purification , Flow Cytometry , Genome, Archaeal/genetics , Halorubrum/ultrastructure , Metagenomics , Microscopy, Electron, Transmission , Nanoarchaeota/ultrastructure , Phylogeny , Salinity
11.
Microb Ecol ; 81(3): 601-616, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33150499

ABSTRACT

Despite being the largest estuary on the west coast of North America, no in-depth survey of microbial communities in San Francisco Bay (SFB) waters currently exists. In this study, we analyze bacterioplankton and archaeoplankton communities at several taxonomic levels and spatial extents (i.e., North versus South Bay) to reveal patterns in alpha and beta diversity. We assess communities using high-throughput sequencing of the 16S rRNA gene in 177 water column samples collected along a 150-km transect over a 2-year monthly time-series. In North Bay, the microbial community is strongly structured by spatial salinity changes while in South Bay seasonal variations dominate community dynamics. Along the steep salinity gradient in North Bay, we find that operational taxonomic units (OTUs; 97% identity) have higher site specificity than at coarser taxonomic levels and turnover ("species" replacement) is high, revealing a distinct brackish community (in oligo-, meso-, and polyhaline samples) from fresh and marine end-members. At coarser taxonomic levels (e.g., phylum, class), taxa are broadly distributed across salinity zones (i.e., present/abundant in a large number of samples) and brackish communities appear to be a mix of fresh and marine communities. We also observe variations in brackish communities between samples with similar salinities, likely related to differences in water residence times between North and South Bay. Throughout SFB, suspended particulate matter is positively correlated with richness and influences changes in beta diversity. Within several abundant groups, including the SAR11 clade (comprising up to 30% of reads in a sample), OTUs appear to be specialized to a specific salinity range. Some other organisms also showed pronounced seasonal abundance, including Synechococcus, Ca. Actinomarina, and Nitrosopumilus-like OTUs. Overall, this study represents the first in-depth spatiotemporal survey of SFB microbial communities and provides insight into how planktonic microorganisms have specialized to different niches along the salinity gradient.


Subject(s)
Archaea , Plankton , Archaea/genetics , Bays , Plankton/genetics , RNA, Ribosomal, 16S/genetics , San Francisco
12.
Nucleic Acids Res ; 47(D1): D666-D677, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30289528

ABSTRACT

The Integrated Microbial Genomes & Microbiomes system v.5.0 (IMG/M: https://img.jgi.doe.gov/m/) contains annotated datasets categorized into: archaea, bacteria, eukarya, plasmids, viruses, genome fragments, metagenomes, cell enrichments, single particle sorts, and metatranscriptomes. Source datasets include those generated by the DOE's Joint Genome Institute (JGI), submitted by external scientists, or collected from public sequence data archives such as NCBI. All submissions are typically processed through the IMG annotation pipeline and then loaded into the IMG data warehouse. IMG's web user interface provides a variety of analytical and visualization tools for comparative analysis of isolate genomes and metagenomes in IMG. IMG/M allows open access to all public genomes in the IMG data warehouse, while its expert review (ER) system (IMG/MER: https://img.jgi.doe.gov/mer/) allows registered users to access their private genomes and to store their private datasets in workspace for sharing and for further analysis. IMG/M data content has grown by 60% since the last report published in the 2017 NAR Database Issue. IMG/M v.5.0 has a new and more powerful genome search feature, new statistical tools, and supports metagenome binning.


Subject(s)
Data Management/methods , Databases, Genetic , Genomics/methods , Metagenome , Microbiota , Software , Molecular Sequence Annotation/methods , Sequence Alignment/methods
13.
Nucleic Acids Res ; 47(D1): D678-D686, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30407573

ABSTRACT

The Integrated Microbial Genome/Virus (IMG/VR) system v.2.0 (https://img.jgi.doe.gov/vr/) is the largest publicly available data management and analysis platform dedicated to viral genomics. Since the last report published in the 2016, NAR Database Issue, the data has tripled in size and currently contains genomes of 8389 cultivated reference viruses, 12 498 previously published curated prophages derived from cultivated microbial isolates, and 735 112 viral genomic fragments computationally predicted from assembled shotgun metagenomes. Nearly 60% of the viral genomes and genome fragments are clustered into 110 384 viral Operational Taxonomic Units (vOTUs) with two or more members. To improve data quality and predictions of host specificity, IMG/VR v.2.0 now separates prokaryotic and eukaryotic viruses, utilizes known prophage sequences to improve taxonomic assignments, and provides viral genome quality scores based on the estimated genome completeness. New features also include enhanced BLAST search capabilities for external queries. Finally, geographic map visualization to locate user-selected viral genomes or genome fragments has been implemented and download options have been extended. All of these features make IMG/VR v.2.0 a key resource for the study of viruses.


Subject(s)
Data Management/methods , Genome, Viral , Genomics/methods , Software
14.
Environ Microbiol ; 22(8): 3143-3157, 2020 08.
Article in English | MEDLINE | ID: mdl-32372527

ABSTRACT

Members of the bacterial candidate phylum WPS-2 (or Eremiobacterota) are abundant in several dry, bare soil environments. In a bare soil deposited by an extinct iron-sulfur spring, we found that WPS-2 comprised up to 24% of the bacterial community and up to 108 cells per g of soil based on 16S rRNA gene sequencing and quantification. A single genus-level cluster (Ca. Rubrimentiphilum) predominated in bare soils but was less abundant in adjacent forest. Nearly complete genomes of Ca. Rubrimentiphilum were recovered as single amplified genomes (SAGs) and metagenome-assembled genomes (MAGs). Surprisingly, given the abundance of WPS-2 in bare soils, the genomes did not indicate any capacity for autotrophy, phototrophy, or trace gas metabolism. Instead, they suggest a predominantly aerobic organoheterotrophic lifestyle, perhaps based on scavenging amino acids, nucleotides, and complex oligopeptides, along with lithotrophic capacity on thiosulfate. Network analyses of the entire community showed that some species of Chloroflexi, Actinobacteria, and candidate phylum AD3 (or Dormibacterota) co-occurred with Ca. Rubrimentiphilum and may represent ecological or metabolic partners. We propose that Ca. Rubrimentiphilum act as efficient heterotrophic scavengers. Combined with previous studies, these data suggest that the phylum WPS-2 includes bacteria with diverse metabolic capabilities.


Subject(s)
Bacteria/isolation & purification , Soil Microbiology , Actinobacteria/classification , Actinobacteria/genetics , Actinobacteria/isolation & purification , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Chloroflexi/classification , Chloroflexi/genetics , Chloroflexi/isolation & purification , Genomics , Metagenome , Phylogeny , RNA, Ribosomal, 16S , Soil
15.
Annu Rev Med ; 64: 145-63, 2013.
Article in English | MEDLINE | ID: mdl-23327521

ABSTRACT

The human microbiota is a complex assemblage of the microbes inhabiting many sites in the human body. Recent advances in technology have enabled deep sequencing and analysis of the members and structures of these communities. Two sites, the vagina and gastrointestinal tract, are highlighted to exemplify how technological advances have enhanced our knowledge of the host-microbiota system. These examples represent low- and high-complexity communities, respectively. In each example, certain community structures are identified that can be extrapolated to larger collections representing multiple individuals and potential disease or health states. One common feature is the unexpected diversity of the microbiota at any of these locations, which poses a challenge for relating the microbiota to health and disease. However, we anticipate microbiota compositional measurements could become standard clinical practice in the future and may become diagnostic for certain diseases or increased susceptibility to certain disorders. The microbiota of a number of disease states are currently being examined to identify potential correlations. In line with these predictions, it is possible that existing conditions may be resolved by altering the microbiota in a positive way.


Subject(s)
Gastrointestinal Tract/microbiology , Metagenome/physiology , Symbiosis/physiology , Environment , Humans
16.
Microbiol Resour Announc ; 13(6): e0032224, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38771040

ABSTRACT

When very dry soil is rewet, rapid stimulation of microbial activity has important implications for ecosystem biogeochemistry, yet associated changes in microbial transcription are poorly known. Here, we present metatranscriptomes of California annual grassland soil microbial communities, collected over 1 week from soils rewet after a summer drought-providing a time series of short-term transcriptional response during rewetting.

17.
Microbiol Resour Announc ; 13(2): e0108023, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38189307

ABSTRACT

We present eight metatranscriptomic datasets of light algal and cyanolichen biological soil crusts from the Mojave Desert in response to wetting. These data will help us understand gene expression patterns in desert biocrust microbial communities after they have been reactivated by the addition of water.

18.
Methods Mol Biol ; 2802: 587-609, 2024.
Article in English | MEDLINE | ID: mdl-38819573

ABSTRACT

Comparative analysis of (meta)genomes necessitates aggregation, integration, and synthesis of well-annotated data using standards. The Genomic Standards Consortium (GSC) collaborates with the research community to develop and maintain the Minimum Information about any (x) Sequence (MIxS) reporting standard for genomic data. To facilitate the use of the GSC's MIxS reporting standard, we provide a description of the structure and terminology, how to navigate ontologies for required terms in MIxS, and demonstrate practical usage through a soil metagenome example.


Subject(s)
Genomics , Metagenome , Metagenomics , Metagenomics/methods , Metagenomics/standards , Genomics/methods , Genomics/standards , Metagenome/genetics , Databases, Genetic , Soil Microbiology
19.
Sci Data ; 11(1): 339, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580669

ABSTRACT

Bridging molecular information to ecosystem-level processes would provide the capacity to understand system vulnerability and, potentially, a means for assessing ecosystem health. Here, we present an integrated dataset containing environmental and metagenomic information from plant-associated microbial communities, plant transcriptomics, plant and soil metabolomics, and soil chemistry and activity characterization measurements derived from the model tree species Populus trichocarpa. Soil, rhizosphere, root endosphere, and leaf samples were collected from 27 different P. trichocarpa genotypes grown in two different environments leading to an integrated dataset of 318 metagenomes, 98 plant transcriptomes, and 314 metabolomic profiles that are supported by diverse soil measurements. This expansive dataset will provide insights into causal linkages that relate genomic features and molecular level events to system-level properties and their environmental influences.


Subject(s)
Metagenome , Microbiota , Populus , Transcriptome , Fungi/genetics , Gene Expression Profiling , Genotype , Populus/genetics , Soil
20.
Microbiol Resour Announc ; 13(3): e0098023, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38329355

ABSTRACT

We present six whole community shotgun metagenomic sequencing data sets of two types of biological soil crusts sampled at the ecotone of the Mojave Desert and Colorado Desert in California. These data will help us understand the diversity and function of biocrust microbial communities, which are essential for desert ecosystems.

SELECTION OF CITATIONS
SEARCH DETAIL