Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Nutr ; 148(5): 729-737, 2018 05 01.
Article in English | MEDLINE | ID: mdl-30053279

ABSTRACT

Background: Protein ingestion promotes whole-body net protein balance (NB) in children, which is a prerequisite for growth. Determining how much protein is required at breakfast to promote a positive NB, which may be negative after the traditional overnight fast in children, has yet to be determined. Objective: We determined the impact of incremental doses of milk protein at breakfast as well as the impact of daily dietary protein distribution on NB in children. Methods: A total of 28 children [14 boys, 14 girls; age range: 7-11 y; body mass index (mean ± SD, in kg/m2): 16.0 ± 1.9] completed 2 intervention trials. During the breakfast meal, participants consumed an isoenergetic beverage with different amounts of protein (0, 7, 14, or 21 g for Groups A-D, respectively) and [15N]-glycine to measure whole body protein metabolism. Whole-body nitrogen turnover, protein synthesis (PS), protein breakdown, and NB were measured over 9 and 24 h. Results: Following an overnight fast, children were in negative NB (-64.5 mg · kg-1 · h-1). Protein ingestion at breakfast induced a stepwise increase in NB over 9 h [Groups A (6.2 mg · kg-1 · h-1) < B (27.9 mg · kg-1 · h-1) < C (46.9 mg · kg-1 · h-1) < D (66.0 mg · kg-1 · h-1)] with all conditions different from each other (all P < 0.01). PS was 42% greater in Group D than in Group A over 9 h (P < 0.05). Conclusions: Consuming ≥7 g of the total daily protein intake at breakfast attenuates the observed overnight protein losses in children during the subsequent 9 h following breakfast consumption. The dose-dependent increase in NB over a daytime fed period, inclusive of breakfast and lunch, highlights the importance of breakfast protein intake on acute anabolism in healthy active children. This trial was registered at clinicaltrials.gov as NCT02465151.


Subject(s)
Breakfast , Dietary Proteins/pharmacology , Proteins/metabolism , Child , Dietary Proteins/administration & dosage , Dose-Response Relationship, Drug , Female , Humans , Male
2.
Br J Nutr ; 111(8): 1507-19, 2014 Apr 28.
Article in English | MEDLINE | ID: mdl-24299712

ABSTRACT

The present study investigated the impact of a Lactobacillus rhamnosus CGMCC1.3724 (LPR) supplementation on weight loss and maintenance in obese men and women over 24 weeks. In a double-blind, placebo-controlled, randomised trial, each subject consumed two capsules per d of either a placebo or a LPR formulation (1.6 × 10(8) colony-forming units of LPR/capsule with oligofructose and inulin). Each group was submitted to moderate energy restriction for the first 12 weeks followed by 12 weeks of weight maintenance. Body weight and composition were measured at baseline, at week 12 and at week 24. The intention-to-treat analysis showed that after the first 12 weeks and after 24 weeks, mean weight loss was not significantly different between the LPR and placebo groups when all the subjects were considered. However, a significant treatment × sex interaction was observed. The mean weight loss in women in the LPR group was significantly higher than that in women in the placebo group (P = 0.02) after the first 12 weeks, whereas it was similar in men in the two groups (P= 0.53). Women in the LPR group continued to lose body weight and fat mass during the weight-maintenance period, whereas opposite changes were observed in the placebo group. Changes in body weight and fat mass during the weight-maintenance period were similar in men in both the groups. LPR-induced weight loss in women was associated not only with significant reductions in fat mass and circulating leptin concentrations but also with the relative abundance of bacteria of the Lachnospiraceae family in faeces. The present study shows that the Lactobacillus rhamnosus CGMCC1.3724 formulation helps obese women to achieve sustainable weight loss.


Subject(s)
Lacticaseibacillus rhamnosus , Obesity/drug therapy , Probiotics/therapeutic use , Weight Loss , Adipose Tissue/metabolism , Adult , Colon/microbiology , Dietary Supplements , Double-Blind Method , Energy Intake , Feces , Female , Humans , Intention to Treat Analysis , Leptin/blood , Male , Middle Aged , Obesity/blood , Obesity/metabolism , Sex Factors , Young Adult
3.
Br J Nutr ; 105(10): 1492-502, 2011 May.
Article in English | MEDLINE | ID: mdl-21272402

ABSTRACT

Epidemiological studies have repeatedly found that whole-grain (WG) cereal foods reduce the risk of several lifestyle-related diseases, though consistent clinical outcomes and mechanisms are elusive. To compare the effects of a WG-rich diet with a matched refined-grain (RG) diet on plasma biomarkers and bowel health parameters, seventeen healthy subjects (eleven females and six males) completed an exploratory cross-over study with a 2-week intervention diet based on either WG- or RG-based foods, separated by a washout of at least 5 weeks. Both diets were the same except for the use of WG (150 g/d) or RG foods. Subjects undertook a 4 h postprandial challenge on day 8 of each intervention diet. After 2 weeks, the WG diet tended to decrease plasma total and LDL-cholesterol (both P = 0·09), but did not change plasma HDL-cholesterol, fasting glucose, C-reactive protein or homocysteine compared with the RG diet. Plasma betaine and alkylresorcinol concentrations were elevated after 1 week of the WG diet (P = 0·01 and P < 0·0001, respectively). Clostridium leptum populations in faeces were increased after the WG diet, along with a trend for decreased faecal water pH (P = 0·096) and increased stool frequency (P < 0·0001) compared with the RG diet. A short controlled intervention trial with a variety of commercially available WG-based products tended to improve biomarkers of CVD compared with a RG diet. Changes in faecal microbiota related to increased fibre fermentation and increased plasma betaine concentrations point to both fibre and phytochemical components of WG being important in mediating any potential health effects.


Subject(s)
Betaine/blood , Cholesterol, LDL/blood , Dietary Fiber/administration & dosage , Edible Grain , Adult , Chromatography, High Pressure Liquid , Cross-Over Studies , Female , Humans , Male , Patient Compliance , Reference Values , Tandem Mass Spectrometry
4.
J Pediatr Gastroenterol Nutr ; 52(6): 756-62, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21593648

ABSTRACT

OBJECTIVES: Breast-feeding induces a gut microbiota rich in bifidobacteria, whereas formula-fed babies have a more diverse colonization. This ecosystem contributes to the development of the immune response and the lower incidence of diarrhea and allergy in breast-fed infants. This randomized double-blind controlled trial aimed to evaluate the bifidogenic effect of a mainly whey protein study formula low in phosphate and protein, allowing a composition closer to that of human milk. PATIENTS AND METHODS: One hundred ninety healthy infants exclusively received study formula with or without Bifidobacterium longum (BL999), or a control formula for up to 4 months. Breast-fed infants served as a reference population. Stool samples collected at 2 months of age were analyzed for bacterial counts (log colony-forming unit [CFU]/g). RESULTS: Bifidobacteria counts were significantly higher in infants receiving the study formula alone (10.0[0.8], P < 0.0001, median [interquartile range]) or with BL999 (9.8[1.4], P < 0.01) than control (9.2[3.5]), and were similar to breast-fed infants (10.1[0.4], P > 0.05). The difference between the 2 study groups was 0.16 log CFU/g (90% confidence interval [CI] [0-0.4]), within the predefined equivalence margin. Microbiota profile, as a percentage of total bacteria counts, showed about 50% Bifidobacteria, 8% Enterobacteria, and <10% Clostridia in study formulae and breast-fed infants versus 22%, 13%, and 19% in controls, respectively. There were no significant differences in growth measurements, digestive tolerance, and adverse events between groups. CONCLUSIONS: This study showed that infant formula closer resembling human milk was more bifidogenic than the control formula and led to a microbiota profile similar to that for breast-fed infants.


Subject(s)
Bifidobacterium , Food Microbiology , Gastrointestinal Tract/microbiology , Infant Formula , Infant, Newborn , Metagenome , Probiotics , Bacterial Load , Breast Feeding , Clostridium/isolation & purification , Double-Blind Method , Enterobacteriaceae/isolation & purification , Feces/microbiology , Female , Humans , Male , Milk, Human/microbiology
5.
Am J Clin Nutr ; 111(2): 448-458, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31891374

ABSTRACT

BACKGROUND: In observational studies, coffee consumption has been consistently associated with a lower risk of type 2 diabetes mellitus. Trials examining the effect of coffee consumption on glucose metabolism have been limited by the use of surrogate insulin sensitivity indices, small sample sizes, lack of blinding, and short follow-up duration. OBJECTIVES: We aimed to overcome limitations of previously conducted coffee trials in a randomized placebo-controlled trial of the effect of coffee consumption on insulin sensitivity. METHODS: We conducted a 24-wk randomized placebo-controlled trial in 126 overweight, non-insulin sensitive (HOMA-IR ≥1.30), Chinese, Malay, and Asian-Indian males and females aged 35-69 y. Participants were randomly assigned to receive 4 cups of instant regular coffee (n = 62) or 4 cups of a coffee-like placebo beverage (n = 64) per day. The primary outcome was the amount of glucose metabolized per kilogram of body weight per minute (Mbw) assessed during steady-state conditions with a hyperinsulinemic euglycemic clamp. Secondary outcomes included other clamp-based insulin sensitivity measures, biological mediators of insulin sensitivity, and measures of fasting glucose metabolism. RESULTS: Coffee consumption did not significantly change insulin sensitivity compared with placebo (percentage mean difference in Mbw = 4.0%; 95% CI: -8.3, 18.0%; P = 0.53). Furthermore, no significant differences in fasting plasma glucose (2.9%; 95% CI: -0.4, 6.3%; P = 0.09) or biological mediators of insulin resistance, such as plasma adiponectin (2.3%; 95% CI: -1.4, 6.2%; P = 0.22), were observed between coffee and placebo groups over 24 wk of intervention. Participants in the coffee arm experienced a loss of fat mass (FM) (-3.7%; 95% CI: -6.3, -1.1%; P = 0.006) and reduction in urinary creatinine concentrations (-21.2%; 95% CI: -31.4, -9.5%; P = 0.001) compared with participants in the placebo arm over 24 wk of intervention. CONCLUSIONS: Consuming 4 cups/d of caffeinated coffee for 24 wk had no significant effect on insulin sensitivity or biological mediators of insulin resistance but was associated with a modest loss of FM and reduction in urinary creatinine concentrations.This trial was registered at clinicaltrials.gov as NCT01738399. Registered on November 28, 2012. Trial sponsor: Nestlé Research, Lausanne, Switzerland. Trial site: National University of Singapore.


Subject(s)
Coffee , Diabetes Mellitus, Type 2 , Insulin Resistance , Adult , Aged , Female , Humans , Insulin/metabolism , Male , Middle Aged , Risk Factors
6.
Clin Med Insights Pediatr ; 10: 119-130, 2016.
Article in English | MEDLINE | ID: mdl-28096702

ABSTRACT

The gut microbiota of infants is shaped by both the mode of delivery and the type of feeding. The gut of vaginally and cesarean-delivered infants is colonized at different rates and with different bacterial species, leading to differences in the gut microbial composition, which may persist up to 6 months. In a multicenter, randomized, controlled, double-blind trial conducted in South Africa, we tested the effect of a formula supplemented with a prebiotic (a mixture of bovine milk-derived oligosaccharides [BMOS] generated from whey permeate and containing galactooligosaccharides and milk oligosaccharides such as 3'- and 6'-sialyllactose) and the probiotic Bifidobacterium animalis subsp. lactis (B. lactis) strain CNCM I-3446 on the bifidobacteria levels in the gut of infants born vaginally or via cesarean section in early life. Additionally, the safety of the new formulation was evaluated. A total of 430 healthy, full-term infants born to HIV-positive mothers who had elected to feed their child beginning from birth (≤3 days old) exclusively with formula were randomized into this multicenter trial of four parallel groups. A total of 421 infants who had any study formula intake were included in the full analysis set (FAS). The first two groups consisted of cesarean-delivered infants assigned to the Test formula (n = 92) (a starter infant formula [IF] containing BMOS at a total oligosaccharide concentration of 5.8 ± 1.0 g/100 g of powder formula [8 g/L in the reconstituted formula] + B. lactis [1 × 107 colony-forming units {cfu}/g]) or a Control IF (n = 101); the second two groups consisted of vaginally delivered infants randomized to the same Test (n = 115) or Control (n = 113) formulas from the time of enrollment to 6 months. The primary efficacy outcome was fecal bifidobacteria count at 10 days, and the primary safety outcome was daily weight gain (g/d) between 10 days and 4 months. At 10 days, fecal bifidobacteria counts were significantly higher in the Test formula than in the Control formula group among infants with cesarean birth (median [range] log: 9.41 [6.30-10.94] cfu/g versus 6.30 [6.30-10.51] cfu/g; P = 0.002) but not among those with vaginal birth (median [range] log: 10.06 [5.93-10.77] cfu/g versus 9.85 [6.15-10.79] cfu/g; P = 0.126). The lower bound of the two-sided 95% confidence interval of the difference in the mean daily weight gain between the Test and Control formula groups was more than -3 g/d in both the vaginally and cesarean-delivered infants, indicating that growth in the Test formula-fed infants was not inferior to that of Control formula-fed infants. At 10 days and 4 weeks, the fecal pH of infants fed the Test formula was significantly lower than in those fed the Control formula, irrespective of mode of delivery: for vaginal delivery: 4.93 versus 5.59; P < 0.001 (10 days) and 5.01 versus 5.71; P < 0.001 (4 weeks); for cesarean delivery: 5.14 versus 5.65, P = 0.009 (10 days) and 5.06 versus 5.75, P < 0.001 (4 weeks). At 3 months, this acidification effect only persisted among cesarean-born infants. IF supplemented with the prebiotic BMOS and probiotic B. lactis induced a strong bifidogenic effect in both delivering modes, but more explicitly correcting the low bifidobacteria level found in cesarean-born infants from birth. The supplemented IF lowered the fecal pH and improved the fecal microbiota in both normal and cesarean-delivered infants. The use of bifidobacteria as a probiotic even in infants who are immunologically at risk is safe and well tolerated.

7.
Contemp Clin Trials Commun ; 4: 105-117, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-29736473

ABSTRACT

BACKGROUND: Coffee consumption has been consistently associated with a lower risk of type 2 diabetes mellitus in cohort studies. In addition, coffee components increased insulin sensitivity in animal models. However, data from intervention studies on the effect of coffee consumption on glucose metabolism have been limited by small sample sizes, lack of blinding, short follow-up duration and the use of surrogate indices of insulin sensitivity. We designed the Coffee for Metabolic Health (COMETH) study to evaluate the effect of coffee consumption on insulin sensitivity. METHODOLOGY: The COMETH study is a double-blind randomized placebo-controlled 24-week trial. Participants were overweight, male and female habitual coffee consumers who were of Chinese, Malay and Asian-Indian ethnicity. We excluded smokers, persons with diabetes, and persons with low insulin resistance (HOMA-IR < 1.30). Participants were randomly assigned to receive daily 4 cups of instant regular coffee or 4 cups of a coffee-like placebo beverage. The hyperinsulinemic euglycemic clamp was performed at baseline and at the end of 24 weeks to determine changes in the bodyweight standardized M-value. Secondary outcomes included changes in fasting glucose and insulin sensitivity mediators such as adiponectin, markers of inflammation, liver function, and oxidative stress.We enrolled 128 participants, 126 (57.1% males; aged 35-67 years) of whom completed baseline assessments. DISCUSSION: If improvement in insulin sensitivity in the coffee group is significantly greater than that of the placebo group, this would support the hypothesis that coffee consumption reduced risk of type 2 diabetes through biological pathways involving insulin sensitivity. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT01738399. Registered on 28 November 2012. Trial Sponsor: Nestlé Research Center, Lausanne, Switzerland. Trial Site: National University of Singapore.

8.
Am J Clin Nutr ; 93(3): 525-34, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21228266

ABSTRACT

BACKGROUND: Dietary proteins stimulate thermogenesis and satiety more than does carbohydrate or fat; however, less is known about the differences between protein sources. OBJECTIVE: The objective was to determine the differential effects of 3 proteins on energy metabolism, satiety, and glucose control. DESIGN: Energy metabolism, satiety, and glucose control were measured in 23 lean, healthy subjects on separate occasions, before and 5.5 h after consumption of 4 isocaloric test meals in a randomized, double-blind, crossover design. Three meals consisting of 50% protein (whey, casein, or soy), 40% carbohydrate, and 10% fat and a fourth meal consisting of 95.5% carbohydrate were compared with a glucose meal that provided the same glucose load as the protein meals. RESULTS: The thermic effect was greater after the whey (14.4 ± 0.5%) than after the casein (12.0 ± 0.6%; P = 0.002) and soy (11.6 ± 0.5%; P = 0.0001) meals and was greater after the whey, casein, and soy meals than after the high-carbohydrate meal (6.6 ± 0.5%; P < 0.0001). Cumulative fat oxidation tended to be greater after the whey meal (16.2 ± 1.1 g) than after the soy meal (13.7 ± 1.0 g; P = 0.097) and was greater after the whey and soy meals than after the high-carbohydrate meal (10.9 ± 0.9 g; P < 0.05). The glycemic response to glucose was attenuated 32% by the proteins (P < 0.001) at the expense of a greater insulin response after whey than after glucose (154%; P = 0.02), casein (143%; P = 0.07), and soy (151%; P = 0.03). Subjective appetite sensations indicated that casein and soy were more satiating than whey (P < 0.01), but whey was more "liked" compared with casein and soy (P = 0.025 and P = 0.09, respectively). CONCLUSION: The results suggest that different protein sources could be used to modulate metabolism and subsequently energy balance.


Subject(s)
Dietary Proteins/metabolism , Energy Metabolism , Satiation , Thermogenesis , Adult , Appetite , Blood Glucose/analysis , Caseins/administration & dosage , Caseins/metabolism , Cross-Over Studies , Diet, Protein-Restricted , Dietary Proteins/administration & dosage , Double-Blind Method , Female , Food Preferences , Glycemic Index , Humans , Insulin/blood , Male , Milk Proteins/administration & dosage , Milk Proteins/metabolism , Postprandial Period , Soybean Proteins/administration & dosage , Soybean Proteins/metabolism , Whey Proteins
SELECTION OF CITATIONS
SEARCH DETAIL