Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 153(3): 707-20, 2013 Apr 25.
Article in English | MEDLINE | ID: mdl-23622250

ABSTRACT

The genetics of complex disease produce alterations in the molecular interactions of cellular pathways whose collective effect may become clear through the organized structure of molecular networks. To characterize molecular systems associated with late-onset Alzheimer's disease (LOAD), we constructed gene-regulatory networks in 1,647 postmortem brain tissues from LOAD patients and nondemented subjects, and we demonstrate that LOAD reconfigures specific portions of the molecular interaction structure. Through an integrative network-based approach, we rank-ordered these network structures for relevance to LOAD pathology, highlighting an immune- and microglia-specific module that is dominated by genes involved in pathogen phagocytosis, contains TYROBP as a key regulator, and is upregulated in LOAD. Mouse microglia cells overexpressing intact or truncated TYROBP revealed expression changes that significantly overlapped the human brain TYROBP network. Thus the causal network structure is a useful predictor of response to gene perturbations and presents a framework to test models of disease mechanisms underlying LOAD.


Subject(s)
Alzheimer Disease/genetics , Brain/metabolism , Gene Regulatory Networks , Adaptor Proteins, Signal Transducing/metabolism , Alzheimer Disease/metabolism , Animals , Bayes Theorem , Brain/pathology , Humans , Membrane Proteins/metabolism , Mice , Microglia/metabolism
2.
Respir Res ; 25(1): 44, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38238732

ABSTRACT

BACKGROUND: A decline in forced expiratory volume (FEV1) is a hallmark of respiratory diseases that are an important cause of morbidity among the elderly. While some data exist on biomarkers that are related to FEV1, we sought to do a systematic analysis of causal relations of biomarkers with FEV1. METHODS: Data from the population-based AGES-Reykjavik study were used. Serum proteomic measurements were done using 4782 DNA aptamers (SOMAmers). Data from 1479 participants with spirometric data were used to assess the association of SOMAmer measurements with FEV1 using linear regression. Bi-directional two-sample Mendelian randomisation (MR) analyses were done to assess causal relations of observationally associated SOMAmers with FEV1, using genotype and SOMAmer data from 5368 AGES-Reykjavik participants and genetic associations with FEV1 from a publicly available GWAS (n = 400,102). RESULTS: In observational analyses, 530 SOMAmers were associated with FEV1 after multiple testing adjustment (FDR < 0.05). The most significant were Retinoic Acid Receptor Responder 2 (RARRES2), R-Spondin 4 (RSPO4) and Alkaline Phosphatase, Placental Like 2 (ALPPL2). Of the 257 SOMAmers with genetic instruments available, eight were associated with FEV1 in MR analyses. Three were directionally consistent with the observational estimate, Thrombospondin 2 (THBS2), Endoplasmic Reticulum Oxidoreductase 1 Beta (ERO1B) and Apolipoprotein M (APOM). THBS2 was further supported by a colocalization analysis. Analyses in the reverse direction, testing whether changes in SOMAmer levels were caused by changes in FEV1, were performed but no significant associations were found after multiple testing adjustments. CONCLUSIONS: In summary, this large scale proteogenomic analyses of FEV1 reveals circulating protein markers of FEV1, as well as several proteins with potential causality to lung function.


Subject(s)
Lung , Proteomics , Humans , Female , Pregnancy , Aged , Forced Expiratory Volume/genetics , Placenta , Biomarkers
3.
Europace ; 25(11)2023 11 02.
Article in English | MEDLINE | ID: mdl-37967346

ABSTRACT

AIMS: Atrial fibrillation (AF) is associated with high risk of comorbidities and mortality. Our aim was to examine causal and predictive relationships between 4137 serum proteins and incident AF in the prospective population-based Age, Gene/Environment Susceptibility-Reykjavik (AGES-Reykjavik) study. METHODS AND RESULTS: The study included 4765 participants, of whom 1172 developed AF. Cox proportional hazards regression models were fitted for 4137 baseline protein measurements adjusting for known risk factors. Protein associations were tested for replication in the Cardiovascular Health Study (CHS). Causal relationships were examined in a bidirectional, two-sample Mendelian randomization analysis. The time-dependent area under the receiver operating characteristic curve (AUC)-statistic was examined as protein levels and an AF-polygenic risk score (PRS) were added to clinical risk models. The proteomic signature of incident AF consisted of 76 proteins, of which 63 (83%) were novel and 29 (38%) were replicated in CHS. The signature included both N-terminal prohormone of brain natriuretic peptide (NT-proBNP)-dependent (e.g. CHST15, ATP1B1, and SVEP1) and independent components (e.g. ASPN, AKR1B, and LAMA1/LAMB1/LAMC1). Nine causal candidates were identified (TAGLN, WARS, CHST15, CHMP3, COL15A1, DUSP13, MANBA, QSOX2, and SRL). The reverse causal analysis suggested that most AF-associated proteins were affected by the genetic liability to AF. N-terminal prohormone of brain natriuretic peptide improved the prediction of incident AF events close to baseline with further improvements gained by the AF-PRS at all time points. CONCLUSION: The AF proteomic signature includes biologically relevant proteins, some of which may be causal. It mainly reflects an NT-proBNP-dependent consequence of the genetic liability to AF. N-terminal prohormone of brain natriuretic peptide is a promising marker for incident AF in the short term, but risk assessment incorporating a PRS may improve long-term risk assessment.


Subject(s)
Atrial Fibrillation , Humans , Atrial Fibrillation/diagnosis , Atrial Fibrillation/epidemiology , Natriuretic Peptide, Brain , Biomarkers , Prognosis , Prospective Studies , Proteomics , Risk Factors , Peptide Fragments , Oxidoreductases Acting on Sulfur Group Donors , Endosomal Sorting Complexes Required for Transport
4.
Am J Respir Crit Care Med ; 206(3): 337-346, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35438610

ABSTRACT

Rationale: Knowledge on biomarkers of interstitial lung disease is incomplete. Interstitial lung abnormalities (ILAs) are radiologic changes that may present in its early stages. Objectives: To uncover blood proteins associated with ILAs using large-scale proteomics methods. Methods: Data from two prospective cohort studies, the AGES-Reykjavik (Age, Gene/Environment Susceptibility-Reykjavik) study (N = 5,259) for biomarker discovery and the COPDGene (Genetic Epidemiology of COPD) study (N = 4,899) for replication, were used. Blood proteins were measured using DNA aptamers, targeting more than 4,700 protein analytes. The association of proteins with ILAs and ILA progression was assessed with regression modeling, as were associations with genetic risk factors. Adaptive Least Absolute Shrinkage and Selection Operator models were applied to bootstrap data samples to discover sets of proteins predictive of ILAs and their progression. Measurements and Main Results: Of 287 associations, SFTPB (surfactant protein B) (odds ratio [OR], 3.71 [95% confidence interval (CI), 3.20-4.30]; P = 4.28 × 10-67), SCGB3A1 (Secretoglobin family 3A member 1) (OR, 2.43 [95% CI, 2.13-2.77]; P = 8.01 × 10-40), and WFDC2 (WAP four-disulfide core domain protein 2) (OR, 2.42 [95% CI, 2.11-2.78]; P = 4.01 × 10-36) were most significantly associated with ILA in AGES-Reykjavik and were replicated in COPDGene. In AGES-Reykjavik, concentrations of SFTPB were associated with the rs35705950 MUC5B (mucin 5B) promoter polymorphism, and SFTPB and WFDC2 had the strongest associations with ILA progression. Multivariate models of ILAs in AGES-Reykjavik, ILAs in COPDGene, and ILA progression in AGES-Reykjavik had validated areas under the receiver operating characteristic curve of 0.880, 0.826, and 0.824, respectively. Conclusions: Novel, replicated associations of ILA, its progression, and genetic risk factors with numerous blood proteins are demonstrated as well as machine-learning-based models with favorable predictive potential. Several proteins are revealed as potential markers of early fibrotic lung disease.


Subject(s)
Lung Diseases, Interstitial , Respiratory System Abnormalities , Genetic Predisposition to Disease , Humans , Lung , Lung Diseases, Interstitial/epidemiology , Lung Diseases, Interstitial/genetics , Prospective Studies , Proteomics , Tomography, X-Ray Computed
5.
Nature ; 533(7604): 539-42, 2016 05 26.
Article in English | MEDLINE | ID: mdl-27225129

ABSTRACT

Educational attainment is strongly influenced by social and other environmental factors, but genetic factors are estimated to account for at least 20% of the variation across individuals. Here we report the results of a genome-wide association study (GWAS) for educational attainment that extends our earlier discovery sample of 101,069 individuals to 293,723 individuals, and a replication study in an independent sample of 111,349 individuals from the UK Biobank. We identify 74 genome-wide significant loci associated with the number of years of schooling completed. Single-nucleotide polymorphisms associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioural phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because educational attainment is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric diseases.


Subject(s)
Brain/metabolism , Educational Status , Fetus/metabolism , Gene Expression Regulation/genetics , Genome-Wide Association Study , Polymorphism, Single Nucleotide/genetics , Alzheimer Disease/genetics , Bipolar Disorder/genetics , Cognition , Computational Biology , Gene-Environment Interaction , Humans , Molecular Sequence Annotation , Schizophrenia/genetics , United Kingdom
6.
Scand J Clin Lab Invest ; 80(6): 508-514, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32706999

ABSTRACT

Familial hypercholesterolemia (FH) is a monogenic disease characterized by a lifelong exposure to high LDL-C levels that can lead to early onset coronary heart disease (CHD). The main causes of FH identified to date include loss-of-function mutations in LDLR or APOB, or gain-of-function mutations in PCSK9. Early diagnosis and genetic testing of FH suspects is critical for improved prognosis of affected individuals as lipid lowering treatments are effective in preventing CHD related morbidity and mortality. In the present study, we carried out a comprehensive screening, using a next-generation sequencing (NGS) panel, for FH culprit mutations in two Icelandic studies representative of either FH families or the general population. We confirmed all previously known mutations in the FH families, and identified two subjects that had been misdiagnosed clinically at young age. We identified six new mutations in the Icelandic FH families and detected three pathogenic mutations in the general population-based study. The application of the NGS panel revealed substantial diagnostic yields in identifying pathogenic mutations, or 68.2% of those with definite clinical diagnosis of FH in the family material and 5.6-fold enrichment in the population-based genetic testing.


Subject(s)
Genetic Testing/methods , Hyperlipoproteinemia Type II/diagnosis , Genetic Predisposition to Disease , High-Throughput Nucleotide Sequencing , Humans , Hyperlipoproteinemia Type II/genetics , Iceland , Loss of Function Mutation , Mutation , Prospective Studies
7.
PLoS Genet ; 12(10): e1006327, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27764101

ABSTRACT

We performed an exome-wide association analysis in 1393 late-onset Alzheimer's disease (LOAD) cases and 8141 controls from the CHARGE consortium. We found that a rare variant (P155L) in TM2D3 was enriched in Icelanders (~0.5% versus <0.05% in other European populations). In 433 LOAD cases and 3903 controls from the Icelandic AGES sub-study, P155L was associated with increased risk and earlier onset of LOAD [odds ratio (95% CI) = 7.5 (3.5-15.9), p = 6.6x10-9]. Mutation in the Drosophila TM2D3 homolog, almondex, causes a phenotype similar to loss of Notch/Presenilin signaling. Human TM2D3 is capable of rescuing these phenotypes, but this activity is abolished by P155L, establishing it as a functionally damaging allele. Our results establish a rare TM2D3 variant in association with LOAD susceptibility, and together with prior work suggests possible links to the ß-amyloid cascade.


Subject(s)
Alzheimer Disease/genetics , Drosophila Proteins/genetics , Membrane Proteins/genetics , Receptors, Notch/genetics , Tropomyosin/genetics , Age of Onset , Aged , Alleles , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/genetics , Animals , Apolipoproteins E/genetics , Drosophila melanogaster/genetics , Exome/genetics , Female , Genome-Wide Association Study , Genomics , Humans , Iceland , Intracellular Signaling Peptides and Proteins/genetics , Male , Mutation , Phenotype , White People
8.
Proc Natl Acad Sci U S A ; 111(38): 13790-4, 2014 Sep 23.
Article in English | MEDLINE | ID: mdl-25201988

ABSTRACT

We identify common genetic variants associated with cognitive performance using a two-stage approach, which we call the proxy-phenotype method. First, we conduct a genome-wide association study of educational attainment in a large sample (n = 106,736), which produces a set of 69 education-associated SNPs. Second, using independent samples (n = 24,189), we measure the association of these education-associated SNPs with cognitive performance. Three SNPs (rs1487441, rs7923609, and rs2721173) are significantly associated with cognitive performance after correction for multiple hypothesis testing. In an independent sample of older Americans (n = 8,652), we also show that a polygenic score derived from the education-associated SNPs is associated with memory and absence of dementia. Convergent evidence from a set of bioinformatics analyses implicates four specific genes (KNCMA1, NRXN1, POU2F3, and SCRT). All of these genes are associated with a particular neurotransmitter pathway involved in synaptic plasticity, the main cellular mechanism for learning and memory.


Subject(s)
Cognition/physiology , Learning/physiology , Multifactorial Inheritance/physiology , Neuronal Plasticity/genetics , Polymorphism, Single Nucleotide , Synaptic Transmission/genetics , Calcium-Binding Proteins , Cell Adhesion Molecules, Neuronal/genetics , Female , Humans , Male , Memory/physiology , Nerve Tissue Proteins/genetics , Neural Cell Adhesion Molecules , Octamer Transcription Factors/genetics
10.
Nat Genet ; 39(2): 218-25, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17206141

ABSTRACT

We recently described an association between risk of type 2diabetes and variants in the transcription factor 7-like 2 gene (TCF7L2; formerly TCF4), with a population attributable risk (PAR) of 17%-28% in three populations of European ancestry. Here, we refine the definition of the TCF7L2 type 2diabetes risk variant, HapB(T2D), to the ancestral T allele of a SNP, rs7903146, through replication in West African and Danish type 2 diabetes case-control studies and an expanded Icelandic study. We also identify another variant of the same gene, HapA, that shows evidence of positive selection in East Asian, European and West African populations. Notably, HapA shows a suggestive association with body mass index and altered concentrations of the hunger-satiety hormones ghrelin and leptin in males, indicating that the selective advantage of HapA may have been mediated through effects on energy metabolism.


Subject(s)
Biological Evolution , Diabetes Mellitus, Type 2/genetics , Polymorphism, Single Nucleotide , TCF Transcription Factors/genetics , Asian People , Black People , Body Mass Index , Case-Control Studies , Female , Genetic Predisposition to Disease , Genetic Variation , Haplotypes , Humans , Iceland , Male , Risk , Selection, Genetic , Transcription Factor 7-Like 2 Protein , White People
11.
Nat Genet ; 39(6): 770-5, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17460697

ABSTRACT

We conducted a genome-wide association study for type 2 diabetes (T2D) in Icelandic cases and controls, and we found that a previously described variant in the transcription factor 7-like 2 gene (TCF7L2) gene conferred the most significant risk. In addition to confirming two recently identified risk variants, we identified a variant in the CDKAL1 gene that was associated with T2D in individuals of European ancestry (allele-specific odds ratio (OR) = 1.20 (95% confidence interval, 1.13-1.27), P = 7.7 x 10(-9)) and individuals from Hong Kong of Han Chinese ancestry (OR = 1.25 (1.11-1.40), P = 0.00018). The genotype OR of this variant suggested that the effect was substantially stronger in homozygous carriers than in heterozygous carriers. The ORs for homozygotes were 1.50 (1.31-1.72) and 1.55 (1.23-1.95) in the European and Hong Kong groups, respectively. The insulin response for homozygotes was approximately 20% lower than for heterozygotes or noncarriers, suggesting that this variant confers risk of T2D through reduced insulin secretion.


Subject(s)
Carrier Proteins/genetics , Diabetes Mellitus, Type 2/genetics , Insulin Resistance/genetics , Intracellular Signaling Peptides and Proteins/genetics , Nerve Tissue Proteins/genetics , Polymorphism, Single Nucleotide , Adult , Blood Glucose/metabolism , Case-Control Studies , Cross-Sectional Studies , Female , Gene Frequency , Genome, Human , Humans , Insulin/metabolism , Insulin Secretion , Linkage Disequilibrium , Male , Middle Aged , TCF Transcription Factors/genetics , Transcription Factor 7-Like 1 Protein , Transcription Factor 7-Like 2 Protein
12.
Am J Hum Genet ; 91(1): 152-62, 2012 Jul 13.
Article in English | MEDLINE | ID: mdl-22703881

ABSTRACT

Activated partial thromboplastin time (aPTT) and prothrombin time (PT) are clinical tests commonly used to screen for coagulation-factor deficiencies. One genome-wide association study (GWAS) has been reported previously for aPTT, but no GWAS has been reported for PT. We conducted a GWAS and meta-analysis to identify genetic loci for aPTT and PT. The GWAS for aPTT was conducted in 9,240 individuals of European ancestry from the Atherosclerosis Risk in Communities (ARIC) study, and the GWAS for PT was conducted in 2,583 participants from the Genetic Study of Three Population Microisolates in South Tyrol (MICROS) and the Lothian Birth Cohorts (LBC) of 1921 and 1936. Replication was assessed in 1,041 to 3,467 individuals. For aPTT, previously reported associations with KNG1, HRG, F11, F12, and ABO were confirmed. A second independent association in ABO was identified and replicated (rs8176704, p = 4.26 × 10(-24)). Pooling the ARIC and replication data yielded two additional loci in F5 (rs6028, p = 3.22 × 10(-9)) and AGBL1 (rs2469184, p = 3.61 × 10(-8)). For PT, significant associations were identified and confirmed in F7 (rs561241, p = 3.71 × 10(-56)) and PROCR/EDEM2 (rs2295888, p = 5.25 × 10(-13)). Assessment of existing gene expression and coronary artery disease (CAD) databases identified associations of five of the GWAS loci with altered gene expression and two with CAD. In summary, eight genetic loci that account for ∼29% of the variance in aPTT and two loci that account for ∼14% of the variance in PT were detected and supported by functional data.


Subject(s)
Genetic Predisposition to Disease , Partial Thromboplastin Time , Prothrombin Time , Thromboembolism/genetics , Thrombosis/genetics , Cohort Studies , Female , Gene Expression Profiling , Genome-Wide Association Study , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Risk
13.
Mol Syst Biol ; 10: 743, 2014 Jul 30.
Article in English | MEDLINE | ID: mdl-25080494

ABSTRACT

Using expression profiles from postmortem prefrontal cortex samples of 624 dementia patients and non-demented controls, we investigated global disruptions in the co-regulation of genes in two neurodegenerative diseases, late-onset Alzheimer's disease (AD) and Huntington's disease (HD). We identified networks of differentially co-expressed (DC) gene pairs that either gained or lost correlation in disease cases relative to the control group, with the former dominant for both AD and HD and both patterns replicating in independent human cohorts of AD and aging. When aligning networks of DC patterns and physical interactions, we identified a 242-gene subnetwork enriched for independent AD/HD signatures. This subnetwork revealed a surprising dichotomy of gained/lost correlations among two inter-connected processes, chromatin organization and neural differentiation, and included DNA methyltransferases, DNMT1 and DNMT3A, of which we predicted the former but not latter as a key regulator. To validate the inter-connection of these two processes and our key regulator prediction, we generated two brain-specific knockout (KO) mice and show that Dnmt1 KO signature significantly overlaps with the subnetwork (P = 3.1 × 10(-12)), while Dnmt3a KO signature does not (P = 0.017).


Subject(s)
Alzheimer Disease/genetics , Gene Regulatory Networks , Huntington Disease/genetics , Prefrontal Cortex/metabolism , Alzheimer Disease/pathology , Animals , Autopsy , Case-Control Studies , Chromatin/metabolism , DNA (Cytosine-5-)-Methyltransferase 1 , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methyltransferase 3A , Dementia/pathology , Gene Expression Profiling , Gene Expression Regulation , Humans , Huntington Disease/pathology , Mice , Mice, Knockout , Prefrontal Cortex/pathology , Reproducibility of Results
14.
PLoS Genet ; 8(5): e1002705, 2012.
Article in English | MEDLINE | ID: mdl-22589742

ABSTRACT

Pericardial fat is a localized fat depot associated with coronary artery calcium and myocardial infarction. We hypothesized that genetic loci would be associated with pericardial fat independent of other body fat depots. Pericardial fat was quantified in 5,487 individuals of European ancestry from the Framingham Heart Study (FHS) and the Multi-Ethnic Study of Atherosclerosis (MESA). Genotyping was performed using standard arrays and imputed to ~2.5 million Hapmap SNPs. Each study performed a genome-wide association analysis of pericardial fat adjusted for age, sex, weight, and height. A weighted z-score meta-analysis was conducted, and validation was obtained in an additional 3,602 multi-ethnic individuals from the MESA study. We identified a genome-wide significant signal in our primary meta-analysis at rs10198628 near TRIB2 (MAF 0.49, p = 2.7 × 10(-08)). This SNP was not associated with visceral fat (p = 0.17) or body mass index (p = 0.38), although we observed direction-consistent, nominal significance with visceral fat adjusted for BMI (p = 0.01) in the Framingham Heart Study. Our findings were robust among African ancestry (n = 1,442, p = 0.001), Hispanic (n = 1,399, p = 0.004), and Chinese (n = 761, p = 0.007) participants from the MESA study, with a combined p-value of 5.4E-14. We observed TRIB2 gene expression in the pericardial fat of mice. rs10198628 near TRIB2 is associated with pericardial fat but not measures of generalized or visceral adiposity, reinforcing the concept that there are unique genetic underpinnings to ectopic fat distribution.


Subject(s)
Adipose Tissue , Genome-Wide Association Study , Intracellular Signaling Peptides and Proteins/genetics , Obesity/genetics , Pericardium , Adipose Tissue/metabolism , Adult , Animals , Asian People/genetics , Atherosclerosis/genetics , Black People/genetics , Body Fat Distribution , Body Mass Index , Calcium-Calmodulin-Dependent Protein Kinases , Coronary Disease/genetics , Female , Gene Expression Regulation , Hispanic or Latino/genetics , Humans , Intra-Abdominal Fat/metabolism , Male , Mice , Middle Aged , Pericardium/metabolism , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Tomography, X-Ray Computed , White People/genetics
15.
Nat Genet ; 38(3): 320-3, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16415884

ABSTRACT

We have previously reported suggestive linkage of type 2 diabetes mellitus to chromosome 10q. We genotyped 228 microsatellite markers in Icelandic individuals with type 2 diabetes and controls throughout a 10.5-Mb interval on 10q. A microsatellite, DG10S478, within intron 3 of the transcription factor 7-like 2 gene (TCF7L2; formerly TCF4) was associated with type 2 diabetes (P = 2.1 x 10(-9)). This was replicated in a Danish cohort (P = 4.8 x 10(-3)) and in a US cohort (P = 3.3 x 10(-9)). Compared with non-carriers, heterozygous and homozygous carriers of the at-risk alleles (38% and 7% of the population, respectively) have relative risks of 1.45 and 2.41. This corresponds to a population attributable risk of 21%. The TCF7L2 gene product is a high mobility group box-containing transcription factor previously implicated in blood glucose homeostasis. It is thought to act through regulation of proglucagon gene expression in enteroendocrine cells via the Wnt signaling pathway.


Subject(s)
Diabetes Mellitus, Type 2/genetics , TCF Transcription Factors/genetics , Chromosome Mapping , Chromosomes, Human, Pair 10 , Cohort Studies , Denmark , Gene Frequency , Genetic Carrier Screening , Genetic Predisposition to Disease , Humans , Introns , Microsatellite Repeats , Molecular Sequence Data , Reference Values , Transcription Factor 7-Like 2 Protein
16.
BMC Genomics ; 15: 532, 2014 Jun 27.
Article in English | MEDLINE | ID: mdl-24973796

ABSTRACT

BACKGROUND: Gene expression genetic studies in human tissues and cells identify cis- and trans-acting expression quantitative trait loci (eQTLs). These eQTLs provide insights into regulatory mechanisms underlying disease risk. However, few studies systematically characterized eQTL results across cell and tissues types. We synthesized eQTL results from >50 datasets, including new primary data from human brain, peripheral plaque and kidney samples, in order to discover features of human eQTLs. RESULTS: We find a substantial number of robust cis-eQTLs and far fewer trans-eQTLs consistent across tissues. Analysis of 45 full human GWAS scans indicates eQTLs are enriched overall, and above nSNPs, among positive statistical signals in genetic mapping studies, and account for a significant fraction of the strongest human trait effects. Expression QTLs are enriched for gene centricity, higher population allele frequencies, in housekeeping genes, and for coincidence with regulatory features, though there is little evidence of 5' or 3' positional bias. Several regulatory categories are not enriched including microRNAs and their predicted binding sites and long, intergenic non-coding RNAs. Among the most tissue-ubiquitous cis-eQTLs, there is enrichment for genes involved in xenobiotic metabolism and mitochondrial function, suggesting these eQTLs may have adaptive origins. Several strong eQTLs (CDK5RAP2, NBPFs) coincide with regions of reported human lineage selection. The intersection of new kidney and plaque eQTLs with related GWAS suggest possible gene prioritization. For example, butyrophilins are now linked to arterial pathogenesis via multiple genetic and expression studies. Expression QTL and GWAS results are made available as a community resource through the NHLBI GRASP database [http://apps.nhlbi.nih.gov/grasp/]. CONCLUSIONS: Expression QTLs inform the interpretation of human trait variability, and may account for a greater fraction of phenotypic variability than protein-coding variants. The synthesis of available tissue eQTL data highlights many strong cis-eQTLs that may have important biologic roles and could serve as positive controls in future studies. Our results indicate some strong tissue-ubiquitous eQTLs may have adaptive origins in humans. Efforts to expand the genetic, splicing and tissue coverage of known eQTLs will provide further insights into human gene regulation.


Subject(s)
Quantitative Trait Loci , Cell Line , Cluster Analysis , Gene Expression Profiling , Gene Frequency , Genome-Wide Association Study , Humans , Organ Specificity , Polymorphism, Single Nucleotide , Transcriptome
17.
Nature ; 452(7186): 429-35, 2008 Mar 27.
Article in English | MEDLINE | ID: mdl-18344982

ABSTRACT

Identifying variations in DNA that increase susceptibility to disease is one of the primary aims of genetic studies using a forward genetics approach. However, identification of disease-susceptibility genes by means of such studies provides limited functional information on how genes lead to disease. In fact, in most cases there is an absence of functional information altogether, preventing a definitive identification of the susceptibility gene or genes. Here we develop an alternative to the classic forward genetics approach for dissecting complex disease traits where, instead of identifying susceptibility genes directly affected by variations in DNA, we identify gene networks that are perturbed by susceptibility loci and that in turn lead to disease. Application of this method to liver and adipose gene expression data generated from a segregating mouse population results in the identification of a macrophage-enriched network supported as having a causal relationship with disease traits associated with metabolic syndrome. Three genes in this network, lipoprotein lipase (Lpl), lactamase beta (Lactb) and protein phosphatase 1-like (Ppm1l), are validated as previously unknown obesity genes, strengthening the association between this network and metabolic disease traits. Our analysis provides direct experimental support that complex traits such as obesity are emergent properties of molecular networks that are modulated by complex genetic loci and environmental factors.


Subject(s)
Gene Regulatory Networks/genetics , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Metabolic Syndrome/genetics , Obesity/genetics , Adipose Tissue/metabolism , Animals , Apolipoprotein A-II/genetics , Chromosomes, Mammalian/genetics , Female , Linkage Disequilibrium , Lipoprotein Lipase/genetics , Liver/metabolism , Lod Score , Macrophages/metabolism , Male , Membrane Proteins/genetics , Metabolic Syndrome/enzymology , Metabolic Syndrome/metabolism , Mice , Obesity/enzymology , Obesity/metabolism , Phenotype , Phosphoprotein Phosphatases/deficiency , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism , Quantitative Trait Loci , Reproducibility of Results , Ribosomal Proteins/genetics
18.
Nature ; 452(7186): 423-8, 2008 Mar 27.
Article in English | MEDLINE | ID: mdl-18344981

ABSTRACT

Common human diseases result from the interplay of many genes and environmental factors. Therefore, a more integrative biology approach is needed to unravel the complexity and causes of such diseases. To elucidate the complexity of common human diseases such as obesity, we have analysed the expression of 23,720 transcripts in large population-based blood and adipose tissue cohorts comprehensively assessed for various phenotypes, including traits related to clinical obesity. In contrast to the blood expression profiles, we observed a marked correlation between gene expression in adipose tissue and obesity-related traits. Genome-wide linkage and association mapping revealed a highly significant genetic component to gene expression traits, including a strong genetic effect of proximal (cis) signals, with 50% of the cis signals overlapping between the two tissues profiled. Here we demonstrate an extensive transcriptional network constructed from the human adipose data that exhibits significant overlap with similar network modules constructed from mouse adipose data. A core network module in humans and mice was identified that is enriched for genes involved in the inflammatory and immune response and has been found to be causally associated to obesity-related traits.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation/genetics , Obesity/genetics , Adipose Tissue/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Blood/metabolism , Body Mass Index , Cohort Studies , Female , Genome, Human , Humans , Iceland , Lod Score , Male , Mice , Middle Aged , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Sample Size , Waist-Hip Ratio , White People/genetics
19.
Eur J Heart Fail ; 26(1): 87-102, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37936531

ABSTRACT

AIM: To examine the ability of serum proteins in predicting future heart failure (HF) events, including HF with reduced or preserved ejection fraction (HFrEF or HFpEF), in relation to event time, and with or without considering established HF-associated clinical variables. METHODS AND RESULTS: In the prospective population-based Age, Gene/Environment Susceptibility Reykjavik Study (AGES-RS), 440 individuals developed HF after their first visit with a median follow-up of 5.45 years. Among them, 167 were diagnosed with HFrEF and 188 with HFpEF. A least absolute shrinkage and selection operator regression model with non-parametric bootstrap were used to select predictors from an analysis of 4782 serum proteins, and several pre-established clinical parameters linked to HF. A subset of 8-10 distinct or overlapping serum proteins predicted different future HF outcomes, and C-statistics were used to assess discrimination, revealing proteins combined with a C-index of 0.80 for all incident HF, 0.78 and 0.80 for incident HFpEF or HFrEF, respectively. In the AGES-RS, protein panels alone encompassed the risk contained in the clinical information and improved the performance characteristics of prediction models based on N-terminal pro-B-type natriuretic peptide and clinical risk factors. Finally, the protein predictors performed particularly well close to the time of an HF event, an outcome that was replicated in the Cardiovascular Health Study. CONCLUSION: A small number of circulating proteins accurately predicted future HF in the AGES-RS cohort of older adults, and they alone encompass the risk information found in a collection of clinical data. Incident HF events were predicted up to 8 years, with predictor performance significantly improving for events occurring less than 1 year ahead, a finding replicated in an external cohort study.


Subject(s)
Heart Failure , Humans , Aged , Heart Failure/diagnosis , Heart Failure/epidemiology , Cohort Studies , Stroke Volume , Prospective Studies , Proteomics , Blood Proteins , Prognosis
20.
Sci Transl Med ; 16(753): eadn3504, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38924431

ABSTRACT

Alzheimer's disease (AD) is currently defined by the aggregation of amyloid-ß (Aß) and tau proteins in the brain. Although biofluid biomarkers are available to measure Aß and tau pathology, few markers are available to measure the complex pathophysiology that is associated with these two cardinal neuropathologies. Here, we characterized the proteomic landscape of cerebrospinal fluid (CSF) changes associated with Aß and tau pathology in 300 individuals using two different proteomic technologies-tandem mass tag mass spectrometry and SomaScan. Integration of both data types allowed for generation of a robust protein coexpression network consisting of 34 modules derived from 5242 protein measurements, including disease-relevant modules associated with autophagy, ubiquitination, endocytosis, and glycolysis. Three modules strongly associated with the apolipoprotein E ε4 (APOE ε4) AD risk genotype mapped to oxidant detoxification, mitogen-associated protein kinase signaling, neddylation, and mitochondrial biology and overlapped with a previously described lipoprotein module in serum. Alterations of all three modules in blood were associated with dementia more than 20 years before diagnosis. Analysis of CSF samples from an AD phase 2 clinical trial of atomoxetine (ATX) demonstrated that abnormal elevations in the glycolysis CSF module-the network module most strongly correlated to cognitive function-were reduced by ATX treatment. Clustering of individuals based on their CSF proteomic profiles revealed heterogeneity of pathological changes not fully reflected by Aß and tau.


Subject(s)
Alzheimer Disease , Apolipoprotein E4 , Atomoxetine Hydrochloride , Proteomics , Humans , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Proteomics/methods , Apolipoprotein E4/genetics , Atomoxetine Hydrochloride/therapeutic use , Atomoxetine Hydrochloride/pharmacology , tau Proteins/cerebrospinal fluid , tau Proteins/metabolism , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Peptides/metabolism , Male , Aged , Female , Biomarkers/cerebrospinal fluid , Biomarkers/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL