ABSTRACT
To prevent the rapidly increasing prevalence of bacterial resistance, it is crucial to discover new antibacterial agents. The emergence of Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae has been associated with a higher mortality rate in gulf union countries and worldwide. Compared to physical and chemical approaches, green zinc oxide nanoparticle (ZnO-NP) synthesis is thought to be significantly safer and more ecofriendly. The present study used molecular dynamics (MD) to examine how ZnO-NPs interact with porin protein (GLO21), a target of ß-lactam antibiotics, and then tested this interaction in vitro by determining the zone of inhibition (IZ), minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC), as well as the alteration of KPC's cell surface. The nanoparticles produced were characterized by UV-Vis spectroscopy, zetasizer, Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). In silico investigation was conducted using a variety of computational techniques, including Autodock Vina for protein and ligand docking and Desmond for MD simulation. The candidate ligands that interact with the GLO21 protein were biosynthesized ZnO-NPs, meropenem, imipenem, and cefepime. Analysis of MD revealed that the ZnO-NPs had the highest log P value (-9.1 kcal/mol), which indicates higher permeability through the bacterial surface, followed by cefepime (-7.9 kcal/mol), meropenem (-7.5 kcal/mol), and imipenem (-6.4 kcal/mol). All tested compounds and ZnO-NPs possess similar binding sites of porin proteins. An MD simulation study showed a stable system for ZnO-NPs and cefepime, as confirmed by RMSD and RMSF values during 100 ns trajectories. The test compounds were further inspected for their intersection with porin in terms of hydrophobic, hydrogen, and ionic levels. In addition, the stability of these bonds were measured by observing the protein-ligand contact within 100 ns trajectories. ZnO-NPs showed promising results for fighting KPC, represented in MIC (0.2 mg/mL), MBC (0.5 mg/mL), and ZI (24 mm diameter). To draw the conclusion that ZnO-NP is a potent antibacterial agent and in order to identify potent antibacterial drugs that do not harm human cells, further in vivo studies are required.
Subject(s)
Metal Nanoparticles , Nanoparticles , Pneumonia , Zinc Oxide , Humans , Zinc Oxide/chemistry , Carbapenems/pharmacology , Meropenem/pharmacology , Klebsiella/metabolism , Cefepime , Porins/metabolism , Molecular Dynamics Simulation , Ligands , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Nanoparticles/chemistry , Imipenem/pharmacology , Monobactams , Microbial Sensitivity Tests , Klebsiella pneumoniae/metabolism , Metal Nanoparticles/chemistry , Spectroscopy, Fourier Transform InfraredABSTRACT
Adansonia digitata L. is an African tree commonly called baobab. This tree is effectively used in traditional medicine to treat cardiovascular disorders. Hyperlipidemia is a well-known cardiovascular risk factor associated with the increased incidence of mortality worldwide. This study aimed to demonstrate the mechanism of baobab polyphenols in the activities of hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase and pancreatic lipase as lipid metabolic enzymes. Molecular docking and an incentive for drug design showed that all the polyphenols in baobab bound to the proteins with higher affinity and a lower binding energy compared with simvastatin as the positive control (ΔG: from -5.5 kcal/mol to -6.5 kcal/mol). The same polyphenols exhibited a considerable binding affinity to pancreatic lipase (ΔG: from -7.5 kcal/mol to -9.8 kcal/mol) in comparison with the control and HMG-CoA reductase. Quercetin showed the best docking score from the selected Baobab polyphenols (ΔG = -9.8 kcal/mol). The root mean square deviation (RMSD) results indicated that stable epicatechin and quercetin complexes were demonstrated with HMG-CoA reductase, and other less stable complexes were developed using rutin and chlorogenic acid. Moreover, the analysis of the root mean square fluctuation (RMSF) simulation results was consistent with that of the RMSD. The RMSF value for all the baobab polyphenols, including the crystal control ligand, was kept between 0.80 and 8.00 Å, similarly to simvastatin, and less than 4.8 Å for pancreatic lipase. Chlorogenic acid, quercetin, epicatechin, and rutin had negative ΔG binding scores from highest to lowest. The same ligands displayed more negative ΔG binding scores than those observed in HMG-CoA reductase and crystal control ligand (methoxyundecyl phosphinic acid) in their simulation with pancreatic lipase. In conclusion, baobab polyphenols interact with HMG-CoA reductase and pancreatic lipase to inhibit their substrate binding and block their activity.
Subject(s)
Adansonia , Catechin , Polyphenols/pharmacology , Chlorogenic Acid , Ligands , Molecular Docking Simulation , Quercetin , Hypolipidemic Agents/pharmacology , Simvastatin/pharmacology , Lipase , Coenzyme A , OxidoreductasesABSTRACT
The present study reports a cost-effective, environmentally friendly method to increase the bioavailability and bio-efficacy of B. rufescens stem bark extract in the biological system via functional modification as B. rufescens stem bark nanoparticles (BR-TO2-NPs). The biosynthesis of BR- -NPs was confirmed by UV-visible (UV-vis) and Fourier-transform infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), and X-ray diffraction analyses. The shifts in FT-IR stretching vibrations of carboxylic and nitro groups (1615 cm-1), the O-H of phenolics or carboxylic acids (3405 cm-1), alkanes, and alkyne groups (2925 and 2224 cm-1) of the plant extract and lattice (455) indicated successful biosynthesis of BR- -NPs. Compared with the stem bark extract, 40 ng/dL dose of BR- -NPs led to a reduction in adipogenesis and an increase in mitochondrial biogenesis-related gene expressions, adiponectin-R1, PPARγC1α, UCP-1, and PRDM16, in maturing-adipocytes. This confirmed the intracellular uptake, bioavailability, and bio-efficiency of BR-TiO2-NPs. The lipid-lowering capacity of BR-TiO2-NPs effectively inhibited the metabolic inflammation-related gene markers, IL-6, TNF-α, LTB4-R, and Nf-κb. Further, BR-TiO2-NPs stimulating mitochondrial thermogenesis capacity was proven by the significantly enhanced CREB-1 and AMPK protein levels in adipocytes. In conclusion, BR-TiO2-NPs effectively inhibited lipid accumulation and proinflammatory adipokine levels in maturing adipocytes; it may help to overcome obesity-associated comorbidities.
Subject(s)
Adipocytes/cytology , Adipocytes/metabolism , Adipokines/metabolism , Bauhinia/chemistry , Lipid Metabolism , Metal Nanoparticles/chemistry , Plant Bark/chemistry , Titanium/pharmacology , Adipogenesis/drug effects , Adipogenesis/genetics , Cell Death/drug effects , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Shape/drug effects , Gas Chromatography-Mass Spectrometry , Gene Expression Regulation/drug effects , Humans , Lipid Metabolism/drug effects , Lipid Metabolism/genetics , Lipolysis/drug effects , Lipolysis/genetics , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Metal Nanoparticles/ultrastructure , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Stress/drug effects , Plant Stems/chemistry , Thermogenesis/drug effects , Thermogenesis/geneticsABSTRACT
Background: Tinea capitis (T. capitis), commonly known as scalp ringworm, is a fungal infection affecting the scalp and hair. Among the causative agents, Microsporum canis (M. canis) stands out, often transmitted from cats to humans (zoonotic disease). In this study, we investigated the efficacy of Carica papaya (C. papaya), fruit extract against dermatophytes, particularly M. canis, both in vitro and in vivo. Additionally, we aimed to identify the active compounds responsible for suppressing fungal growth and assess the toxicity of C. papaya on human cells. Methodology: It conducted in two parts. First, In Vitro Study include the preparation of C. papaya fruit extract using methanol as the solvent, Phytochemical analysis of the plant extract including Gas chromatography-mass spectrometry (GC-MS) and Fourier-transform infrared spectroscopy (FTIR) was conducted, Cytotoxicity assays were performed using HUH-7 cells, employing the MTT assay (1-(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide), Antimicrobial activity against M. canis was evaluated, including: Zone of inhibition (ZI), Minimum inhibitory concentration (MIC), Minimum fungicidal concentration (MFC), M. canis cell alterations were observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Second, In Vivo, Albino Wistar male rats were included. Results: The phytochemical analysis of the methanolic extract from papaya revealed several functional groups, including hydroxyl, ammonia, alkane, carbonate, and alcohol. Additionally, the GC-MS analysis identified 15 compounds, with xanthosine and decanoic acid being the predominant components. The methanolic extract of papaya fruits demonstrated potent antifungal activity: ZI = 37 mm, MIC = 1,000 µg/mL, MFC = 1900 µg/mL, MTT results indicated lower cytotoxicity of the fruit extract at concentrations of 20 µg/mL, 50 µg/mL, 100 µg/mL, 150 µg/mL, and 200 µg/mL, The IC50 revealed a significant decrease in cell viability with increasing extract concentration. Notably, papaya extract induced considerable alterations in the morphology of M. canis hyphae and spores. In animal tissue, improvements were observed among the group of rats which treated with Papaya extract. This study highlights the potential of C. papaya fruits as a natural antifungal agent, warranting further exploration for clinical applications.
ABSTRACT
Fungi in the genus Trichoderma are widespread in the environment, mainly in soils. They are used in agriculture because of their mycoparasitic potential; Trichoderma have the ability to increase plant health and provide protection against phytopathogens, making them desirable plant symbionts. We isolated, identified, and characterized Trichoderma from different regions of Saudi Arabia and evaluated the ability of Trichoderma to promote plant growth. Morphological and molecular characterization, along with phylogenetic studies, were utilized to differentiate between Trichoderma species isolated from soil samples in the Abha and Riyadh regions, Saudi Arabia. Then, plant growth-promoting traits of the isolated Trichoderma species were assessed. Eight Trichoderma isolates were characterized via morphological and molecular analysis; six (Trichoderma koningiopsis, Trichoderma lixii, Trichoderma koningii, Trichoderma harzianum, Trichoderma brevicompactum, and Trichoderma velutinum) were from Abha and two (T. lixii and T. harzianum) were from Riyadh. The isolated Trichoderma strains belonged to three different clades (Clade 1: Harzianum, Clade 2: Brevicompactum, and Clade 3: Viride). The Trichoderma isolates varied in plant growth-promoting traits. Seeds treated with most isolates exhibited a high percentage of germination, except seeds treated with the T3-T. koningii isolate. 100% germination was reported for seeds treated with the T4-T. harzianum and T6-T. brevicompactum isolates, while seeds treated with the T1-T. koniniopsis and T5-T. lixii isolates showed 91.1% and 90.9% germination, respectively. Seeds treated with the T8-T. velutinum, T2-T. lixii, and T7-T. harzianum isolates had germination rates of 84.1%, 82.2%, and 72.7%, respectively. The Trichoderma isolate T5-T. lixii stimulated tomato plant growth the most, followed by T7-T. harzianum, T8-T. velutinum, T4-T. harzianum, T1-T. koniniopsis, T2-T. lixii, and T6-T. brevicompactum; the least effective was T3-T. koningii. A maximum fresh weight of 669.33 mg was observed for the T5-T. lixii-treated plants. The Abha region had a higher diversity of Trichoderma species than the Riyadh region, and most isolated Trichoderma spp. promoted tomato growth.
Subject(s)
Phylogeny , Soil Microbiology , Trichoderma , Saudi Arabia , Trichoderma/genetics , Trichoderma/isolation & purification , Trichoderma/growth & development , Trichoderma/physiology , Plant Development , Seeds/microbiology , Seeds/growth & developmentABSTRACT
The transmembrane glycoprotein angiotensin-converting enzyme 2 (ACE2) is a key component of the renin-angiotensin system (RAS). It was shown to be the receptor of severe acute respiratory syndrome coronavirus 2 in the COVID-19 outbreak (SARS-COV-2). Furthermore, ACE2 aids in the transport of amino acids across the membrane. ACE2 is lost from the membrane, resulting in soluble ACE2 (sACE2). We aim to examine the structural conformation alterations between SARS-CoV-1 or 2 variants at various periods with ACE2 from various sources, particularly in the area where it interacts with the viral protein and the receptor. It is important to study the molecular dynamics of ACE2/SARS-COV RBD when the structure is available on the database. Here we analyzed the crystal structure of ACE2 from Human, Dog, Mus, Cat, and Bat ACE2 in complex with RBD from SARS-COV-1 and SARS-COV-2. The result shows, there is a variation in the type of residues, number of contact atoms and hydrogen bonds in ACE2 and RBD during the interaction interfaces. By using molecular dynamics simulation, we can measure RMSD, RMSF, SASA, Rg and the difference in the percentage of α helix and ß strand. As bat ACE2 & SARS-CoV-2 RBD found to have a high amount of ß strand compared to another structure complex, while hACE2 & SARS-CoV-1 RBD has fewer amounts of ß strand. Our study provides a deep view of the structure which is available and a summary of many works around ACE2/SARS-CoV RBD interaction.Communicated by Ramaswamy H. Sarma.