ABSTRACT
Synthetic dyes, such as Alizarin Red S, contribute significantly to environmental pollution. This study investigates the biosorption potential of Alhagi maurorum biosorbent for the removal of Alizarin Red S (ARS) from aqueous solutions. Fourier transform infrared spectroscopy (FTIR) was used to analyze the biosorbent's adsorption sites. Various parameters were optimized to maximize dye adsorption. An optimal removal efficiency of 82.26% was attained by employing 0.9 g of biosorbent with a 25 ppm dye concentration at pH 6 and 60 °C over 30 min. The data were modeled using various isothermal and kinetic models to understand the adsorption behavior. Thermodynamic parameters indicated that the adsorption process was spontaneous and endothermic. The pseudo-second-order kinetic model best described the data, indicating chemisorption as the rate-limiting step. The data matched best to the Langmuir model, indicating that the adsorption occurs as a monolayer on uniform surfaces with a finite number of binding sites. The model showed a strong correlation (R² = 0.991) and a maximum adsorption capacity (qmax) of 8.203 mg/g. Principal component analysis (PCA) identified temperature as the dominant factor, with the primary component, PC1 capturing 100% of its effect. The mechanisms involved in ARS biosorption on A. maurorum include electrostatic interactions, hydrogen bonding, hydrophobic interactions, dipole-dipole interactions, and π-π stacking. Alhagi maurorum showed promising potential for biosorbing toxic dyes from contaminated water, suggesting further investigation for practical applications.
Subject(s)
Anthraquinones , Thermodynamics , Water Pollutants, Chemical , Water Purification , Anthraquinones/chemistry , Anthraquinones/metabolism , Kinetics , Water Purification/methods , Adsorption , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism , Hydrogen-Ion Concentration , Spectroscopy, Fourier Transform Infrared , Coloring Agents/chemistryABSTRACT
BACKGROUND: Our meta-analysis examines the effects of melatonin on wheat under varying abiotic stress conditions, focusing on photosynthetic parameters, chlorophyll fluorescence, leaf water status, and photosynthetic pigments. We initially collected 177 publications addressing the impact of melatonin on wheat. After meticulous screening, 31 published studies were selected, encompassing 170 observations on photosynthetic parameters, 73 on chlorophyll fluorescence, 65 on leaf water status, 240 on photosynthetic pigments. RESULTS: The analysis revealed significant heterogeneity across studies (I² > 99.90%) for the aforementioned parameters and evidence of publication bias, emphasizing the complex interaction between melatonin application and plant physiological responses. Melatonin enhanced the overall response ratio (lnRR) for photosynthetic rates, stomatal conductance, transpiration rates, and fluorescence yields by 20.49, 22.39, 30.96, and 1.09%, respectively, compared to the control (no melatonin). The most notable effects were under controlled environmental conditions. Moreover, melatonin significantly improved leaf water content and reduced water potential, particularly under hydroponic conditions and varied abiotic stresses, highlighting its role in mitigating water stress. The analysis also revealed increases in chlorophyll pigments with soil drenching and foliar spray, and these were considered the effective application methods. Furthermore, melatonin influenced chlorophyll SPAD and intercellular CO2 concentrations, suggesting its capacity to optimize photosynthetic efficiency. CONCLUSIONS: This synthesis of meta-analysis confirms that melatonin significantly enhances wheat's resilience to abiotic stress by improving photosynthetic parameters, chlorophyll fluorescence, leaf water status, and photosynthetic pigments. Despite observed heterogeneity and publication bias, the consistent beneficial effects of melatonin, particularly under controlled conditions with specific application methods e.g. soil drenching and foliar spray, demonstrate its utility as a plant growth regulator for stress management. These findings encourage focused research and application strategies to maximize the benefits of melatonin in wheat farming, and thus contributing to sustainable agricultural practices.
Subject(s)
Melatonin , Photosynthesis , Stress, Physiological , Triticum , Melatonin/pharmacology , Triticum/physiology , Triticum/drug effects , Triticum/growth & development , Triticum/metabolism , Photosynthesis/drug effects , Stress, Physiological/drug effects , Chlorophyll/metabolism , Plant Leaves/drug effects , Plant Leaves/physiologyABSTRACT
BACKGROUND: Optimum planting date and appropriate fertilizer module are essential facets of chrysanthemum cultivation, to enhance quality yield, and improve soil health. A field-based study was undertaken over multiple growing seasons in 2022 and 2023, where six different planting dates, viz., P1:June 15, P2:June 30, P3:July 15, P4:July 30, P5:August 15 and P6:August 30 and two fertilizer modules, FM1:Jeevamrit @ 30 ml plant-1 and FM2:NPK @ 30 g m-2 were systematically examined using a Randomized Block Design (factorial), replicated thrice. RESULTS: P6 planting resulted in early bud formation (44.03 days) and harvesting stage (90.78 days). Maximum plant height (79.44 cm), plant spread (34.04 cm), cut stem length (68.40 cm), flower diameter (7.83 cm), stem strength (19.38Ë), vase life (14.90 days), flowering duration (24.08 days), available soil N (314 kg ha-1), available P (37 kg ha-1), available K (347 kg ha-1), bacterial count (124.87 × 107 cfu g-1 soil), actinomycetes count (60.72 × 102 cfu g-1 soil), fungal count (30.95 × 102 cfu g-1 soil), microbial biomass (48.79 µg g-1 soil), dehydrogenase enzyme (3.64 mg TPF h-1 g-1 soil) and phosphatase enzyme (23.79 mol PNP h-1 g-1 soil) was recorded in P1 planting. Among the fertilization module, minimum days to bud formation (74.94 days) and days to reach the harvesting stage (120.95 days) were recorded with the application of NPK @30 g m-2. However, maximum plant height (60.62 cm), plant spread (23.10 cm), number of cut stems m-2 (43.88), cut stem length (51.34 cm), flower diameter (6.92 cm), stem strength (21.24Ë), flowering duration (21.75 days), available soil N (317 kg ha-1), available P (37 kg ha-1) and available K (349 kg ha-1) were also recorded with the application of NPK @300 kg ha-1. Maximum vase life (13.87 days), OC (1.13%), bacterial count (131.65 × 107 cfu g-1 soil), actinomycetes count (60.89 × 102 cfu g-1 soil), fungal count (31.11 × 102 cfu g-1 soil), microbial biomass (51.27 µg g-1 soil), dehydrogenase enzyme (3.77 mg TPF h-1 g-1 soil) and phosphatase enzyme (21.72 mol PNP h-1 g-1 soil) were observed with the application of Jeevamrit @ 30 ml plant-1. CONCLUSION: Early planting (P1) and inorganic fertilization (NPK @ 30 g m-2) resulted in improved yield and soil macronutrient content. The soil microbial population and enzymatic activity were improved with the jeevamrit application. This approach highlights the potential for improved yield and soil health in chrysanthemum cultivation, promoting a more eco-friendly and economically viable agricultural model.
Subject(s)
Chrysanthemum , Fertilizers , Soil Microbiology , Soil , Chrysanthemum/growth & development , Fertilizers/analysis , Soil/chemistry , Seasons , BiomassABSTRACT
The use of saline water under drought conditions is critical for sustainable agricultural development in arid regions. Biochar is used as a soil amendment to enhance soil properties such as water-holding capacity and the source of nutrition elements of plants. Thus, the research was carried out to assess the impact of biochar treatment on the morphological and physiological characteristics and production of Solanum lycopersicum in greenhouses exposed to drought and saline stresses. The study was structured as a three-factorial in split-split-plot design. There were 16 treatments across three variables: (i) water quality, with freshwater and saline water, with electrical conductivities of 0.9 and 2.4 dS m- 1, respectively; (ii) irrigation level, with 40%, 60%, 80%, and 100% of total evapotranspiration (ETC); (iii) and biochar application, with the addition of biochar at a 3% dosage by (w/w) (BC3%), and a control (BC0%). The findings demonstrated that salt and water deficiency hurt physiological, morphological, and yield characteristics. Conversely, the biochar addition enhanced all characteristics. Growth-related parameters, such as plant height, stem diameter, leaf area, and dry and wet weight, and leaf gas exchange attributes, such rate of transpiration and photosynthesis, conductivity, as well as leaf relative water content were decreased by drought and salt stresses, especially when the irrigation was 60% ETc or 40% ETc. The biochar addition resulted in a substantial enhancement in vegetative growth-related parameters, physiological characteristics, efficiency of water use, yield, as well as reduced proline levels. Tomato yield enhanced by 4%, 16%, 8%, and 3% when irrigation with freshwater at different levels of water deficit (100% ETc, 80% ETc, 60% ETc, and 40% ETc) than control (BC0%). Overall, the use of biochar (3%) combined with freshwater shows the potential to enhance morpho-physiological characteristics, support the development of tomato plants, and improve yield with higher WUE in semi-arid and arid areas.
Subject(s)
Charcoal , Droughts , Salt Stress , Solanum lycopersicum , Water , Solanum lycopersicum/physiology , Solanum lycopersicum/drug effects , Solanum lycopersicum/growth & development , Charcoal/pharmacology , Water/metabolism , Agricultural Irrigation , Photosynthesis/drug effectsABSTRACT
BACKGROUND: Acacia nilotica Linn. is a widely distributed tree known for its applications in post-harvest and medicinal horticulture. However, its seed-based growth is relatively slow. Seed is a vital component for the propagation of A. nilotica due to its cost-effectiveness, genetic diversity, and ease of handling. Colchicine, commonly used for polyploidy induction in plants, may act as a pollutant at elevated levels. Its optimal concentration for Acacia nilotica's improved growth and development has not yet been determined, and the precise mechanism underlying this phenomenon has not been established. Therefore, this study investigated the impact of optimized colchicine (0.07%) seed treatment on A. nilotica's morphological, anatomical, physiological, fluorescent, and biochemical attributes under controlled conditions, comparing it with a control. RESULTS: Colchicine seed treatment significantly improved various plant attributes compared to control. This included increased shoot length (84.6%), root length (53.5%), shoot fresh weight (59.1%), root fresh weight (42.8%), shoot dry weight (51.5%), root dry weight (40%), fresh biomass (23.6%), stomatal size (35.9%), stomatal density (41.7%), stomatal index (51.2%), leaf thickness (11 times), leaf angle (2.4 times), photosynthetic rate (40%), water use efficiency (2.2 times), substomatal CO2 (36.6%), quantum yield of photosystem II (13.1%), proton flux (3.1 times), proton conductivity (2.3 times), linear electron flow (46.7%), enzymatic activities of catalase (25%), superoxide dismutase (33%), peroxidase (13.5%), and ascorbate peroxidase (28%), 2,2-diphenyl-1-picrylhydrazyl-radical scavenging activities(23%), total antioxidant capacity (59%), total phenolic (23%), and flavonoid content (37%) with less number of days to 80% germination (57.1%), transpiration rate (53.9%), stomatal conductance (67.1%), non-photochemical quenching (82.8%), non-regulatory energy dissipation (24.3%), and H2O2 (25%) and O-2 levels (30%). CONCLUSION: These findings elucidate the intricate mechanism behind the morphological, anatomical, physiological, fluorescent, and biochemical transformative effects of colchicine seed treatment on Acacia nilotica Linn. and offer valuable insights for quick production of A. nilotica's plants with modification and enhancement from seeds through an eco-friendly approach.
Subject(s)
Acacia , Colchicine , Seeds , Colchicine/pharmacology , Acacia/drug effects , Acacia/physiology , Acacia/growth & development , Acacia/metabolism , Seeds/drug effects , Seeds/growth & development , Photosynthesis/drug effects , Antioxidants/metabolismABSTRACT
Drought poses a significant ecological threat that limits the production of crops worldwide. The objective of this study to examine the impact of soil applied biochar (BC) and peatmoss (PM) on the morpho-biochemical and quality traits of tobacco plants under drought conditions. In the present experiment work, a pot trial was conducted with two levels of drought severity (~ well-watered 75 ± 5% field capacity) and severe drought stress (~ 35 ± 5% field capacity), two levels of peatmoss (PM) @ 5% [PM+ (with peatmoss) and PM- (without peatmoss)] and three levels of rice straw biochar (BC0 = no biochar; BC1 = 150 mg kg- 1; and BC2 = 300 mg kg- 1 of soil) in tobacco plants. The results indicate that drought conditions significantly impacted the performance of tobacco plants. However, the combined approach of BC and PM significantly improved the growth, biomass, and total chlorophyll content (27.94%) and carotenoids (32.00%) of tobacco. This study further revealed that the drought conditions decreased the production of lipid peroxidation and proline accumulation. But the synergistic approach of BC and PM application increased soluble sugars (17.63 and 12.20%), soluble protein (31.16 and 15.88%), decreased the proline accumulation (13.92 and 9.03%), and MDA content (16.40 and 8.62%) under control and drought stressed conditions, respectively. Furthermore, the combined approach of BC and PM also improved the leaf potassium content (19.02%) by limiting the chloride ions (33.33%) under drought stressed conditions. Altogether, the balanced application of PM and BC has significant potential as an effective approach and sustainable method to increase the tolerance of tobacco plants subjected to drought conditions. This research uniquely highlights the combined potential of PM and BC as an eco-friendly strategy to enhance plant resilience under drought conditions, offering new insights into sustainable agricultural practices.
Subject(s)
Charcoal , Nicotiana , Sphagnopsida , Nicotiana/growth & development , Nicotiana/physiology , Photosynthesis , Reactive Oxygen Species , Lipid Metabolism , Plant Leaves , Principal Component Analysis , Droughts , WaterABSTRACT
Gladiolus, a widely cultivated cut flower known for its aesthetically pleasing multicoloured spikes, has earned significant commercial popularity. A comprehensive understanding of the rhizosphere bacterial community associated with gladiolus is imperative for revealing its potential benefits. Molecular characterization is considered an effective method to gain insights into the structural and functional aspects of microbial populations. The soil characteristics and bacterial communities in the rhizosphere are typically influenced by quorum sensing (QS) and quorum quenching (QQ) mechanisms. This study aims to explore the niceties and diversity of rhizospheric bacterial populations linked with gladiolus corms, with a specific focus on understanding the dynamics of QS and QQ mechanisms in their complex interactions. The isolation of bacterial strains was achieved through the serial dilution method on nutrient agar (NA) media. The identification of the isolates was accomplished by amplifying 16 S rRNA gene sequences via polymerase chain reaction (PCR) via the use of universal primers. Sequence analysis was conducted via BLAST on the National Center for Biotechnology Information (NCBI) database. The characteristics of the isolated bacteria were elucidated via biosensors. This study identified three QS strains and five QQ strains. A consortium of quenchers was formulated utilizing five strains that demonstrated efficacy in mitigating the impact of disease on gladiolus and fostering growth. Among the three treatments-Scale, Descale, and Descale and Cut Half (DSC)-the DSC treatment emerged as the most effective. This treatment exhibited a broader range of variation in biological parameters over time, aligning with prevailing trends in the local market.
Subject(s)
Quorum Sensing , Rhizosphere , Soil Microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Microbiota , RNA, Ribosomal, 16S/genetics , Iridaceae/physiology , Iridaceae/geneticsABSTRACT
Management of nitrogen (N) fertilizer is a critical factor that can improve maize (Zea mays L.) production. On the other hand, high volatilization losses of N also pollute the air. A field experiment was established using a silt clay soil to examine the effect of sulfur-coated urea and sulfur from gypsum on ammonia (NH3) emission, N use efficiency (NUE), and the productivity of maize crop under alkaline calcareous soil. The experimental design was a randomized complete block (RCBD) with seven treatments in three replicates: control with no N, urea150 alone (150 kg N ha-1), urea200 alone (200 kg N ha-1), urea150 + S (60 kg ha-1 S from gypsum), urea200 + S, SCU150 (sulfur-coated urea) and SCU200. The results showed that the urea150 + S and urea200 + S significantly reduced the total NH3 by (58 and 42%) as compared with the sole application urea200. The NH3 emission reduced further in the treatment with SCU150 and SCU200 by 74 and 65%, respectively, compared to the treatment with urea200. The maize plant biomass, grain yield, and total N uptake enhanced by 5-14%, 4-17%, and 7-13, respectively, in the treatments with urea150 + s and urea200 + S, relative to the treatment with urea200 alone. Biomass, grain yield, and total N uptake further increased significantly by 22-30%, 25-28%, and 26-31%, respectively, in the treatments with SCU150 and SCU200, relative to the treatment with urea200 alone. The applications of SCU150 enhanced the nitrogen use efficiency (NUE) by (72%) and SCU200 by (62%) respectively, compared with the sole application of urea200 alone. In conclusion, applying S-coated urea at a lower rate of 150 kg N ha-1 compared with a higher rate of 200 kg N ha-1 may be an effective way to reduce N fertilizer application rate and mitigate NH3 emission, improve NUE, and increase maize yield. More investigations are suggested under different soil textures and climatic conditions to declare S-coated urea at 150 kg N ha-1 as the best application rate for maize to enhance maize growth and yield.
Subject(s)
Ammonia , Nitrogen , Ammonia/analysis , Nitrogen/analysis , Agriculture/methods , Zea mays , Volatilization , Fertilizers/analysis , Calcium Sulfate , Soil , Urea , Edible Grain/chemistry , SulfurABSTRACT
Early blight (EB), caused by Alternaria solani, is a serious problem in tomato production. Plant growth-promoting rhizobacteria promote plant growth and inhibit plant disease. The present study explored the bio-efficacy of synergistic effect of rhizobacterial isolates and ginger powder extract (GPE) against tomato EB disease, singly and in combination. Six fungal isolates from symptomatic tomato plants were identified as A. solani on the basis of morphological features i.e., horizontal septation (6.96 to 7.93 µm), vertical septation (1.50 to 2.22 µm), conidia length (174.2 to 187.6 µm), conidial width (14.09 to 16.52 µm), beak length (93.06 to 102.26 µm), and sporulation. Five of the twenty-three bacterial isolates recovered from tomato rhizosphere soil were nonpathogenic to tomato seedlings and were compatible with each other and with GPE. Out of five isolates tested individually, three isolates (St-149D, Hyd-13Z, and Gb-T23) showed maximum inhibition (56.3%, 48.3%, and 42.0% respectively) against mycelial growth of A. solani. Among combinations, St-149D + GPE had the highest mycelial growth inhibition (76.9%) over the untreated control. Bacterial strains molecularly characterized as Pseudomonas putida, Bacillus subtilis, and Bacillus cereus and were further tested in pot trials through seed bacterization for disease control. Seeds treated with bacterial consortia + GPE had the highest disease suppression percentage (78.1%), followed by St-149D + GPE (72.2%) and Hyd-13Z + GPE (67.5%). Maximum seed germination was obtained in the bacterial consortia + GPE (95.0 ± 2.04) followed by St-149D + GPE (92.5 ± 1.44) and Hyd-13Z + GPE (90.0 ± 2.04) over control (73.8 ± 2.39) and chemical control as standard treatment (90.0 ± 2). Ginger powder extracts also induce the activation of defence-related enzymes (TPC, PO, PPO, PAL, and CAT) activity in tomato plants. These were highly significant in the testing bacterial inoculants against A. solani infection in tomato crops.
Subject(s)
Agricultural Inoculants , Plant Extracts , Solanum lycopersicum , Zingiber officinale , Animals , Powders , Alternaria , Bacteria , Plant Diseases/microbiologyABSTRACT
BACKGROUND: Potato serves as a major non-cereal food crop and income source for small-scale growers in Punjab, Pakistan. Unfortunately, improper fertilization practices have led to low crop yields, worsened by challenging environmental conditions and poor groundwater quality in the Cholistan region. To address this, we conducted an experiment to assess the impact of two fertilizer application approaches on potato cv. Barna using plant growth-promoting bacteria (PGPB) coated biofertilizers. The first approach, termed conventional fertilizer application (CFA), involved four split applications of PGPB-coated fertilizers at a rate of 100:75 kg acre-1 (N and P). The second, modified fertilizer application (MFA), employed nine split applications at a rate of 80:40 kg acre-1. RESULTS: The MFA approach significantly improved various plant attributes compared to the CFA. This included increased plant height (28%), stem number (45%), leaf count (46%), leaf area index (36%), leaf thickness (three-folds), chlorophyll content (53%), quantum yield of photosystem II (45%), photosynthetically active radiations (56%), electrochromic shift (5.6%), proton flux (24.6%), proton conductivity (71%), linear electron flow (72%), photosynthetic rate (35%), water use efficiency (76%), and substomatal CO2 (two-folds), and lowered non-photochemical quenching (56%), non-regulatory energy dissipation (33%), transpiration rate (59%), and stomatal conductance (70%). Additionally, the MFA approach resulted in higher tuber production per plant (21%), average tuber weight (21.9%), tuber diameter (24.5%), total tuber yield (29.1%), marketable yield (22.7%), seed-grade yield (9%), specific gravity (9.6%), and soluble solids (7.1%). It also reduced undesirable factors like goli and downgrade yields by 57.6% and 98.8%, respectively. Furthermore, plants under the MFA approach exhibited enhanced nitrogen (27.8%) and phosphorus uptake (40.6%), with improved N (26.1%) and P uptake efficiency (43.7%) compared to the CFA approach. CONCLUSION: The use of PGPB-coated N and P fertilizers with a higher number of splits at a lower rate significantly boosts potato production in the alkaline sandy soils of Cholistan.
Subject(s)
Fertilizers , Nitrogen , Phosphorus , Solanum tuberosum , Fertilizers/analysis , Phosphorus/metabolism , Solanum tuberosum/growth & development , Nitrogen/metabolism , Pakistan , Soil/chemistry , Bacteria/metabolism , Bacteria/growth & developmentABSTRACT
Medicinal plants have been widely used for their antimicrobial properties against various microorganisms. Arisaema dracontium a familiar medicinal plant, was analyzed and silver nanoparticles (AgNPs) were synthesized using extracts of different parts of its shoot including leaves and stem. Further, the antimicrobial activity of different solvent extracts such as ethyl acetate, n-hexane, ethanol, methanol, and chloroform extracts were analyzed. AgNPs were prepared using aqueous silver nitrate solution and assessed their antibacterial activity against multidrug-resistant (MDR) and Non-multidrug-resistant bacteria. The characterization of AgNPs was done by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), UV-visible spectroscopy, Fourier Transform Infrared (FTI), and X-ray Diffraction approaches. The leaf extract contained Tannins, Flavonoids, Terpenoids, and Steroids while Alkaloids, Saponins, and Glycosides were undetected. The stem extract contained Alkaloids, Tannins, Flavonoids, Saponins, Steroids, and Glycosides while Terpenoids were not observed. The AgNPs synthesized from stem and leaf extracts in the current study had spherical shapes and ranged in size from 1 to 50 nm and 20-500 nm respectively as were visible in TEM. The leaf extract-prepared AgNPs showed significantly higher activities i.e., 27.75 mm ± 0.86 against the MDR strains as compared to the stem-derived nanoparticles i.e., 24.33 ± 0.33 by comparing the zones of inhibitions which can be attributed to the differences in their phytochemical constituents. The acute toxicity assay confirmed that no mortality was noticed when the dosage was 100 mg per kg which confirms that the confirms that the AgNPs are not toxic when used in low quantities. It is concluded that leaf extract from A. dracontium could be used against pathogenic bacteria offering economic and health benefits compared to the chemical substances.
Subject(s)
Anti-Bacterial Agents , Metal Nanoparticles , Microbial Sensitivity Tests , Plant Extracts , Plant Leaves , Silver , Plant Extracts/pharmacology , Plant Extracts/chemistry , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Silver/pharmacology , Silver/chemistry , Plant Leaves/chemistry , Bacteria/drug effects , X-Ray Diffraction , Phytochemicals/pharmacology , Spectroscopy, Fourier Transform Infrared , Drug Resistance, Multiple, Bacterial/drug effects , Plants, Medicinal/chemistry , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Plant Stems/chemistryABSTRACT
In our comprehensive meta-analysis, we initially collected 177 publications focusing on the impact of melatonin on wheat. After meticulous screening, 40 published studies were selected, encompassing 558 observations for antioxidant enzymes, 312 for reactive oxygen species (ROS), and 92 for soluble biomolecules (soluble sugar and protein). This analysis revealed significant heterogeneity across studies (I2 > 99% for enzymes, ROS, and soluble biomolecules) and notable publication bias, indicating the complexity and variability in the research field. Melatonin application generally increased antioxidant enzyme activities [superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX)] in wheat, particularly under stress conditions, such as high temperature and heavy-metal exposure. Compared to control, melatonin application increased SOD, POD, CAT, and APX activities by 29.5, 16.96, 35.98, and 171.64%, respectively. Moreover, oxidative stress markers like hydrogen peroxide (H2O2), superoxide anion (O2), and malondialdehyde (MDA) decreased with melatonin by 23.73, 13.64, and 21.91%, respectively, suggesting a reduction in oxidative stress. The analysis also highlighted melatonin's role in improving carbohydrate metabolism and antioxidant defenses. Melatonin showed an overall increase of 12.77% in soluble sugar content, and 22.76% in glutathione peroxidase (GPX) activity compared to the control. However, the effects varied across different wheat varieties, environmental conditions, and application methods. Our study also uncovered complex relationships between antioxidant enzyme activities and H2O2 levels, indicating a nuanced regulatory role of melatonin in oxidative stress responses. Our meta-analysis demonstrates the significant role of melatonin in increasing wheat resilience to abiotic stressors, potentially through its regulatory impact on antioxidant defense systems and stress response.
Subject(s)
Antioxidants , Melatonin , Antioxidants/metabolism , Melatonin/pharmacology , Reactive Oxygen Species/metabolism , Triticum/metabolism , Hydrogen Peroxide/metabolism , Catalase/metabolism , Superoxide Dismutase/metabolism , Peroxidases/metabolism , Peroxidase/metabolism , Oxidative Stress , Sugars/metabolism , Malondialdehyde/metabolismABSTRACT
Zeolitic Imidazolate (metal organic) Frameworks (ZIFs) and Prussian Blue Analogues (PBAs) are promising materials in electrochemical sensing due to their unique properties. In this study, a composite material comprising NiFe-PBA and ZIF-67 was synthesized and made to form a uniform layer onto a glassy carbon electrode (GCE) to enhance electrochemical performance for furazolidone (FZD) detection. The synthesized NiFe-PBA/ZIF-67 composite exhibited excellent sensitivity, selectivity, and stability towards FZD detection, with a low limit of detection (LOD). The electrochemical behaviour of FZD on the NiFe-PBA/ZIF-67/GCE electrode was investigated, revealing a diffusion-controlled process. Differential pulse voltammetry (DPV) analysis demonstrated the synergetic effect of the PBA/MOF core-shell structure in enhancing FZD electro-reduction. The sensor exhibited exceptional LOD of 0.007 µM. Selectivity studies confirmed the sensor's ability to distinguish FZD from potential interferents. Extensive evaluations demonstrated the sensor's reproducibility, repeatability, and long-term stability, affirming its practical utility. Real sample analysis further validated the sensor's excellent analytical capabilities in diverse matrices.
Subject(s)
Electrochemical Techniques , Ferrocyanides , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Electrochemical Techniques/methods , Ferrocyanides/chemistry , Electrodes , Metal-Organic Frameworks/chemistry , Furazolidone/analysis , Furazolidone/chemistry , Limit of Detection , Carbon/chemistry , Zeolites/chemistry , ImidazolesABSTRACT
Mangifera indica peels are a rich source of diverse flavonoids and xanthonoids; however, generally these are discarded. Computational studies revealed that mangiferin significantly interacts with amino acid residues of transcriptional regulators 1IK3, 3TOP, and 4f5S. The methanolic extract of Langra variety of mangoes contained the least phenol concentrations (22.6 ± 0.32 mg/gGAE [gallic acid equivalent]) compared to the chloroform (214.8 ± 0.12 mg/gGAE) and ethyl acetate fractions (195.6 ± 0.14 mg/gGAE). Similarly, the methanolic extract of Sindhri variety contained lower phenol concentrations (42.3 ± 0.13 mg/gRUE [relative utilization efficiency]) compared with the chloroform (85.6 ± 0.15 mg/gGAE) and ethyl acetate (76.1 ± 0.32 mg/gGAE) fractions. Langra extract exhibited significant α-glucosidase inhibition (IC50 0.06 mg/mL), whereas the ethyl acetate fraction was highly active (IC50 0.12 mg/mL) in Sindhri variety. Mangiferin exhibited significant inhibition (IC50 0.026 mg/mL). A moderate inhibition of 15-LOX was observed in all samples, whereas mangiferin was least active. In advanced glycation end product inhibition assay, the chloroform fraction of Langra variety exhibited significant inhibition in nonoxidative (IC50 64.4 µg/mL) and oxidative modes (IC50 54.7 µg/mL). It was concluded that both Langra and Sindhri peel extracts and fractions possess significant antidiabetic activities. The results suggest the potential use of peel waste in the management and complications of diabetes.
Subject(s)
Antioxidants , Glycation End Products, Advanced , Hypoglycemic Agents , Mangifera , Plant Extracts , Xanthones , Xanthones/chemistry , Xanthones/pharmacology , Xanthones/analysis , Mangifera/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/analysis , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/analysis , Glycation End Products, Advanced/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Molecular Docking Simulation , Fruit/chemistry , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/analysis , Computer SimulationABSTRACT
The cultivation of forage crops on wastewater-irrigated soils, while common in many developing countries, poses significant risks due to heavy metal pollution, particularly Lead (Pb) and Nickel (Ni). This practice, aimed at addressing water scarcity challenges and providing affordable irrigation, was investigated for its ecological and human health implications across three diverse sites (site A, site B, and site C). Our study unveiled increases in Pb concentrations in contaminated soil, cultivated with Sesbania bispinosa showing the highest Pb accumulation. The Ni concentrations ranged from 5.34 to 10.43 across all forage crop samples, with S. fruticosa from site C displaying the highest Ni concentration and S. bicolor from site A exhibiting the lowest. Trace element concentrations in the specimens were determined using an atomic absorption spectrophotometer. The Pb levels in the blood, hair, and feces of farm ruminants (cows, buffaloes, and sheep) varied across the sites, with buffaloes consistently displaying the highest Pb levels. Insights into daily Pb intake by ruminant's highlighted variations influenced by plant species, animal types, and sites, with site C, the cows exhibiting the highest Health Risk Index (HRI) associated with lead exposure from consuming forage crops. Soil and forage samples showed Pb concentrations ranging from 8.003 to 12.29â¯mg/kg and 6.69-10.52â¯mg/kg, respectively, emphasizing the severe health risks associated with continuous sewage usage. Variations in Ni concentrations across animal blood, hair, and feces samples underscored the importance of monitoring Ni exposure in livestock, with sheep at site B consistently showing the highest Ni levels. These findings highlight the necessity of vigilance in monitoring trace element (Pb and Ni) exposure in forage crops and livestock, to mitigate potential health risks associated with their consumption, with variations dependent on species, site, and trace element concentrations.
Subject(s)
Crops, Agricultural , Lead , Nickel , Soil Pollutants , Nickel/analysis , Nickel/toxicity , Animals , Soil Pollutants/analysis , Lead/analysis , Environmental Monitoring , Ruminants , Sheep , Cattle , Soil/chemistry , FarmsABSTRACT
Bacterial endophytes from plants harbor diverse metabolites that play major roles in biocontrol and improve plant growth. In this study, a total of 12 endophytic bacteria were isolated from the ginger rhizome. The strain K3 was highly effective in preventing mycelia growth of Pythium myriotylum (78.5 ± 1.5% inhibition) in dual culture. The cell-free extract (2.5%) of endophyte K3 inhibited 76.3 ± 4.8% mycelia growth, and 92.4 ± 4.2% inhibition was observed at a 5% sample concentration. The secondary metabolites produced by Bacillus licheniformis K3 showed maximum activity against Pseudomonas syringae (24 ± 1 mm zone of inhibition) and Xanthomonas campestris (28 ± 3 mm zone of inhibition). The strain K3 produced 28.3 ± 1.7 IU mL-1 protease, 28.3 ± 1.7 IU mL-1 cellulase, and 2.04 ± 0.13 IU mL-1 chitinase, respectively. The ginger rhizome treated with K3 in the greenhouse registered 53.8 ± 1.4% soft rot incidence, and the streptomycin-treated pot registered 78.3 ± 1.7% disease incidence. The selected endophyte K3 improved ascorbate peroxidase (1.37 ± 0.009 µmole ASC min-1 mg-1 protein), catalase (8.7 ± 0.28 µmole min-1 mg-1 protein), and phenylalanine ammonia-lyase (26.2 ± 0.99 Umg-1) in the greenhouse. In addition, K3 treatment in the field trial improved rhizome yield (730 ± 18.4 g) after 180 days (p < 0.01). The shoot length was 46 ± 8.3 cm in K3-treated plants, and it was about 31% higher than the control treatment (p < 0.01). The lytic enzyme-producing and growth-promoting endophyte is useful in sustainable crop production through the management of biotic stress.
Subject(s)
Bacillus licheniformis , Endophytes , Plant Diseases , Pythium , Zingiber officinale , Pythium/growth & development , Endophytes/isolation & purification , Endophytes/metabolism , Endophytes/physiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Zingiber officinale/microbiology , Zingiber officinale/growth & development , Bacillus licheniformis/growth & development , Bacillus licheniformis/metabolism , Rhizome/microbiology , Rhizome/growth & development , Mycelium/growth & development , Antibiosis , Biological Control Agents/pharmacology , Secondary Metabolism , Chitinases/metabolismABSTRACT
Salinity stress is one of the major hurdles in agriculture which adversely affects crop production. It can cause osmotic imbalance, ion toxicity that disrupts essential nutrient balance, impaired nutrient uptake, stunted growth, increased oxidative stress, altered metabolism, and diminished crop yield and quality. However, foliar application of osmoprotectant is becoming popular to resolve this issue in crops. These osmoprotectants regulate the cellular osmotic balance and protect plants from the detrimental effects of high salt concentrations. Furthermore, the role of arbuscular mycorrhizae (AMF) is also established in this regard. These AMF effectively reduce the salinity negative effects by improving the essential nutrient balance via the promotion of root growth. That's why keeping in mind the effectiveness of osmoprotectants current study was conducted on cotton. Total of six levels of γ-Aminobutyric acid (GABA = 0 mM, 0. 5 mM, and 1 mM) and ectoine (ECT = 0 mM, 0.25 mM, and 0.5 mM) were applied as treatments in 3 replications. Results showed that 0.5 mM γ-Aminobutyric acid and ectoine performed significantly best for the improvement in cotton growth attributes. It also caused significant enhancement in K and Ca contents of the leaf, stem, bur, and seeds compared to the control. Furthermore, 0.5 mM γ-Aminobutyric acid and ectoine also caused a significant decline in Cl and Na contents of leaf, stem, bur, and seeds of cotton compared to control under salinity stress. A significant enhancement in chlorophyll contents, gas exchange attributes, and decline in electrolyte leakage validated the effectiveness of 0.5 mM γ-Aminobutyric acid and ectoine over control. In conclusion, 0.5 mM γ-Aminobutyric acid and ectoine have the potential to mitigate the salinity stress in cotton.
Subject(s)
Mycorrhizae , Soil , Antioxidants , Mycorrhizae/physiology , Sodium Chloride/pharmacology , gamma-Aminobutyric AcidABSTRACT
BACKGROUND: Chromium (Cr) contamination in soil poses a serious hazard because it hinders plant growth, which eventually reduces crop yield and raises the possibility of a food shortage. Cr's harmful effects interfere with crucial plant functions like photosynthesis and respiration, reducing energy output, causing oxidative stress, and interfering with nutrient intake. In this study, the negative effects of Cr on mung beans are examined, as well as investigate the effectiveness of Azospirillum brasilense and salicylic acid in reducing Cr-induced stress. RESULTS: We investigated how different Cr levels (200, 300, and 400 mg/kg soil) affected the growth of mung bean seedlings with the use of Azospirillum brasilense and salicylic acid. Experiment was conducted with randomized complete block design with 13 treatments having three replications. Significant growth retardation was caused by Cr, as were important factors like shoot and root length, plant height, dry weight, and chlorophyll content significantly reduced. 37.15% plant height, 71.85% root length, 57.09% chlorophyll contents, 82.34% crop growth rate was decreased when Cr toxicity was @ 50 µM but this decrease was remain 27.80%, 44.70%, 38.97% and 63.42%, respectively when applied A. brasilense and Salicylic acid in combine form. Use of Azospirillum brasilense and salicylic acid significantly increased mung bean seedling growth (49%) and contributed to reducing the toxic effect of Cr stress (34% and 14% in plant height, respectively) due to their beneficial properties in promoting plant growth. CONCLUSIONS: Mung bean seedlings are severely damaged by Cr contamination, which limits their growth and physiological characteristics. Using Azospirillum brasilense and salicylic acid together appears to be a viable way to combat stress brought on by Cr and promote general plant growth. Greater nutrient intake, increased antioxidant enzyme activity, and greater root growth are examples of synergistic effects. This strategy has the ability to reduce oxidative stress brought on by chromium, enhancing plant resistance to adverse circumstances. The study offers new perspectives on sustainable practices that hold potential for increasing agricultural output and guaranteeing food security.
Subject(s)
Azospirillum brasilense , Fabaceae , Vigna , Antioxidants/pharmacology , Chlorophyll , Chromium/toxicity , Plant Leaves , Salicylic Acid/pharmacology , SoilABSTRACT
BACKGROUND: Green chili is the predominant vegetable in tropical and subtropical regions with high economic value. However, after harvest, it exhibits vigorous metabolic activities due to the high moisture level, leading to a reduction in bioactive compounds and hence reduced shelf life and nutritional quality. Low temperature storage results in the onset of chilling injury symptoms. Therefore, developing techniques to increase the shelf life of green chilies and safeguard their nutritional value has become a serious concern for researchers. In this regard, an experiment was conducted to evaluate the impact of the alone or combined application of hot water treatment (HWT) (45 °C for 15 min) and eucalyptus leaf extract (ELE) (30%) on 'Golden Hot' chilies in comparison to the control. After treatment, chilies were stored at 20 ± 1.5 °C for 20 days. RESULTS: HWT + ELE-treated chilies had a significant reduction in fruit weight loss (14.6%), fungal decay index (35%), red chili percentage (41.2%), soluble solid content (42.9%), ripening index (48.9%), and reactive oxygen species production like H2O2 (55.1%) and O-2 (46.5%) during shelf in comparison to control, followed by the alone application of HWT and ELE. Furthermore, the combined use of HWT and ELE effectively improved the antioxidative properties of stored chilies including DPPH radical scavenging activities (54.6%), ascorbic acid content (28.4%), phenolic content (31.8%), as well as the enzyme activities of POD (103%), CAT (128%), SOD (26.5%), and APX (43.8%) in comparison to the control. Additionally, the green chilies underwent HWT + ELE treatment also exhibited higher chlorophyll levels (100%) and general appearance (79.6%) with reduced anthocyanin content (40.8%) and wrinkling (43%), leading to a higher marketable fruit (41.3%) than the control. CONCLUSION: The pre-storage application of HWT and ELE could be used as an antimicrobial, non-chemical, non-toxic, and eco-friendly treatment for preserving the postharvest quality of green chilies at ambient temperature (20 ± 1.5 °C).
Subject(s)
Antioxidants , Eucalyptus , Antioxidants/analysis , Hydrogen Peroxide , Ascorbic Acid , Plant Extracts/analysis , Fruit/microbiologyABSTRACT
BACKGROUND: Agitation speed influenced the production rate of laccase. Orbital speed not only influenced the enzyme production, but was also effective to dissolve the oxygen during growth of mycelium, spores, and chlamydospores. Shear effects of speed greatly influenced the morphology of mycelium. METHODS: Ganoderma multistipitatum was identified by ITS marker. Phylogenetic tree was constructed for species identification. Qualitatively by plate method contained guaiacol indicator, while quantitatively by submerged fermentation and Central Composite Design applied on agitation parameter for maximum laccase potential of this species. The effects of agitation speed on mycelium morphology were observed under compound and scanning electron microscope. RESULTS: Statistical optimization of agitation conditions were performed by using response surface methodology to enhance the production of laccase from Ganoderma multistipitatum sp. nov. Maximum laccase yield (19.44 × 105 ± 0.28 U/L) was obtained at 150 rpm grown culture, which was higher than predicted value of laccase production (19.18 × 105 U/L) under aerobic conditions (150 rpm). The 150 rpm provided the continuous flush of oxygen. The DO (dissolved oxygen) was maximum (65%) for "27 h" incubation at 150 rpm during laccase synthesis. The statistical value of laccase production was minimum under anaerobic or nearly static condition of 50 rpm. The predicted (12.78 × 105 U/L) and obtained (12.82 × 105 U/L) yield was low at 50 rpm. Optimization of orbital shaking for aeration conditions were performed by the use of "Response Surface Methodology". The submerged shaking flasks were utilized as a nutrients growth medium to maximize the production of laccase from G. multistipitatum. The minimum incubation time highly influenced the laccase yield from 7 to 15 days via utilization of less cost-effective medium under a promising and eco-friendly method. The morphological effects of rpm on mycelium were examined under compound and scanning electron microscopy. Higher rpm (200, 230) shear the mycelium, while 150 to 200 rpm exhibited smoother and highly dense branches of mycelia. CONCLUSION: The shear forces of 200 rpm caused the damages of mycelium and cells autolysis with less laccase production. This study concluded that 150 rpm saved the life of mycelium and enhanced the production rate of enzymes.