Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 158
Filter
1.
Proc Natl Acad Sci U S A ; 120(45): e2307094120, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37922327

ABSTRACT

Bone metastasis is a frequent and incurable consequence of advanced prostate cancer (PC). An interplay between disseminated tumor cells and heterogeneous bone resident cells in the metastatic niche initiates this process. Melanoma differentiation associated gene-9 (mda-9/Syntenin/syndecan binding protein) is a prometastatic gene expressed in multiple organs, including bone marrow-derived mesenchymal stromal cells (BM-MSCs), under both physiological and pathological conditions. We demonstrate that PDGF-AA secreted by tumor cells induces CXCL5 expression in BM-MSCs by suppressing MDA-9-dependent YAP/MST signaling. CXCL5-derived tumor cell proliferation and immune suppression are consequences of the MDA-9/CXCL5 signaling axis, promoting PC disease progression. mda-9 knockout tumor cells express less PDGF-AA and do not develop bone metastases. Our data document a previously undefined role of MDA-9/Syntenin in the tumor and microenvironment in regulating PC bone metastasis. This study provides a framework for translational strategies to ameliorate health complications and morbidity associated with advanced PC.


Subject(s)
Bone Neoplasms , Melanoma , Prostatic Neoplasms , Male , Humans , Syntenins/genetics , Syntenins/metabolism , Melanoma/metabolism , Prostatic Neoplasms/genetics , Signal Transduction/genetics , Bone Neoplasms/genetics , Cell Line, Tumor , Tumor Microenvironment , Neoplasm Metastasis
2.
J Cell Physiol ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775127

ABSTRACT

Primary, glioblastoma, and secondary brain tumors, from metastases outside the brain, are among the most aggressive and therapeutically resistant cancers. A physiological barrier protecting the brain, the blood-brain barrier (BBB), functions as a deterrent to effective therapies. To enhance cancer therapy, we developed a cancer terminator virus (CTV), a unique tropism-modified adenovirus consisting of serotype 3 fiber knob on an otherwise Ad5 capsid that replicates in a cancer-selective manner and simultaneously produces a potent therapeutic cytokine, melanoma differentiation-associated gene-7/interleukin-24 (MDA-7/IL-24). A limitation of the CTV and most other viruses, including adenoviruses, is an inability to deliver systemically to treat brain tumors because of the BBB, nonspecific virus trapping, and immune clearance. These obstacles to effective viral therapy of brain cancer have now been overcome using focused ultrasound with a dual microbubble treatment, the focused ultrasound-double microbubble (FUS-DMB) approach. Proof-of-principle is now provided indicating that the BBB can be safely and transiently opened, and the CTV can then be administered in a second set of complement-treated microbubbles and released in the brain using focused ultrasound. Moreover, the FUS-DMB can be used to deliver the CTV multiple times in animals with glioblastoma  growing in their brain thereby resulting in a further enhancement in survival. This strategy permits efficient therapy of primary and secondary brain tumors enhancing animal survival without promoting harmful toxic or behavioral side effects. Additionally, when combined with a standard of care therapy, Temozolomide, a further increase in survival is achieved. The FUS-DMB approach with the CTV highlights a noninvasive strategy to treat brain cancers without surgery. This innovative delivery scheme combined with the therapeutic efficacy of the CTV provides a novel potential translational therapeutic approach for brain cancers.

3.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Article in English | MEDLINE | ID: mdl-34016751

ABSTRACT

Melanoma differentiation associated gene-9 (MDA-9), Syntenin-1, or syndecan binding protein is a differentially regulated prometastatic gene with elevated expression in advanced stages of melanoma. MDA-9/Syntenin expression positively associates with advanced disease stage in multiple histologically distinct cancers and negatively correlates with patient survival and response to chemotherapy. MDA-9/Syntenin is a highly conserved PDZ-domain scaffold protein, robustly expressed in a spectrum of diverse cancer cell lines and clinical samples. PDZ domains interact with a number of proteins, many of which are critical regulators of signaling cascades in cancer. Knockdown of MDA-9/Syntenin decreases cancer cell metastasis, sensitizing these cells to radiation. Genetic silencing of MDA-9/Syntenin or treatment with a pharmacological inhibitor of the PDZ1 domain, PDZ1i, also activates the immune system to kill cancer cells. Additionally, suppression of MDA-9/Syntenin deregulates myeloid-derived suppressor cell differentiation via the STAT3/interleukin (IL)-1ß pathway, which concomitantly promotes activation of cytotoxic T lymphocytes. Biologically, PDZ1i treatment decreases metastatic nodule formation in the lungs, resulting in significantly fewer invasive cancer cells. In summary, our observations indicate that MDA-9/Syntenin provides a direct therapeutic target for mitigating aggressive breast cancer and a small-molecule inhibitor, PDZ1i, provides a promising reagent for inhibiting advanced breast cancer pathogenesis.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Interleukin-1beta/genetics , Lung Neoplasms/drug therapy , Oxadiazoles/pharmacology , Pyrimidines/pharmacology , Syntenins/genetics , Animals , Antineoplastic Agents/chemical synthesis , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Cell Line, Tumor , Chemokine CCL11/genetics , Chemokine CCL11/immunology , Chemokine CCL17/genetics , Chemokine CCL17/immunology , Female , Gene Expression Regulation, Neoplastic , Humans , Interleukin-10/genetics , Interleukin-10/immunology , Interleukin-1alpha/genetics , Interleukin-1alpha/immunology , Interleukin-1beta/antagonists & inhibitors , Interleukin-1beta/immunology , Interleukin-23 Subunit p19/genetics , Interleukin-23 Subunit p19/immunology , Interleukin-5/genetics , Interleukin-5/immunology , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/secondary , Mice , Mice, Inbred BALB C , Oxadiazoles/chemical synthesis , Pyrimidines/chemical synthesis , Signal Transduction , Syntenins/antagonists & inhibitors , Syntenins/immunology , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/pathology , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
4.
Proc Natl Acad Sci U S A ; 117(22): 12324-12331, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32409605

ABSTRACT

Glioblastoma multiforme (GBM) is an aggressive cancer without currently effective therapies. Radiation and temozolomide (radio/TMZ) resistance are major contributors to cancer recurrence and failed GBM therapy. Heat shock proteins (HSPs), through regulation of extracellular matrix (ECM) remodeling and epithelial mesenchymal transition (EMT), provide mechanistic pathways contributing to the development of GBM and radio/TMZ-resistant GBM. The Friend leukemia integration 1 (Fli-1) signaling network has been implicated in oncogenesis in GBM, making it an appealing target for advancing novel therapeutics. Fli-1 is linked to oncogenic transformation with up-regulation in radio/TMZ-resistant GBM, transcriptionally regulating HSPB1. This link led us to search for targeted molecules that inhibit Fli-1. Expression screening for Fli-1 inhibitors identified lumefantrine, an antimalarial drug, as a probable Fli-1 inhibitor. Docking and isothermal calorimetry titration confirmed interaction between lumefantrine and Fli-1. Lumefantrine promoted growth suppression and apoptosis in vitro in parental and radio/TMZ-resistant GBM and inhibited tumor growth without toxicity in vivo in U87MG GBM and radio/TMZ-resistant GBM orthotopic tumor models. These data reveal that lumefantrine, an FDA-approved drug, represents a potential GBM therapeutic that functions through inhibition of the Fli-1/HSPB1/EMT/ECM remodeling protein networks.


Subject(s)
Antimalarials/administration & dosage , Antineoplastic Agents, Alkylating/administration & dosage , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Lumefantrine/administration & dosage , Temozolomide/administration & dosage , Brain Neoplasms/radiotherapy , Cell Line, Tumor , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/radiotherapy , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Humans , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism
5.
Proc Natl Acad Sci U S A ; 116(12): 5687-5692, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30842276

ABSTRACT

Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) is a multifunctional cytokine displaying broad-spectrum anticancer activity in vitro or in vivo in preclinical animal cancer models and in a phase 1/2 clinical trial in patients with advanced cancers. mda-7/IL-24 targets specific miRNAs, including miR-221 and miR-320, for down-regulation in a cancer-selective manner. We demonstrate that mda-7/IL-24, administered through a replication incompetent type 5 adenovirus (Ad.mda-7) or with His-MDA-7/IL-24 protein, down-regulates DICER, a critical regulator in miRNA processing. This effect is specific for mature miR-221, as it does not affect Pri-miR-221 expression, and the DICER protein, as no changes occur in other miRNA processing cofactors, including DROSHA, PASHA, or Argonaute. DICER is unchanged by Ad.mda-7/IL-24 in normal immortal prostate cells, whereas Ad.mda-7 down-regulates DICER in multiple cancer cells including glioblastoma multiforme and prostate, breast, lung, and liver carcinoma cells. MDA-7/IL-24 protein down-regulates DICER expression through canonical IL-20/IL-22 receptors. Gain- and loss-of-function studies confirm that overexpression of DICER rescues deregulation of miRNAs by mda-7/IL-24, partially rescuing cancer cells from mda-7/IL-24-mediated cell death. Stable overexpression of DICER in cancer cells impedes Ad.mda-7 or His-MDA-7/IL-24 inhibition of cell growth, colony formation, PARP cleavage, and apoptosis. In addition, stable overexpression of DICER renders cancer cells more resistant to Ad.mda-7 inhibition of primary and secondary tumor growth. MDA-7/IL-24-mediated regulation of DICER is reactive oxygen species-dependent and mediated by melanogenesis-associated transcription factor. Our research uncovers a distinct role of mda-7/IL-24 in the regulation of miRNA biogenesis through alteration of the MITF-DICER pathway.


Subject(s)
DEAD-box RNA Helicases/metabolism , Interleukins/metabolism , MicroRNAs/metabolism , Microphthalmia-Associated Transcription Factor/metabolism , Ribonuclease III/metabolism , Animals , Apoptosis/physiology , Cell Differentiation/physiology , Cell Line, Tumor , Cell Proliferation/physiology , DEAD-box RNA Helicases/biosynthesis , DEAD-box RNA Helicases/genetics , Down-Regulation , Genes, Tumor Suppressor , Humans , Interleukins/genetics , Male , Mice , Mice, Nude , MicroRNAs/biosynthesis , Microphthalmia-Associated Transcription Factor/genetics , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/parasitology , Reactive Oxygen Species/metabolism , Ribonuclease III/biosynthesis , Ribonuclease III/genetics , Signal Transduction , Xenograft Model Antitumor Assays/methods
6.
Semin Cancer Biol ; 66: 140-154, 2020 11.
Article in English | MEDLINE | ID: mdl-31356866

ABSTRACT

Apoptosis and autophagy play seminal roles in maintaining organ homeostasis. Apoptosis represents canonical type I programmed cell death. Autophagy is viewed as pro-survival, however, excessive autophagy can promote type II cell death. Defective regulation of these two obligatory cellular pathways is linked to various diseases, including cancer. Biologic or chemotherapeutic agents, which can reprogram cancer cells to undergo apoptosis- or toxic autophagy-mediated cell death, are considered effective tools for treating cancer. Melanoma differentiation associated gene-7 (mda-7) selectively promotes these effects in cancer cells. mda-7 was identified more than two decades ago by subtraction hybridization showing elevated expression during induction of terminal differentiation of metastatic melanoma cells following treatment with recombinant fibroblast interferon and mezerein (a PKC activating agent). MDA-7 was classified as a member of the IL-10 gene family based on its chromosomal location, and the presence of an IL-10 signature motif and a secretory sequence, and re-named interleukin-24 (MDA-7/IL-24). Multiple studies have established MDA-7/IL-24 as a potent anti-cancer agent, which when administered at supra-physiological levels induces growth arrest and cell death through apoptosis and toxic autophagy in a wide variety of tumor cell types, but not in corresponding normal/non-transformed cells. Furthermore, in a phase I/II clinical trial, MDA-7/IL-24 administered by means of a non-replicating adenovirus was well tolerated and displayed significant clinical activity in patients with multiple advanced cancers. This review examines our current comprehension of the role of MDA-7/IL-24 in mediating cancer-specific cell death via apoptosis and toxic autophagy.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/physiology , Autophagy/physiology , Interleukins/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Animals , Apoptosis/drug effects , Autophagy/drug effects , Cell Death/physiology , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Humans , Neoplasms/pathology
7.
J Cell Physiol ; 236(11): 7775-7791, 2021 11.
Article in English | MEDLINE | ID: mdl-33834508

ABSTRACT

Neuroblastoma (NB) is a common solid extracranial tumor developing in pediatric populations. NB can spontaneously regress or grow and metastasize displaying resistance to therapy. This tumor is derived from primitive cells, mainly those of the neural crest, in the sympathetic nervous system and usually develops in the adrenal medulla and paraspinal ganglia. Our understanding of the molecular characteristics of human NBs continues to advance documenting abnormalities at the genome, epigenome, and transcriptome levels. The high-risk tumors have MYCN oncogene amplification, and the MYCN transcriptional regulator encoded by the MYCN oncogene is highly expressed in the neural crest. Studies on the biology of NB has enabled a more precise risk stratification strategy and a concomitant reduction in the required treatment in an expanding number of cases worldwide. However, newer treatment strategies are mandated to improve outcomes in pediatric patients who are at high-risk and display relapse. To improve outcomes and survival rates in such high-risk patients, it is necessary to use a multicomponent therapeutic approach. Accuracy in clinical staging of the disease and assessment of the associated risks based on biological, clinical, surgical, and pathological criteria are of paramount importance for prognosis and to effectively plan therapeutic approaches. This review discusses the staging of NB and the biological and genetic features of the disease and several current therapies including targeted delivery of chemotherapy, novel radiation therapy, and immunotherapy for NB.


Subject(s)
Antineoplastic Agents/therapeutic use , Immunotherapy , Neuroblastoma/therapy , Animals , Antineoplastic Agents/adverse effects , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Humans , Immunotherapy/adverse effects , Molecular Targeted Therapy , Neoplasm Staging , Neuroblastoma/genetics , Neuroblastoma/metabolism , Neuroblastoma/pathology , Radiation Dosage , Signal Transduction
8.
Cancer Metastasis Rev ; 39(3): 769-781, 2020 09.
Article in English | MEDLINE | ID: mdl-32410111

ABSTRACT

Tumor metastasis comprises a series of coordinated events that culminate in dissemination of cancer cells to distant sites within the body representing the greatest challenge impeding effective therapy of cancer and the leading cause of cancer-associated morbidity. Cancer cells exploit multiple genes and pathways to colonize to distant organs. These pathways are integrated and regulated at different levels by cellular- and extracellular-associated factors. Defining the genes and pathways that govern metastasis can provide new targets for therapeutic intervention. Melanoma differentiation associated gene-9 (mda-9) (also known as Syntenin-1 and SDCBP (Syndecan binding protein)) was identified by subtraction hybridization as a novel gene displaying differential temporal expression during differentiation of melanoma. MDA-9/Syntenin is an established Syndecan binding protein that functions as an adaptor protein. Expression of MDA-9/Syntenin is elevated at an RNA and protein level in a wide-range of cancers including melanoma, glioblastoma, neuroblastoma, and prostate, breast and liver cancer. Expression is increased significantly in metastatic cancer cells as compared with non-metastatic cancer cells or normal cells, which make it an attractive target in treating cancer metastasis. In this review, we focus on the role and regulation of mda-9 in cancer progression and metastasis.


Subject(s)
Neoplasms/metabolism , Syntenins/metabolism , Animals , Humans , Neoplasm Metastasis , Neoplasms/genetics , Neoplasms/pathology , Syntenins/genetics
9.
Proc Natl Acad Sci U S A ; 115(22): 5768-5773, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29760085

ABSTRACT

Glioma stem cells (GSCs) comprise a small subpopulation of glioblastoma multiforme cells that contribute to therapy resistance, poor prognosis, and tumor recurrence. Protective autophagy promotes resistance of GSCs to anoikis, a form of programmed cell death occurring when anchorage-dependent cells detach from the extracellular matrix. In nonadherent conditions, GSCs display protective autophagy and anoikis-resistance, which correlates with expression of melanoma differentiation associated gene-9/Syntenin (MDA-9) (syndecan binding protein; SDCBP). When MDA-9 is suppressed, GSCs undergo autophagic death supporting the hypothesis that MDA-9 regulates protective autophagy in GSCs under anoikis conditions. MDA-9 maintains protective autophagy through phosphorylation of BCL2 and by suppressing high levels of autophagy through EGFR signaling. MDA-9 promotes these changes by modifying FAK and PKC signaling. Gain-of-function and loss-of-function genetic approaches demonstrate that MDA-9 regulates pEGFR and pBCL2 expression through FAK and pPKC. EGFR signaling inhibits autophagy markers (ATG5, Lamp1, LC3B), helping to maintain protective autophagy, and along with pBCL2 maintain survival of GSCs. In the absence of MDA-9, this protective mechanism is deregulated; EGFR no longer maintains protective autophagy, leading to highly elevated and sustained levels of autophagy and consequently decreased cell survival. In addition, pBCL2 is down-regulated in the absence of MDA-9, leading to cell death in GSCs under conditions of anoikis. Our studies confirm a functional link between MDA-9 expression and protective autophagy in GSCs and show that inhibition of MDA-9 reverses protective autophagy and induces anoikis and cell death in GSCs.


Subject(s)
Anoikis/genetics , Autophagy/genetics , Drug Resistance, Neoplasm/genetics , Glioma/metabolism , Neoplastic Stem Cells/metabolism , Syntenins/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Glioma/genetics , Humans , Syntenins/genetics , Tumor Cells, Cultured
10.
Int J Mol Sci ; 23(1)2021 Dec 22.
Article in English | MEDLINE | ID: mdl-35008495

ABSTRACT

Melanoma differentiation associated gene-7/interleukin-24 (MDA-7/IL-24), a secreted protein of the IL-10 family, was first identified more than two decades ago as a novel gene differentially expressed in terminally differentiating human metastatic melanoma cells. MDA-7/IL-24 functions as a potent tumor suppressor exerting a diverse array of functions including the inhibition of tumor growth, invasion, angiogenesis, and metastasis, and induction of potent "bystander" antitumor activity and synergy with conventional cancer therapeutics. MDA-7/IL-24 induces cancer-specific cell death through apoptosis or toxic autophagy, which was initially established in vitro and in preclinical animal models in vivo and later in a Phase I clinical trial in patients with advanced cancers. This review summarizes the history and our current understanding of the molecular/biological mechanisms of MDA-7/IL-24 action rendering it a potent cancer suppressor.


Subject(s)
Interleukins/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Apoptosis/physiology , Autophagy/physiology , Cell Death/physiology , Humans , Melanoma/metabolism
11.
Pharmacol Res ; 155: 104695, 2020 05.
Article in English | MEDLINE | ID: mdl-32061839

ABSTRACT

The primary cause of cancer-related death from solid tumors is metastasis. While unraveling the mechanisms of this complicated process continues, our ability to effectively target and treat it to decrease patient morbidity and mortality remains disappointing. Early detection of metastatic lesions and approaches to treat metastases (both pharmacological and genetic) are of prime importance to obstruct this process clinically. Metastasis is complex involving both genetic and epigenetic changes in the constantly evolving tumor cell. Moreover, many discrete steps have been identified in metastatic spread, including invasion, intravasation, angiogenesis, attachment at a distant site (secondary seeding), extravasation and micrometastasis and tumor dormancy development. Here, we provide an overview of the metastatic process and highlight a unique pro-metastatic gene, melanoma differentiation associated gene-9/Syntenin (MDA-9/Syntenin) also called syndecan binding protein (SDCBP), which is a major contributor to the majority of independent metastatic events. MDA-9 expression is elevated in a wide range of carcinomas and other cancers, including melanoma, glioblastoma multiforme and neuroblastoma, suggesting that it may provide an appropriate target to intervene in metastasis. Pre-clinical studies confirm that inhibiting MDA-9 either genetically or pharmacologically profoundly suppresses metastasis. An additional benefit to blocking MDA-9 in metastatic cells is sensitization of these cells to a second therapeutic agent, which converts anti-invasion effects to tumor cytocidal effects. Continued mechanistic and therapeutic insights hold promise to advance development of truly effective therapies for metastasis in the future.


Subject(s)
Neoplasm Metastasis/genetics , Neoplasms/therapy , Syntenins/genetics , Animals , Humans , Neoplasms/genetics , Neoplasms/pathology
12.
Proc Natl Acad Sci U S A ; 114(2): 370-375, 2017 01 10.
Article in English | MEDLINE | ID: mdl-28011764

ABSTRACT

Glioblastoma multiforme (GBM) is an intractable tumor despite therapeutic advances, principally because of its invasive properties. Radiation is a staple in therapeutic regimens, although cells surviving radiation can become more aggressive and invasive. Subtraction hybridization identified melanoma differentiation-associated gene 9 [MDA-9/Syntenin; syndecan-binding protein (SDCBP)] as a differentially regulated gene associated with aggressive cancer phenotypes in melanoma. MDA-9/Syntenin, a highly conserved double-PDZ domain-containing scaffolding protein, is robustly expressed in human-derived GBM cell lines and patient samples, with expression increasing with tumor grade and correlating with shorter survival times and poorer response to radiotherapy. Knockdown of MDA-9/Syntenin sensitizes GBM cells to radiation, reducing postradiation invasion gains. Radiation induces Src and EGFRvIII signaling, which is abrogated through MDA-9/Syntenin down-regulation. A specific inhibitor of MDA-9/Syntenin activity, PDZ1i (113B7), identified through NMR-guided fragment-based drug design, inhibited MDA-9/Syntenin binding to EGFRvIII, which increased following radiation. Both genetic (shmda-9) and pharmacological (PDZ1i) targeting of MDA-9/Syntenin reduced invasion gains in GBM cells following radiation. Although not affecting normal astrocyte survival when combined with radiation, PDZ1i radiosensitized GBM cells. PDZ1i inhibited crucial GBM signaling involving FAK and mutant EGFR, EGFRvIII, and abrogated gains in secreted proteases, MMP-2 and MMP-9, following radiation. In an in vivo glioma model, PDZ1i resulted in smaller, less invasive tumors and enhanced survival. When combined with radiation, survival gains exceeded radiotherapy alone. MDA-9/Syntenin (SDCBP) provides a direct target for therapy of aggressive cancers such as GBM, and defined small-molecule inhibitors such as PDZ1i hold promise to advance targeted brain cancer therapy.


Subject(s)
Glioblastoma/genetics , Neoplasm Invasiveness/genetics , Syntenins/genetics , Animals , Brain Neoplasms/genetics , Cell Line, Tumor , Cell Movement/genetics , Down-Regulation/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Glioma/genetics , Humans , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 9/genetics , Melanoma/genetics , Mice , Mice, Nude , PDZ Domains/genetics , Signal Transduction/genetics , src-Family Kinases/genetics
14.
J Cell Physiol ; 233(8): 5684-5695, 2018 08.
Article in English | MEDLINE | ID: mdl-29278667

ABSTRACT

In principle, viral gene therapy holds significant potential for the therapy of solid cancers. However, this promise has not been fully realized and systemic administration of viruses has not proven as successful as envisioned in the clinical arena. Our research is focused on developing the next generation of efficacious viruses to specifically treat both primary cancers and a major cause of cancer lethality, metastatic tumors (that have spread from a primary site of origin to other areas in the body and are responsible for an estimated 90% of cancer deaths). We have generated a chimeric tropism-modified type 5 and 3 adenovirus that selectively replicates in cancer cells and simultaneously produces a secreted anti-cancer toxic cytokine, melanoma differentiation associated gene-7/Interleukin-24 (mda-7/IL-24), referred to as a Cancer Terminator Virus (CTV) (Ad.5/3-CTV). In preclinical animal models, injection into a primary tumor causes selective cell death and therapeutic activity is also observed in non-injected distant tumors, that is, "bystander anti-tumor activity." To enhance the impact and therapeutic utility of the CTV, we have pioneered an elegant approach in which viruses are encapsulated in microbubbles allowing "stealth delivery" to tumor cells that when treated with focused ultrasound causes viral release killing tumor cells through viral replication, and producing and secreting MDA-7/IL-24, which stimulates the immune system to attack distant cancers, inhibits tumor angiogenesis and directly promotes apoptosis in distant cancer cells. This strategy is called UTMD (ultrasound-targeted microbubble-destruction). This novel CTV and UTMD approach hold significant promise for the effective therapy of primary and disseminated tumors.


Subject(s)
Adenoviridae/genetics , Neoplasms/therapy , Neoplasms/virology , Animals , Apoptosis/genetics , Genetic Therapy/methods , Humans , Neoplasms/genetics , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/virology , Virus Replication/genetics
15.
Mol Pharm ; 15(7): 2698-2713, 2018 07 02.
Article in English | MEDLINE | ID: mdl-29787277

ABSTRACT

Tamoxifen administration enhanced overall disease-free survival and diminished mortality rates in cancer patients. However, patients with breast cancer often fail to respond for tamoxifen therapy due to the development of a drug-resistant phenotype. Functional analysis and molecular studies suggest that protein mutation and dysregulation of survival signaling molecules such as epidermal growth factor receptor, vascular endothelial growth factor receptor 2, and Akt contribute to tamoxifen resistance. Various strategies, including combinatorial therapies, show chemosensitize tamoxifen-resistant cancers. Based on chemotoxicity issues, researchers are actively investigating alternative therapeutic strategies. In the current study, we fabricate a mesoporous silica gold cluster nanodrug delivery system that displays exceptional tumor-targeting capability, thus promoting accretion of drug indices at the tumor site. We employ dual drugs, ZD6474, and epigallocatechin gallate (EGCG) that inhibit EGFR2, VEGFR2, and Akt signaling pathways since changes in these signaling pathways confer tamoxifen resistance in MCF 7 and T-47D cells. Mesoporous silica gold cluster nanodrug delivery of ZD6474 and EGCG sensitize tamoxifen-resistant cells to apoptosis. Western and immune-histochemical analyses confirmed the apoptotic inducing properties of the nanoformulation. Overall, results with these silica gold nanoclusters suggest that they may be a potent nanoformulation against chemoresistant cancers.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Drug Carriers/chemistry , Drug Resistance, Neoplasm/drug effects , Animals , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Breast Neoplasms/pathology , Catechin/analogs & derivatives , Catechin/pharmacology , Catechin/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Chemical Engineering , ErbB Receptors/metabolism , Female , Gold/chemistry , Humans , Metal Nanoparticles/chemistry , Mice, Nude , Piperidines/pharmacology , Piperidines/therapeutic use , Porosity , Proto-Oncogene Proteins c-akt/metabolism , Quinazolines/pharmacology , Quinazolines/therapeutic use , Silicon Dioxide/chemistry , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , Treatment Outcome , Vascular Endothelial Growth Factor Receptor-2/metabolism , Xenograft Model Antitumor Assays
16.
J Neuroinflammation ; 14(1): 23, 2017 01 26.
Article in English | MEDLINE | ID: mdl-28122624

ABSTRACT

BACKGROUND: Abnormal activation of the complement system contributes to some central nervous system diseases but the role of complement in HIV-associated neurocognitive disorder (HAND) is unclear. METHODS: We used real-time PCR and immunohistochemistry to detect complement expression in postmortem brain tissue from HAND patients and controls. To further investigate the basis for viral induction of gene expression in the brain, we studied the effect of HIV on C3 expression by astrocytes, innate immune effector cells, and targets of HIV. Human fetal astrocytes (HFA) were infected with HIV in culture and cellular pathways and factors involved in signaling to C3 expression were elucidated using pharmacological pathway inhibitors, antisense RNA, promoter mutational analysis, and fluorescence microscopy. RESULTS: We found significantly increased expression of complement components including C3 in brain tissues from patients with HAND and C3 was identified by immunocytochemistry in astrocytes and neurons. Exposure of HFA to HIV in culture-induced C3 promoter activity, mRNA expression, and protein production. Use of pharmacological inhibitors indicated that induction of C3 expression by HIV requires NF-κB and protein kinase signaling. The relevance of NF-κB regulation to C3 induction was confirmed through detection of NF-κB translocation into nuclei and inhibition through overexpression of the physiological NF-κB inhibitor, I-κBα. C3 promoter mutation analysis revealed that the NF-κB and SP binding sites are dispensable for the induction by HIV, while the proximal IL-1ß/IL-6 responsive element is essential. HIV-treated HFA secreted IL-6, exogenous IL-6 activated the C3 promoter, and anti-IL-6 antibodies blocked HIV activation of the C3 promoter. The activation of IL-6 transcription by HIV was dependent upon an NF-κB element within the IL-6 promoter. CONCLUSIONS: These results suggest that HIV activates C3 expression in primary astrocytes indirectly, through NF-κB-dependent induction of IL-6, which in turn activates the C3 promoter. HIV induction of C3 and IL-6 in astrocytes may contribute to HIV-mediated inflammation in the brain and cognitive dysfunction.


Subject(s)
Astrocytes/metabolism , Complement C3/metabolism , HIV Infections/pathology , Interleukin-6/metabolism , NF-kappa B/metabolism , Adult , Astrocytes/virology , Caffeic Acids/pharmacology , Complement C3/genetics , Enzyme Activation/drug effects , Enzyme Activators/pharmacology , Enzyme Inhibitors/pharmacology , Female , Fetus , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Gene Expression Regulation, Viral/physiology , Glial Fibrillary Acidic Protein/metabolism , Humans , Interleukin-6/genetics , Male , Middle Aged , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/pharmacology , Promoter Regions, Genetic/drug effects , Promoter Regions, Genetic/genetics , Signal Transduction/drug effects , Signal Transduction/genetics
17.
J Biol Chem ; 290(25): 15549-15558, 2015 Jun 19.
Article in English | MEDLINE | ID: mdl-25944909

ABSTRACT

Non-thyroidal illness syndrome (NTIS), characterized by low serum 3,5,3'-triiodothyronine (T3) with normal l-thyroxine (T4) levels, is associated with malignancy. Decreased activity of type I 5'-deiodinase (DIO1), which converts T4 to T3, contributes to NTIS. T3 binds to thyroid hormone receptor, which heterodimerizes with retinoid X receptor (RXR) and regulates transcription of target genes, such as DIO1. NF-κB activation by inflammatory cytokines inhibits DIO1 expression. The oncogene astrocyte elevated gene-1 (AEG-1) inhibits RXR-dependent transcription and activates NF-κB. Here, we interrogated the role of AEG-1 in NTIS in the context of hepatocellular carcinoma (HCC). T3-mediated gene regulation was analyzed in human HCC cells, with overexpression or knockdown of AEG-1, and primary hepatocytes from AEG-1 transgenic (Alb/AEG-1) and AEG-1 knock-out (AEG-1KO) mice. Serum T3 and T4 levels were checked in Alb/AEG-1 mice and human HCC patients. AEG-1 and DIO1 levels in human HCC samples were analyzed by immunohistochemistry. AEG-1 inhibited T3-mediated gene regulation in human HCC cells and mouse hepatocytes. AEG-1 overexpression repressed and AEG-1 knockdown induced DIO1 expression. An inverse correlation was observed between AEG-1 and DIO1 levels in human HCC patients. Low T3 with normal T4 was observed in the sera of HCC patients and Alb/AEG-1 mice. Inhibition of co-activator recruitment to RXR and activation of NF-κB were identified to play a role in AEG-1-mediated down-regulation of DIO1. AEG-1 thus might play a role in NTIS associated with HCC and other cancers.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Cell Adhesion Molecules/metabolism , Euthyroid Sick Syndromes/metabolism , Liver Neoplasms/metabolism , Membrane Glycoproteins/metabolism , Neoplasm Proteins/metabolism , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Adhesion Molecules/genetics , Cell Line, Tumor , Down-Regulation/genetics , Euthyroid Sick Syndromes/etiology , Euthyroid Sick Syndromes/genetics , Gene Expression Regulation, Enzymologic/genetics , Gene Expression Regulation, Neoplastic/genetics , HEK293 Cells , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Iodide Peroxidase/biosynthesis , Iodide Peroxidase/genetics , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Membrane Glycoproteins/genetics , Membrane Proteins , Mice , Mice, Knockout , NF-kappa B/genetics , NF-kappa B/metabolism , Neoplasm Proteins/genetics , RNA-Binding Proteins , Retinoid X Receptors/genetics , Retinoid X Receptors/metabolism , Triiodothyronine/genetics , Triiodothyronine/metabolism
18.
J Biol Chem ; 290(29): 18227-18236, 2015 Jul 17.
Article in English | MEDLINE | ID: mdl-26070567

ABSTRACT

Astrocyte elevated gene-1 (AEG-1), also known as MTDH (metadherin) or LYRIC, is an established oncogene. However, the physiological function of AEG-1 is not known. To address this question, we generated an AEG-1 knock-out mouse (AEG-1KO) and characterized it. Although AEG-1KO mice were viable and fertile, they were significantly leaner with prominently less body fat and lived significantly longer compared with wild type (WT). When fed a high fat and cholesterol diet (HFD), WT mice rapidly gained weight, whereas AEG-1KO mice did not gain weight at all. This phenotype of AEG-1KO mice is due to decreased fat absorption from the intestines, not because of decreased fat synthesis or increased fat consumption. AEG-1 interacts with retinoid X receptor (RXR) and inhibits RXR function. In enterocytes of AEG-1KO mice, we observed increased activity of RXR heterodimer partners, liver X receptor and peroxisome proliferator-activated receptor-α, key inhibitors of intestinal fat absorption. Inhibition of fat absorption in AEG-1KO mice was further augmented when fed an HFD providing ligands to liver X receptor and peroxisome proliferator-activated receptor-α. Our studies reveal a novel role of AEG-1 in regulating nuclear receptors controlling lipid metabolism. AEG-1 may significantly modulate the effects of HFD and thereby function as a unique determinant of obesity.


Subject(s)
Intestinal Mucosa/metabolism , Lipid Metabolism , Liver/metabolism , Membrane Proteins/metabolism , Weight Gain , Adipose Tissue/metabolism , Animals , Homeostasis , Liver X Receptors , Male , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/genetics , Obesity/metabolism , Orphan Nuclear Receptors/metabolism , Peroxisome Proliferator-Activated Receptors/metabolism , RNA-Binding Proteins , Retinoid X Receptors/metabolism
20.
Mol Pharmacol ; 87(2): 286-95, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25452327

ABSTRACT

Pancreatic cancer is an aggressive disease with limited therapeutic options. Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24), a potent antitumor cytokine, shows cancer-specific toxicity in a vast array of human cancers, inducing endoplasmic reticulum stress and apoptosis, toxic autophagy, an antitumor immune response, an antiangiogenic effect, and a significant "bystander" anticancer effect that leads to enhanced production of this cytokine through autocrine and paracrine loops. Unfortunately, mda-7/IL-24 application in pancreatic cancer has been restricted because of a "translational block" occurring after Ad.5-mda-7 gene delivery. Our previous research focused on developing approaches to overcome this block and increase the translation of the MDA-7/IL-24 protein, thereby promoting its subsequent toxic effects in pancreatic cancer cells. We demonstrated that inducing reactive oxygen species (ROS) after adenoviral infection of mda-7/IL-24 leads to greater translation into MDA-7/IL-24 protein and results in toxicity in pancreatic cancer cells. In this study we demonstrate that a novel chimeric serotype adenovirus, Ad.5/3-mda-7, displays greater efficacy in delivering mda-7/IL-24 compared with Ad.5-mda-7, although overall translation of the protein still remains low. We additionally show that d-limonene, a dietary monoterpene known to induce ROS, is capable of overcoming the translational block when used in combination with adenoviral gene delivery. This novel combination results in increased polysome association of mda-7/IL-24 mRNA, activation of the preinitiation complex of the translational machinery in pancreatic cancer cells, and culminates in mda-7/IL-24-mediated toxicity.


Subject(s)
Gene Transfer Techniques , Genetic Therapy/methods , Interleukins/genetics , Interleukins/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Cell Line, Tumor , Chemoprevention/methods , Humans , Interleukins/administration & dosage , Pancreatic Neoplasms/therapy , Protein Modification, Translational/physiology , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL