Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Cell ; 155(4): 844-57, 2013 Nov 07.
Article in English | MEDLINE | ID: mdl-24209622

ABSTRACT

Here, we show that a subset of breast cancers express high levels of the type 2 phosphatidylinositol-5-phosphate 4-kinases α and/or ß (PI5P4Kα and ß) and provide evidence that these kinases are essential for growth in the absence of p53. Knocking down PI5P4Kα and ß in a breast cancer cell line bearing an amplification of the gene encoding PI5P4K ß and deficient for p53 impaired growth on plastic and in xenografts. This growth phenotype was accompanied by enhanced levels of reactive oxygen species (ROS) leading to senescence. Mice with homozygous deletion of both TP53 and PIP4K2B were not viable, indicating a synthetic lethality for loss of these two genes. Importantly however, PIP4K2A(-/-), PIP4K2B(+/-), and TP53(-/-) mice were viable and had a dramatic reduction in tumor formation compared to TP53(-/-) littermates. These results indicate that inhibitors of PI5P4Ks could be effective in preventing or treating cancers with mutations in TP53.


Subject(s)
Breast Neoplasms/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Tumor Suppressor Protein p53/genetics , Animals , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation , Cell Respiration , Cellular Senescence , Embryo, Mammalian/metabolism , Gene Knockdown Techniques , Genes, Lethal , Heterografts , Humans , Mice , Neoplasm Transplantation , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Reactive Oxygen Species/metabolism , Signal Transduction , Tumor Suppressor Protein p53/metabolism
2.
Mol Cell ; 70(3): 531-544.e9, 2018 05 03.
Article in English | MEDLINE | ID: mdl-29727621

ABSTRACT

While the majority of phosphatidylinositol-4, 5-bisphosphate (PI-4, 5-P2) in mammalian cells is generated by the conversion of phosphatidylinositol-4-phosphate (PI-4-P) to PI-4, 5-P2, a small fraction can be made by phosphorylating phosphatidylinositol-5-phosphate (PI-5-P). The physiological relevance of this second pathway is not clear. Here, we show that deletion of the genes encoding the two most active enzymes in this pathway, Pip4k2a and Pip4k2b, in the liver of mice causes a large enrichment in lipid droplets and in autophagic vesicles during fasting. These changes are due to a defect in the clearance of autophagosomes that halts autophagy and reduces the supply of nutrients salvaged through this pathway. Similar defects in autophagy are seen in nutrient-starved Pip4k2a-/-Pip4k2b-/- mouse embryonic fibroblasts and in C. elegans lacking the PI5P4K ortholog. These results suggest that this alternative pathway for PI-4, 5-P2 synthesis evolved, in part, to enhance the ability of multicellular organisms to survive starvation.


Subject(s)
Autophagy/physiology , Fasting/metabolism , Lipid Metabolism/physiology , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Animals , Autophagosomes/metabolism , Caenorhabditis elegans/metabolism , Cell Line , Fibroblasts/metabolism , HEK293 Cells , Humans , Liver/metabolism , Mice , Phosphatidylinositol Phosphates/metabolism , Signal Transduction/physiology
3.
Mol Cell ; 68(3): 471-472, 2017 11 02.
Article in English | MEDLINE | ID: mdl-29100049

ABSTRACT

In this issue of Molecular Cell, Malek et al. (2017) describe a novel HPLC-MS method permitting separation of PI(3,4)P2 and PI(4,5)P2, a technical issue hindering the phosphoinositide signaling field. They use this method to uncover a new target and critical role for PTEN in cancer.


Subject(s)
Neoplasms , Phosphatidylinositol 3-Kinases , Humans , PTEN Phosphohydrolase , Phosphatidylinositols , Signal Transduction
4.
Mol Cell ; 61(2): 187-98, 2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26774281

ABSTRACT

While cellular GTP concentration dramatically changes in response to an organism's cellular status, whether it serves as a metabolic cue for biological signaling remains elusive due to the lack of molecular identification of GTP sensors. Here we report that PI5P4Kß, a phosphoinositide kinase that regulates PI(5)P levels, detects GTP concentration and converts them into lipid second messenger signaling. Biochemical analyses show that PI5P4Kß preferentially utilizes GTP, rather than ATP, for PI(5)P phosphorylation, and its activity reflects changes in direct proportion to the physiological GTP concentration. Structural and biological analyses reveal that the GTP-sensing activity of PI5P4Kß is critical for metabolic adaptation and tumorigenesis. These results demonstrate that PI5P4Kß is the missing GTP sensor and that GTP concentration functions as a metabolic cue via PI5P4Kß. The critical role of the GTP-sensing activity of PI5P4Kß in cancer signifies this lipid kinase as a cancer therapeutic target.


Subject(s)
Carcinogenesis/metabolism , Carcinogenesis/pathology , Guanosine Triphosphate/metabolism , Intracellular Space/enzymology , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Animals , Cell Proliferation , Crystallography, X-Ray , HEK293 Cells , Humans , Hydrolysis , Kinetics , Mice , Molecular Sequence Data , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Phosphatidylinositol Phosphates/metabolism , Protein Binding , Proteomics , Signal Transduction
5.
Proc Natl Acad Sci U S A ; 115(4): E743-E752, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29311302

ABSTRACT

The cancer anorexia cachexia syndrome is a systemic metabolic disorder characterized by the catabolism of stored nutrients in skeletal muscle and adipose tissue that is particularly prevalent in nonsmall cell lung cancer (NSCLC). Loss of skeletal muscle results in functional impairments and increased mortality. The aim of the present study was to characterize the changes in systemic metabolism in a genetically engineered mouse model of NSCLC. We show that a portion of these animals develop loss of skeletal muscle, loss of adipose tissue, and increased inflammatory markers mirroring the human cachexia syndrome. Using noncachexic and fasted animals as controls, we report a unique cachexia metabolite phenotype that includes the loss of peroxisome proliferator-activated receptor-α (PPARα) -dependent ketone production by the liver. In this setting, glucocorticoid levels rise and correlate with skeletal muscle degradation and hepatic markers of gluconeogenesis. Restoring ketone production using the PPARα agonist, fenofibrate, prevents the loss of skeletal muscle mass and body weight. These results demonstrate how targeting hepatic metabolism can prevent muscle wasting in lung cancer, and provide evidence for a therapeutic strategy.


Subject(s)
Cachexia/prevention & control , Carcinoma, Non-Small-Cell Lung/complications , Fenofibrate/therapeutic use , Lung Neoplasms/complications , PPAR gamma/agonists , Amino Acids/metabolism , Animals , Cachexia/blood , Cachexia/etiology , Drug Evaluation, Preclinical , Fenofibrate/pharmacology , Gluconeogenesis , Ketone Bodies/deficiency , Lipid Metabolism/drug effects , Liver/drug effects , Liver/metabolism , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , PPAR gamma/metabolism
6.
Proc Natl Acad Sci U S A ; 113(27): 7596-601, 2016 07 05.
Article in English | MEDLINE | ID: mdl-27313209

ABSTRACT

Type 2 phosphatidylinositol-5-phosphate 4-kinase (PI5P4K) converts phosphatidylinositol-5-phosphate to phosphatidylinositol-4,5-bisphosphate. Mammals have three enzymes PI5P4Kα, PI5P4Kß, and PI5P4Kγ, and these enzymes have been implicated in metabolic control, growth control, and a variety of stress responses. Here, we show that mice with germline deletion of type 2 phosphatidylinositol-5-phosphate 4-kinase gamma (Pip4k2c), the gene encoding PI5P4Kγ, appear normal in regard to growth and viability but have increased inflammation and T-cell activation as they age. Immune cell infiltrates increased in Pip4k2c(-/-) mouse tissues. Also, there was an increase in proinflammatory cytokines, including IFNγ, interleukin 12, and interleukin 2 in plasma of Pip4k2c(-/-) mice. Pip4k2c(-/-) mice had an increase in T-helper-cell populations and a decrease in regulatory T-cell populations with increased proliferation of T cells. Interestingly, mammalian target of rapamycin complex 1 (mTORC1) signaling was hyperactivated in several tissues from Pip4k2c(-/-) mice and treating Pip4k2c(-/-) mice with rapamycin reduced the inflammatory phenotype, resulting in a decrease in mTORC1 signaling in tissues and a decrease in proinflammatory cytokines in plasma. These results indicate that PI5P4Kγ plays a role in the regulation of the immune system via mTORC1 signaling.


Subject(s)
Inflammation/genetics , Lymphocyte Activation/genetics , Multiprotein Complexes/metabolism , Phosphotransferases (Alcohol Group Acceptor)/physiology , TOR Serine-Threonine Kinases/metabolism , Animals , Female , Male , Mechanistic Target of Rapamycin Complex 1 , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Polymorphism, Single Nucleotide , Sirolimus , T-Lymphocytes/physiology
7.
Proc Natl Acad Sci U S A ; 110(9): 3483-8, 2013 Feb 26.
Article in English | MEDLINE | ID: mdl-23378636

ABSTRACT

CUB domain-containing protein 1 (CDCP1) is a transmembrane protein that is highly expressed in stem cells and frequently overexpressed and tyrosine-phosphorylated in cancer. CDCP1 promotes cancer cell metastasis. However, the mechanisms that regulate CDCP1 are not well-defined. Here we show that hypoxia induces CDCP1 expression and tyrosine phosphorylation in hypoxia-inducible factor (HIF)-2α-, but not HIF-1α-, dependent fashion. shRNA knockdown of CDCP1 impairs cancer cell migration under hypoxic conditions, whereas overexpression of HIF-2α promotes the growth of tumor xenografts in association with enhanced CDCP1 expression and tyrosine phosphorylation. Immunohistochemistry analysis of tissue microarray samples from tumors of patients with clear cell renal cell carcinoma shows that increased CDCP1 expression correlates with decreased overall survival. Together, these data support a critical role for CDCP1 as a unique HIF-2α target gene involved in the regulation of cancer metastasis, and suggest that CDCP1 is a biomarker and potential therapeutic target for metastatic cancers.


Subject(s)
Antigens, CD/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Cell Adhesion Molecules/genetics , Genes, Neoplasm/genetics , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Neoplasm Proteins/genetics , Animals , Antigens, CD/metabolism , Antigens, Neoplasm , Carcinoma, Renal Cell/pathology , Cell Adhesion Molecules/metabolism , Cell Hypoxia/genetics , Cell Line, Tumor , Cell Proliferation , Humans , Kidney Neoplasms/pathology , Mice , Mice, Nude , Neoplasm Proteins/metabolism , Signal Transduction , Survival Analysis , Xenograft Model Antitumor Assays , src-Family Kinases/metabolism
8.
Sci Signal ; 17(838): eado6266, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38805583

ABSTRACT

Phosphoinositides are essential signaling molecules. The PI5P4K family of phosphoinositide kinases and their substrates and products, PI5P and PI4,5P2, respectively, are emerging as intracellular metabolic and stress sensors. We performed an unbiased screen to investigate the signals that these kinases relay and the specific upstream regulators controlling this signaling node. We found that the core Hippo pathway kinases MST1/2 phosphorylated PI5P4Ks and inhibited their signaling in vitro and in cells. We further showed that PI5P4K activity regulated several Hippo- and YAP-related phenotypes, specifically decreasing the interaction between the key Hippo proteins MOB1 and LATS and stimulating the YAP-mediated genetic program governing epithelial-to-mesenchymal transition. Mechanistically, we showed that PI5P interacted with MOB1 and enhanced its interaction with LATS, thereby providing a signaling connection between the Hippo pathway and PI5P4Ks. These findings reveal how these two important evolutionarily conserved signaling pathways are integrated to regulate metazoan development and human disease.


Subject(s)
Adaptor Proteins, Signal Transducing , Hippo Signaling Pathway , Protein Serine-Threonine Kinases , Signal Transduction , Transcription Factors , YAP-Signaling Proteins , Humans , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Hippo Signaling Pathway/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/genetics , Transcriptional Activation , Phosphorylation , HEK293 Cells , Epithelial-Mesenchymal Transition , Phosphoproteins/metabolism , Phosphoproteins/genetics , Animals , Serine-Threonine Kinase 3 , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics
9.
Front Cell Dev Biol ; 11: 1297355, 2023.
Article in English | MEDLINE | ID: mdl-37954209

ABSTRACT

Phosphoinositides serve as essential players in numerous biological activities and are critical for overall cellular function. Due to their complex chemical structures, localization, and low abundance, current challenges in the phosphoinositide field include the accurate measurement and identification of specific variants, particularly those with acyl chains. Researchers are intensively developing innovative techniques and approaches to address these challenges and advance our understanding of the impact of phosphoinositide signaling on cellular biology. This article provides an overview of recent advances in the study of phosphoinositides, including mass spectrometry, lipid biosensors, and real-time activity assays using fluorometric sensors. These methodologies have proven instrumental for a comprehensive exploration of the cellular distribution and dynamics of phosphoinositides and have shed light on the growing significance of these lipids in human health and various pathological processes, including cancer. To illustrate the importance of phosphoinositide signaling in disease, this perspective also highlights the role of a family of lipid kinases named phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks), which have recently emerged as exciting therapeutic targets for cancer treatment. The ongoing exploration of phosphoinositide signaling not only deepens our understanding of cellular biology but also holds promise for novel interventions in cancer therapy.

10.
Nat Rev Drug Discov ; 22(5): 357-386, 2023 05.
Article in English | MEDLINE | ID: mdl-36376561

ABSTRACT

Lipid phosphoinositides are master regulators of almost all aspects of a cell's life and death and are generated by the tightly regulated activity of phosphoinositide kinases. Although extensive efforts have focused on drugging class I phosphoinositide 3-kinases (PI3Ks), recent years have revealed opportunities for targeting almost all phosphoinositide kinases in human diseases, including cancer, immunodeficiencies, viral infection and neurodegenerative disease. This has led to widespread efforts in the clinical development of potent and selective inhibitors of phosphoinositide kinases. This Review summarizes our current understanding of the molecular basis for the involvement of phosphoinositide kinases in disease and assesses the preclinical and clinical development of phosphoinositide kinase inhibitors.


Subject(s)
Neoplasms , Neurodegenerative Diseases , Virus Diseases , Humans , Phosphatidylinositol 3-Kinases , Neurodegenerative Diseases/drug therapy , Neoplasms/drug therapy , Phosphatidylinositols
11.
Virology ; 585: 1-20, 2023 08.
Article in English | MEDLINE | ID: mdl-37257253

ABSTRACT

The high-risk subtype human papillomaviruses (hrHPVs) infect and oncogenically transform basal epidermal stem cells associated with the development of squamous-cell epithelial cancers. The viral E6 oncoprotein destabilizes the p53 tumor suppressor, inhibits p53 K120-acetylation by the Tat-interacting protein of 60 kDa (TIP60, or Kat5), and prevents p53-dependent apoptosis. Intriguingly, the p53 gene is infrequently mutated in HPV + cervical cancer clinical isolates which suggests a possible paradoxical role for this gatekeeper in viral carcinogenesis. Here, we demonstrate that E6 activates the TP53-induced glycolysis and apoptosis regulator (TIGAR) and protects cells against oncogene-induced oxidative genotoxicity. The E6 oncoprotein induces a Warburg-like stress response and activates PI3K/PI5P4K/AKT-signaling that phosphorylates the TIGAR on serine residues and induces its hypoxia-independent mitochondrial targeting in hrHPV-transformed cells. Primary HPV + cervical cancer tissues contain high levels of TIGAR, p53, and c-Myc and our xenograft studies have further shown that lentiviral-siRNA-knockdown of TIGAR expression inhibits hrHPV-induced tumorigenesis in vivo. These findings suggest the modulation of p53 pro-survival signals and the antioxidant functions of TIGAR could have key ancillary roles during HPV carcinogenesis.


Subject(s)
Oncogene Proteins, Viral , Papillomavirus Infections , Uterine Cervical Neoplasms , Female , Humans , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Human Papillomavirus Viruses , Genes, p53 , Uterine Cervical Neoplasms/genetics , Papillomavirus Infections/genetics , Apoptosis Regulatory Proteins/metabolism , Glycolysis , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/metabolism , Carcinogenesis/genetics , Hypoxia
12.
Sci Adv ; 9(5): eade8641, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36724278

ABSTRACT

Phosphatidylinositol (PI)regulating enzymes are frequently altered in cancer and have become a focus for drug development. Here, we explore the phosphatidylinositol-5-phosphate 4-kinases (PI5P4K), a family of lipid kinases that regulate pools of intracellular PI, and demonstrate that the PI5P4Kα isoform influences androgen receptor (AR) signaling, which supports prostate cancer (PCa) cell survival. The regulation of PI becomes increasingly important in the setting of metabolic stress adaptation of PCa during androgen deprivation (AD), as we show that AD influences PI abundance and enhances intracellular pools of PI-4,5-P2. We suggest that this PI5P4Kα-AR relationship is mitigated through mTORC1 dysregulation and show that PI5P4Kα colocalizes to the lysosome, the intracellular site of mTORC1 complex activation. Notably, this relationship becomes prominent in mouse prostate tissue following surgical castration. Finally, multiple PCa cell models demonstrate marked survival vulnerability following stable PI5P4Kα inhibition. These results nominate PI5P4Kα as a target to disrupt PCa metabolic adaptation to castrate resistance.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Animals , Humans , Male , Mice , Androgen Antagonists , Androgens/metabolism , Cell Line, Tumor , Mechanistic Target of Rapamycin Complex 1/metabolism , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Androgen/metabolism , Signal Transduction
13.
Adv Biol Regul ; 83: 100839, 2022 01.
Article in English | MEDLINE | ID: mdl-34840111

ABSTRACT

Metabolic reprogramming of cancer cells by various acquired mutations provides support for rapid proliferation and growth in the tumor microenvironment. Mutations in the TP53 gene are the most common mutation found across all human cancers. Commonly referred to as "the guardian of the genome", p53 has a well-established role as a tumor suppressor by mediating checkpoint integrity and protecting cells from DNA damage. To date, the many functional roles of p53 extending beyond its classical function and exerting control over metabolic processes continues to confound the field. Recently, emerging roles for p53 in mediating lipid metabolism have come to light with intriguing metabolic roles in regulating cholesterol homeostasis and lipid droplet formation. Herein, we will seek to unify the mechanisms by which absence of functional p53, as well as stable mutant forms of p53, exert control over these lipid metabolism programs. Of equal importance, synthetic lethal phenotypes in the context of mutant p53 and aberrant lipid homeostasis offer new possible targets in the therapeutic landscape. This review aims to characterize the mechanisms by which p53 exerts control over these pathways and examine how precision medicine may benefit from tumor subtyping of p53 mutations.


Subject(s)
Neoplasms , Tumor Suppressor Protein p53 , Animals , Genes, p53 , Humans , Lipid Metabolism/genetics , Mutation , Neoplasms/pathology , Tumor Microenvironment , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
14.
FEBS Lett ; 596(1): 3-16, 2022 01.
Article in English | MEDLINE | ID: mdl-34822164

ABSTRACT

Cancer cells are challenged by a myriad of microenvironmental stresses, and it is their ability to efficiently adapt to the constantly changing nutrient, energy, oxidative, and/or immune landscape that allows them to survive and proliferate. Such adaptations, however, result in distinct vulnerabilities that are attractive therapeutic targets. Phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks) are a family of druggable stress-regulated phosphoinositide kinases that become conditionally essential as a metabolic adaptation, paving the way to targeting cancer cell dependencies. Further, PI5P4Ks have a synthetic lethal interaction with the tumor suppressor p53, the loss of which is one of the most prevalent genetic drivers of malignant transformation. PI5P4K's emergence as a crucial axis in the expanding landscape of phosphoinositide signaling in cancer has already stimulated the development of specific inhibitors. Thus, a better understanding of the biology of the PI5P4Ks will allow for targeted and effective therapeutic interventions. Here, we attempt to summarize the mounting roles of the PI5P4Ks in cancer, including evidence that targeting them is a therapeutic vulnerability and promising next-in-line treatment for multiple cancer subtypes.


Subject(s)
Phosphotransferases (Alcohol Group Acceptor)
15.
Cell Rep Methods ; 2(7): 100239, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35880017

ABSTRACT

We present Multi-miR, a microRNA-embedded shRNA system modeled after endogenous microRNA clusters that enables simultaneous expression of up to three or four short hairpin RNAs (shRNAs) from a single promoter without loss of activity, enabling robust combinatorial RNA interference (RNAi). We further developed complementary all-in-one vectors that are over one log-scale more sensitive to doxycycline-mediated activation in vitro than previous methods and resistant to shRNA inactivation in vivo. We demonstrate the utility of this system for intracranial expression of shRNAs in a glioblastoma model. Additionally, we leverage this platform to target the redundant RAF signaling node in a mouse model of KRAS-mutant cancer and show that robust combinatorial synthetic lethality efficiently abolishes tumor growth.


Subject(s)
MicroRNAs , Mice , Animals , MicroRNAs/genetics , RNA Interference , Genetic Vectors , RNA, Small Interfering/genetics , Promoter Regions, Genetic
16.
Mol Cancer Res ; 20(2): 244-252, 2022 02.
Article in English | MEDLINE | ID: mdl-34728552

ABSTRACT

In this era of precision medicine, numerous workflows for the targeting of high-recurrent mutations in common tumor types have been developed, leaving patients with rare diseases with few options. Here, we implement a functional precision oncology approach utilizing comprehensive genomic profiling in combination with high-throughput drug screening, to identify tumor-specific drug sensitivities for patients with rare tumor types such as myxofibrosarcoma. From a patient with a high-grade myxofibrosarcoma, who was enrolled in the Englander Institute for Precision Medicine (EIPM) program, we established patient-derived 3D sarco-spheres and xenograft models for functional testing. In the absence of a large cohort of clinically similar cases, high-throughput drug screening was performed on the patient-derived cells, and compared with two other myxofibrosarcoma lines and a benign fibroblast line to functionally identify tumor-specific drug sensitivities. The addition of functional drug sensitivity testing to complement genomic profiling identified multiple therapeutic options that were further validated in patient derived xenograft models. Genomic analyses detected the frequently known codeletion of the tumor suppressors CDKN2A/B together with the methylthioadenosine phosphorylase (MTAP) and a TP53 E286fs*50 mutation. High-throughput drug screening demonstrated tumor-specific sensitivity to compounds targeting the cell cycle. Based on genomic analysis and high-throughput drug screening, we show that targeting the cell cycle in these tumors is a powerful approach. IMPLICATIONS: This study demonstrates the potential of functional testing to aid clinical decision making for patients with rare or molecularly complex malignancies when combined with comprehensive genomic profiling.


Subject(s)
Biomarkers, Tumor/metabolism , Fibrosarcoma/physiopathology , High-Throughput Nucleotide Sequencing/methods , Medical Oncology/methods , Molecular Targeted Therapy/methods , Precision Medicine/methods , Animals , Female , Humans , Mice , Mice, Nude , Mutation
17.
Proc Natl Acad Sci U S A ; 105(7): 2622-7, 2008 Feb 19.
Article in English | MEDLINE | ID: mdl-18268343

ABSTRACT

The tumor suppressor PTEN is mutated or deleted in many tumors, causing the activation of the PI3K pathway. Here, we show that the loss of PTEN increases the transcriptional activity of hypoxia-inducible factor 1 (HIF-1) through the inactivation of Forkhead transcription factors (FOXO) in PTEN-null cells. Reintroduction of PTEN into the nucleus, overexpression of a nonphosphorylatable FOXO3a, which accumulates in the nucleus, or inhibition of nuclear export of FOXO3a by leptomycin B represses HIF-1 transcriptional activity in PTEN-null cells. HIF-1 transcriptional activity increases in PTEN-positive cells depleted of FOXO3a with siRNA. PTEN and FOXO3a regulate the transactivation domain of HIF-1alpha. Chromatin immunoprecipitation indicates that FOXO3a complexes with HIF-1alpha and p300 on the Glut-1 promoter, a HIF-1 target gene. Overexpression of p300 reverses FOXO3a-mediated repression of HIF-1 transcriptional activity. Coimmunoprecipitation and GAL4-HIF-1alpha transactivation assays reveal that FOXO3a interferes with p300-dependent HIF-1 transcriptional activity. Thus, FOXO3a negatively regulates HIF-1 transcriptional activity.


Subject(s)
Forkhead Transcription Factors/metabolism , Hypoxia-Inducible Factor 1/metabolism , PTEN Phosphohydrolase/metabolism , Transcription, Genetic/genetics , p300-CBP Transcription Factors/metabolism , Animals , Cell Line , Cell Nucleus/metabolism , Forkhead Box Protein O3 , Forkhead Transcription Factors/genetics , Mice , Mice, Knockout , PTEN Phosphohydrolase/deficiency , PTEN Phosphohydrolase/genetics
18.
Front Cell Dev Biol ; 9: 791758, 2021.
Article in English | MEDLINE | ID: mdl-35071233

ABSTRACT

While organelles are individual compartments with specialized functions, it is becoming clear that organellar communication is essential for maintaining cellular homeostasis. This cooperation is carried out by various interactions taking place on the membranes of organelles. The membranes themselves contain a multitude of proteins and lipids that mediate these connections and one such class of molecules facilitating these relations are the phospholipids. There are several phospholipids, but the focus of this perspective is on a minor group called the phosphoinositides and specifically, phosphatidylinositol 4,5-bisphosphate (PI-4,5-P2). This phosphoinositide, on intracellular membranes, is largely generated by the non-canonical Type II PIPKs, namely, Phosphotidylinositol-5-phosphate-4-kinases (PI5P4Ks). These evolutionarily conserved enzymes are emerging as key stress response players in cells. Further, PI5P4Ks have been shown to modulate pathways by regulating organelle crosstalk, revealing roles in preserving metabolic homeostasis. Here we will attempt to summarize the functions of the PI5P4Ks and their product PI-4,5-P2 in facilitating inter-organelle communication and how they impact cellular health as well as their relevance to human diseases.

19.
Dev Cell ; 56(11): 1661-1676.e10, 2021 06 07.
Article in English | MEDLINE | ID: mdl-33984270

ABSTRACT

PI5P4Ks are a class of phosphoinositide kinases that phosphorylate PI-5-P to PI-4,5-P2. Distinct localization of phosphoinositides is fundamental for a multitude of cellular functions. Here, we identify a role for peroxisomal PI-4,5-P2 generated by the PI5P4Ks in maintaining energy balance. We demonstrate that PI-4,5-P2 regulates peroxisomal fatty acid oxidation by mediating trafficking of lipid droplets to peroxisomes, which is essential for sustaining mitochondrial metabolism. Using fluorescent-tagged lipids and metabolite tracing, we show that loss of the PI5P4Ks significantly impairs lipid uptake and ß-oxidation in the mitochondria. Further, loss of PI5P4Ks results in dramatic alterations in mitochondrial structural and functional integrity, which under nutrient deprivation is further exacerbated, causing cell death. Notably, inhibition of the PI5P4Ks in cancer cells and mouse tumor models leads to decreased cell viability and tumor growth, respectively. Together, these studies reveal an unexplored role for PI5P4Ks in preserving metabolic homeostasis, which is necessary for tumorigenesis.


Subject(s)
Carcinogenesis/genetics , Mitochondria/genetics , Neoplasms/metabolism , Peroxisomes/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Animals , Cell Line, Tumor , Energy Metabolism/genetics , Female , Homeostasis/genetics , Humans , Lipid Droplets/metabolism , Lipid Metabolism/genetics , Male , Mice , Mitochondria/metabolism , Mitochondria/ultrastructure , Neoplasms/genetics , Neoplasms/pathology , Peroxisomes/genetics
20.
FEBS J ; 287(2): 222-238, 2020 01.
Article in English | MEDLINE | ID: mdl-31693781

ABSTRACT

Today, the importance of autophagy in physiological processes and pathological conditions is undeniable. Initially, autophagy merely was described as an evolutionarily conserved mechanism to maintain metabolic homeostasis in times of starvation; however, in recent years it is now apparent that autophagy is a powerful regulator of many facets of cellular metabolism, that its deregulation contributes to various human pathologies, including cancer and neurodegeneration, and that its modulation has considerable potential as a therapeutic approach. Different lipid species, including sphingolipids, sterols, and phospholipids, play important roles in the various steps of autophagy. In particular, there is accumulating evidence indicating the minor group of phospholipids called the phosphoinositides as key modulators of autophagy, including the signaling processes underlying autophagy initiation, autophagosome biogenesis and maturation. In this review, we discuss the known functions to date of the phosphoinositides in autophagy and attempt to summarize the kinases and phosphatases that regulate them as well as the proteins that bind to them throughout the autophagy program. We will also provide examples of how the control of phosphoinositides and their metabolizing enzymes is relevant to understanding many human diseases.


Subject(s)
Autophagy , Phosphatidylinositols/metabolism , Animals , Humans , Huntington Disease/genetics , Huntington Disease/metabolism , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Oculocerebrorenal Syndrome/genetics , Oculocerebrorenal Syndrome/metabolism , Phosphatidylinositols/genetics
SELECTION OF CITATIONS
SEARCH DETAIL