Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Cell Mol Life Sci ; 79(10): 514, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36098804

ABSTRACT

The Wolffian ducts (WD) are paired epithelial tubules central to the development of the mammalian genitourinary tract. Outgrowths from the WD known as the ureteric buds (UB) generate the collecting ducts of the kidney. Later during development, the caudal portion of the WD will form the vas deferens, epididymis and seminal vesicle in males, and will degenerate in females. While the genetic pathways controlling the development of the UB are firmly established, less is known about those governing development of WD portions caudal to the UB. Sprouty proteins are inhibitors of receptor tyrosine kinase (RTK) signaling in vivo. We have recently shown that homozygous mutation of a conserved tyrosine (Tyr53) of Spry1 results in UB defects indistinguishable from that of Spry1 null mice. Here, we show that heterozygosity for the Spry1 Y53A allele causes caudal WD developmental defects consisting of ectopically branched seminal vesicles in males and persistent WD in females, without affecting kidney development. Detailed analysis reveals that this phenotype also occurs in Spry1+/- mice but with a much lower penetrance, indicating that removal of tyrosine 53 generates a dominant negative mutation in vivo. Supporting this notion, concomitant deletion of one allele of Spry1 and Spry2 also recapitulates the genital phenotype of Spry1Y53A/+ mice with high penetrance. Mechanistically, we show that unlike the effects of Spry1 in kidney development, these caudal WD defects are independent of Ret signaling, but can be completely rescued by lowering the genetic dosage of Fgf10. In conclusion, mutation of tyrosine 53 of Spry1 generates a dominant negative allele that uncovers fine-tuning of caudal WD development by Sprouty genes.


Subject(s)
Organogenesis , Wolffian Ducts , Animals , Female , Male , Mammals , Mice , Mice, Knockout , Mutation/genetics , Signal Transduction , Tyrosine
2.
J Am Soc Nephrol ; 30(8): 1398-1411, 2019 08.
Article in English | MEDLINE | ID: mdl-31300484

ABSTRACT

BACKGROUND: Studies in mice suggest that perturbations of the GDNF-Ret signaling pathway are a major genetic cause of congenital anomalies of the kidney and urinary tract (CAKUT). Mutations in Sprouty1, an intracellular Ret inhibitor, results in supernumerary kidneys, megaureters, and hydronephrosis in mice. But the underlying molecular mechanisms involved and which structural domains are essential for Sprouty1 function are a matter of controversy, partly because studies have so far relied on ectopic overexpression of the gene in cell lines. A conserved N-terminal tyrosine has been frequently, but not always, identified as critical for the function of Sprouty1 in vitro. METHODS: We generated Sprouty1 knockin mice bearing a tyrosine-to-alanine substitution in position 53, corresponding to the conserved N-terminal tyrosine of Sprouty1. We characterized the development of the genitourinary systems in these mice via different methods, including the use of reporter mice expressing EGFP from the Ret locus, and whole-mount cytokeratin staining. RESULTS: Mice lacking this tyrosine grow ectopic ureteric buds that will ultimately form supernumerary kidneys, a phenotype indistinguishable to that of Sprouty1 knockout mice. Sprouty1 knockin mice also present megaureters and vesicoureteral reflux, caused by failure of ureters to separate from Wolffian ducts and migrate to their definitive position. CONCLUSIONS: Tyrosine 53 is absolutely necessary for Sprouty1 function during genitourinary development in mice.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/physiology , Membrane Proteins/genetics , Membrane Proteins/physiology , Tyrosine/genetics , Urinary Tract/embryology , Alanine/genetics , Animals , Female , Glial Cell Line-Derived Neurotrophic Factor/genetics , Green Fluorescent Proteins/metabolism , Keratins/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Mutation , Phenotype , Phosphorylation , Protein Domains , Proto-Oncogene Proteins c-ret/genetics , Ureter/abnormalities , Urinary Tract/growth & development , Urogenital Abnormalities/genetics , Vesico-Ureteral Reflux/genetics , Wolffian Ducts/metabolism
3.
J Pathol ; 242(2): 152-164, 2017 06.
Article in English | MEDLINE | ID: mdl-28349562

ABSTRACT

PTEN is one of the most frequently mutated genes in human cancers. The frequency of PTEN alterations is particularly high in endometrial carcinomas. Loss of PTEN leads to dysregulation of cell division, and promotes the accumulation of cell cycle complexes such as cyclin D1-CDK4/6, which is an important feature of the tumour phenotype. Cell cycle proteins have been presented as key targets in the treatment of the pathogenesis of cancer, and several CDK inhibitors have been developed as a strategy to generate new anticancer drugs. Palbociclib (PD-332991) specifically inhibits CDK4/6, and it has been approved for use in metastatic breast cancer in combination with letrazole. Here, we used a tamoxifen-inducible Pten knockout mouse model to assess the antitumour effects of cyclin D1 knockout and CDK4/6 inhibition by palbociclib on endometrial tumours. Interestingly, both cyclin D1 deficiency and palbociclib treatment triggered shrinkage of endometrial neoplasias. In addition, palbociclib treatment significantly increased the survival of Pten-deficient mice, and, as expected, had a general effect in reducing tumour cell proliferation. To further analyse the effects of palbociclib on endometrial carcinoma, we established subcutaneous tumours with human endometrial cancer cell lines and primary endometrial cancer xenografts, which allowed us to provide more translational and predictive data. To date, this is the first preclinical study evaluating the response to CDK4/6 inhibition in endometrial malignancies driven by PTEN deficiency, and it reveals an important role of cyclin D-CDK4/6 activity in their development. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Antineoplastic Agents/pharmacology , Cyclin D1/genetics , Endometrial Neoplasms/drug therapy , PTEN Phosphohydrolase/genetics , Piperazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Animals , Carcinogenesis , Cyclin D1/antagonists & inhibitors , Cyclin D1/metabolism , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Cyclin-Dependent Kinase 6/genetics , Disease Models, Animal , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Female , Humans , Mice , Mice, Knockout , Tamoxifen/adverse effects , Transplantation, Heterologous
4.
Am J Pathol ; 182(2): 350-62, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23201134

ABSTRACT

Medullary thyroid carcinoma accounts for 2% to 5% of thyroid malignancies, of which 75% are sporadic and the remaining 25% are hereditary and related to multiple endocrine neoplasia type 2 syndrome. Despite a genotype-phenotype correlation with specific germline RET mutations, knowledge of pathways specifically associated with each mutation and with non-RET-mutated sporadic MTC remains lacking. Gene expression patterns have provided a tool for identifying molecular events related to specific tumor types and to different clinical features that could help identify novel therapeutic targets. Using transcriptional profiling of 49 frozen MTC specimens classified as RET mutation, we identified PROM1, LOXL2, GFRA1, and DKK4 as related to RET(M918T) and GAL as related to RET(634) mutation. An independent series of 19 frozen and 23 formalin-fixed, paraffin-embedded (FFPE) MTCs was used for validation by RT-qPCR. Two tissue microarrays containing 69 MTCs were available for IHC assays. According to pathway enrichment analysis and gene ontology biological processes, genes associated with the MTC(M918T) group were involved mainly in proliferative, cell adhesion, and general malignant metastatic effects and with Wnt, Notch, NFκB, JAK/Stat, and MAPK signaling pathways. Assays based on silencing of PROM1 by siRNAs performed in the MZ-CRC-1 cell line, harboring RET(M918T), caused an increase in apoptotic nuclei, suggesting that PROM1 is necessary for survival of these cells. This is the first report of PROM1 overexpression among primary tumors.


Subject(s)
Biomarkers, Tumor/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Thyroid Neoplasms/genetics , AC133 Antigen , Antigens, CD/metabolism , Apoptosis/genetics , Carcinoma, Neuroendocrine , Cell Line, Tumor , Cluster Analysis , Gene Knockdown Techniques , Gene Silencing , Glycoproteins/metabolism , Humans , Immunohistochemistry , Inheritance Patterns/genetics , Peptides/metabolism , RNA, Small Interfering/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Thyroid Neoplasms/pathology
5.
Cell Death Dis ; 15(4): 296, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38670941

ABSTRACT

Genes of the Sprouty family (Spry1-4) restrain signaling by certain receptor tyrosine kinases. Consequently, these genes participate in several developmental processes and function as tumor suppressors in adult life. Despite these important roles, the biology of this family of genes still remains obscure. Here we show that Sprouty proteins are general mediators of cellular senescence. Induction of cellular senescence by several triggers in vitro correlates with upregulation of Sprouty protein levels. More importantly, overexpression of Sprouty genes is sufficient to cause premature cellular senescence, via a conserved N-terminal tyrosine (Tyrosine 53 of Sprouty1). Accordingly, fibroblasts from knockin animals lacking that tyrosine escape replicative senescence. In vivo, heterozygous knockin mice display delayed induction of cellular senescence during cutaneous wound healing and upon chemotherapy-induced cellular senescence. Unlike other functions of this family of genes, induction of cellular senescence appears to be independent of activation of the ERK1/2 pathway. Instead, we show that Sprouty proteins induce cellular senescence upstream of the p38 pathway in these in vitro and in vivo paradigms.


Subject(s)
Cellular Senescence , Fibroblasts , Membrane Proteins , Animals , Mice , Membrane Proteins/metabolism , Membrane Proteins/genetics , Humans , Fibroblasts/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Phosphoproteins/metabolism , Phosphoproteins/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , MAP Kinase Signaling System , Wound Healing
6.
Biomed Pharmacother ; 168: 115817, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37925934

ABSTRACT

Metformin is a widespread antidiabetic agent that is commonly used as a treatment against type 2 diabetes mellitus patients. Regarding its therapeutic potential, multiple studies have concluded that Metformin exhibits antineoplastic activity on several types of cancer, including endometrial carcinoma. Although Metformin's antineoplastic activity is well documented, its cellular and molecular anticancer mechanisms are still a matter of controversy because a plethora of anticancer mechanisms have been proposed for different cancer cell types. In this study, we addressed the cellular and molecular mechanisms of Metformin's antineoplastic activity by using both in vitro and in vivo studies of Pten-loss driven carcinoma mouse models. In vivo, Metformin reduced endometrial neoplasia initiated by Pten-deficiency. Our in vitro studies using Pten-deficient endometrial organoids focused on both cellular and molecular levels in Metformin's tumor suppressive action. At cellular level, we showed that Metformin is involved in not only the proliferation of endometrial epithelial cells but also their regulation via a variety of mechanisms of epithelial-to-mesenchymal transition (EMT) as well as TGF-ß-induced apoptosis. At the molecular level, Metformin was shown to affect the TGF-ß signalling., a widely known signal that plays a pivotal role in endometrial carcinogenesis. In this respect, Metformin restored TGF-ß-induced apoptosis of Pten-deficient endometrial organoids through a p38-dependent mechanism and inhibited TGF-ß-induced EMT on no-polarized endometrial epithelial cells by inhibiting ERK/MAPK signalling. These results provide new insights into the link between the cellular and molecular mechanism for Metformin's antineoplastic activity in Pten-deficient endometrial cancers.


Subject(s)
Antineoplastic Agents , Diabetes Mellitus, Type 2 , Endometrial Neoplasms , Metformin , Humans , Female , Animals , Mice , Metformin/pharmacology , Metformin/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Transforming Growth Factor beta/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Endometrial Neoplasms/pathology , Cell Proliferation
7.
Adv Sci (Weinh) ; 10(32): e2303134, 2023 11.
Article in English | MEDLINE | ID: mdl-37749866

ABSTRACT

Phosphatase and TENsin homolog (Pten) and p53 are two of the most frequently mutated tumor suppressor genes in endometrial cancer. However, the functional consequences and histopathological manifestation of concomitant p53 and Pten loss of function alterations in the development of endometrial cancer is still controversial. Here, it is demonstrated that simultaneous Pten and p53 deletion is sufficient to cause epithelial to mesenchymal transition phenotype in endometrial organoids. By a novel intravaginal delivery method using HIV1 trans-activator of transcription cell penetrating peptide fused with a Cre recombinase protein (TAT-Cre), local ablation of both p53 and Pten is achieved specifically in the uterus. These mice developed high-grade endometrial carcinomas and a high percentage of uterine carcinosarcomas resembling those found in humans. To further demonstrate that carcinosarcomas arise from epithelium, double Pten/p53 deficient epithelial cells are mixed with wild type stromal and myometrial cells and subcutaneously transplanted to Scid mice. All xenotransplants resulted in the development of uterine carcinosarcomas displaying high nuclear pleomorphism and metastatic potential. Accordingly, in vivo CRISPR/Cas9 disruption of Pten and p53 also triggered the development of metastatic carcinosarcomas. The results unfadingly demonstrate that simultaneous deletion of p53 and Pten in endometrial epithelial cells is enough to trigger epithelial to mesenchymal transition that is consistently translated to the formation of uterine carcinosarcomas in vivo.


Subject(s)
Carcinosarcoma , Endometrial Neoplasms , Uterine Neoplasms , Humans , Female , Mice , Animals , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Epithelial-Mesenchymal Transition , CRISPR-Cas Systems/genetics , Endometrial Neoplasms/genetics , Endometrial Neoplasms/metabolism , Endometrial Neoplasms/pathology , Uterine Neoplasms/genetics , Uterine Neoplasms/pathology , Carcinosarcoma/genetics , Carcinosarcoma/pathology
8.
J Neurosci ; 31(17): 6493-503, 2011 Apr 27.
Article in English | MEDLINE | ID: mdl-21525290

ABSTRACT

In vivo and in vitro motoneuron survival depends on the support of neurotrophic factors. These factors activate signaling pathways related to cell survival or inactivate proteins involved in neuronal death. In the present work, we analyzed the involvement of the nuclear factor-κB (NF-κB) pathway in mediating mouse spinal cord motoneuron survival promoted by neurotrophic factors. This pathway comprises ubiquitously expressed transcription factors that could be activated by two different routes: the canonical pathway, associated with IKKα/IKKß kinase phosphorylation and nuclear translocation RelA (p65)/p50 transcription factors; and the noncanonical pathway, related to IKKα kinase homodimer phosphorylation and RelB/p52 transcription factor activation. In our system, we show that neurotrophic factors treatment induced IKKα and IKKß phosphorylation and RelA nuclear translocation, suggesting NF-κB pathway activation. Protein levels of different members of the canonical or noncanonical pathways were reduced in a primary culture of isolated embryonic motoneurons using an interference RNA approach. Even in the presence of neurotrophic factors, selective reduction of IKKα, IKKß, or RelA proteins induced cell death. In contrast, RelB protein reduction did not have a negative effect on motoneuron survival. Together these results demonstrated that the canonical NF-κB pathway mediates motoneuron survival induced by neurotrophic factors, and the noncanonical pathway is not related to this survival effect. Canonical NF-κB blockade induced an increase of Bim protein level and apoptotic cell death. Bcl-x(L) overexpression or Bax reduction counteracted this apoptotic effect. Finally, RelA knockdown causes changes of CREB and Smn protein levels.


Subject(s)
Apoptosis/physiology , Gene Expression Regulation, Developmental/physiology , Motor Neurons/physiology , NF-kappa B/metabolism , Signal Transduction/physiology , Spinal Cord/cytology , Analysis of Variance , Animals , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , Bcl-2-Like Protein 11 , CREB-Binding Protein/metabolism , Cell Survival , Cells, Cultured , Chromones/pharmacology , Embryo, Mammalian , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , Female , Gene Expression Regulation, Developmental/drug effects , Green Fluorescent Proteins/genetics , Humans , I-kappa B Kinase/antagonists & inhibitors , I-kappa B Kinase/genetics , I-kappa B Kinase/metabolism , Male , Membrane Proteins/metabolism , Mice , Models, Biological , Morpholines/pharmacology , Motor Neurons/drug effects , Nerve Growth Factors/pharmacology , Peptides/pharmacology , Phosphorylation/physiology , Protein Transport/drug effects , Proto-Oncogene Proteins/metabolism , RNA Interference/physiology , Signal Transduction/drug effects , Transcription Factor RelA/metabolism , Transfection/methods , bcl-X Protein/metabolism
9.
Am J Pathol ; 178(4): 1529-43, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21435442

ABSTRACT

The Raf/MEK/extracellular signal-regulated kinase (ERK) pathway participates in many processes altered in development and progression of cancer in human beings such as proliferation, transformation, differentiation, and apoptosis. Kinase suppressor of Ras 1 (KSR1) can interact with various kinases of the Raf/MEK/extracellular signal-regulated kinase pathway to enhance its activation. The role of KSR1 in endometrial carcinogenesis was investigated. cDNA and tissue microarrays demonstrated that expression of KSR1 was up-regulated in endometrial carcinoma. Furthermore, inhibition of KSR1 expression by specific small hairpin RNA resulted in reduction of both proliferation and anchorage-independent cell growth properties of endometrial cancer cells. Because inhibition of apoptosis has a pivotal role in endometrial carcinogenesis, the effects of KSR1 in regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis were investigated. KSR1 knock-down sensitized resistant endometrial cell lines to both TRAIL- and Fas-induced apoptosis. Sensitization to TRAIL and agonistic anti-Fas antibody was caused by down-regulation of FLIP (FLICE-inhibitory protein). Also investigated was the molecular mechanism by which KSR1 regulates FLIP protein levels. It was demonstrated that KSR1 small hairpin RNA did not affect FLIP transcription or degradation. Rather, FLIP down-regulation was caused by Fas-associated death domain protein-dependent inhibition of FLIP translation triggered after TRAIL stimulation in KSR1-silenced cells. Re-expression of heterologous KSR1 in cells with down-regulated endogenous KSR1 restored FLIP protein levels and TRAIL resistance. In conclusion, KSR1 regulates endometrial sensitivity to TRAIL by regulating FLIP levels.


Subject(s)
Apoptosis , CASP8 and FADD-Like Apoptosis Regulating Protein/biosynthesis , Carcinoma/metabolism , Endometrial Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Protein Kinases/biosynthesis , TNF-Related Apoptosis-Inducing Ligand/metabolism , Cell Line, Tumor , Cell Proliferation , DNA, Complementary/metabolism , Female , Humans , Oligonucleotide Array Sequence Analysis , Protein Binding , RNA/metabolism
10.
Sci Rep ; 12(1): 14821, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36050359

ABSTRACT

The extracellular matrix and the correct establishment of epithelial cell polarity plays a critical role in epithelial cell homeostasis and cell polarity. In addition, loss of tissue structure is a hallmark of carcinogenesis. In this study, we have addressed the role of extracellular matrix in the cellular responses to TGF-ß. It is well known that TGF-ß is a double-edged sword: it acts as a tumor suppressor in normal epithelial cells, but conversely has tumor-promoting effects in tumoral cells. However, the factors that determine cellular outcome in response to TGF-ß remain controversial. Here, we have demonstrated that the lack of extracellular matrix and consequent loss of cell polarity inhibits TGF-ß-induced apoptosis, observed when endometrial epithelial cells are polarized in presence of extracellular matrix. Rather, in absence of extracellular matrix, TGF-ß-treated endometrial epithelial cells display features of epithelial-to-mesenchymal transition. We have also investigated the molecular mechanism of such a switch in cellular response. On the one hand, we found that the lack of Matrigel results in increased AKT signaling which is sufficient to inhibit TGF-ß-induced apoptosis. On the other hand, we demonstrate that TGF-ß-induced epithelial-to-mesenchymal transition requires ERK and SMAD2/3 activation. In summary, we demonstrate that loss of cell polarity changes the pro-apoptotic function of TGF-ß to tumor-associated phenotype such as epithelial-to-mesenchymal transition. These results may be important for understanding the dual role of TGF-ß in normal versus tumoral cells.


Subject(s)
Epithelial-Mesenchymal Transition , Extracellular Matrix , Transforming Growth Factor beta , Apoptosis/drug effects , Carcinogenesis/metabolism , Endometrium/metabolism , Epithelial Cells , Extracellular Matrix/metabolism , Female , Humans , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacology
11.
Dis Model Mech ; 15(8)2022 08 01.
Article in English | MEDLINE | ID: mdl-35916061

ABSTRACT

To evaluate senescence mechanisms, including senescence-associated secretory phenotype (SASP), in the motor neuron disease model hSOD1-G93A, we quantified the expression of p16 and p21 and senescence-associated ß-galactosidase (SA-ß-gal) in nervous tissue. As SASP markers, we measured the mRNA levels of Il1a, Il6, Ifna and Ifnb. Furthermore, we explored whether an alteration of alternative splicing is associated with senescence by measuring the Adipor2 cryptic exon inclusion levels, a specific splicing variant repressed by TAR DNA-binding protein (TDP-43; encoded by Tardbp). Transgenic mice showed an atypical senescence profile with high p16 and p21 mRNA and protein in glia, without the canonical increase in SA-ß-gal activity. Consistent with SASP, there was an increase in Il1a and Il6 expression, associated with increased TNF-R and M-CSF protein levels, with females being partially protected. TDP-43 splicing activity was compromised in this model, and the senolytic drug Navitoclax did not alter the disease progression. This lack of effect was reproduced in vitro, in contrast to dasatinib and quercetin, which diminished p16 and p21. Our findings show a non-canonical profile of senescence biomarkers in the model hSOD1-G93A.


Subject(s)
Interleukin-6 , Motor Neuron Disease , Animals , Biomarkers , Cellular Senescence , DNA-Binding Proteins/metabolism , Disease Models, Animal , Female , Mice , RNA, Messenger/genetics , Superoxide Dismutase
12.
Lab Invest ; 91(6): 859-71, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21537326

ABSTRACT

Endometrial carcinoma (EC) is a common female cancer, treated mainly by surgery and adjuvant radiotherapy. Relapse following treatment is associated with increased risk of metastases. Hypoxia, a common microenvironment in solid tumors, correlates with malignant progression, rendering tumors resistant to ionizing therapy. Hence, we assessed here the immunohistochemical expression of hypoxia-inducible factor-1α (HIF-1α) and members of the NF-κB family in 82 primary EC and 10 post-radiation recurrences of EC. Post-radiation recurrences were highly hypoxic, with a higher expression of HIF-1α and also RelA (p65) and p52 when compared with primary EC. We next investigated the effects of hypoxia on EC cell lines. We found that EC cell lines are highly resistant to hypoxia-induced apoptosis. We thus focused on the molecular mechanisms involved in conferring hypoxic cell death resistance. We show that in addition to the classical NF-κB, hypoxia activates the alternative NF-κB pathway. To characterize the upstream kinases involved in the activation of these pathways, we used lentiviral-mediated knockdown and mouse embryonic fibroblasts lacking IKKα and IKKß kinases. Both IKKα and IKKß kinases are required for RelA (p65) and p100 accumulation, whereas p52 processing under hypoxia is IKKα dependent. Furthermore, Ishikawa endometrial cell line harboring either RelA (p65) or p52 short-hairpin RNA was sensitive to hypoxia-induced cell death, indicating that, in addition to the known prosurvival role of RelA (p65) under hypoxia, alternative NF-κB pathway also enhances hypoxic survival of EC cells. Interestingly, although HIF-1α controlled classical NF-κB activation pathway and survival under hypoxia through RelA (p65) nuclear accumulation, the alternative pathway was HIF-1α independent. These findings have important clinical implications for the improvement of EC prognosis before radiotherapy.


Subject(s)
Apoptosis/physiology , Cell Hypoxia/physiology , Endometrial Neoplasms/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , NF-kappa B p52 Subunit/metabolism , Signal Transduction/physiology , Transcription Factor RelA/metabolism , Animals , Blotting, Western , Bromodeoxyuridine , Cell Line, Tumor , DNA Primers/genetics , Female , Gene Knockdown Techniques , I-kappa B Kinase/genetics , I-kappa B Kinase/metabolism , Immunohistochemistry , Lentivirus , Luciferases , Mice , Microarray Analysis , Plasmids/genetics , RNA, Small Interfering/genetics , Signal Transduction/genetics , Transfection
13.
Circ Res ; 104(9): 1041-8, 2009 May 08.
Article in English | MEDLINE | ID: mdl-19325147

ABSTRACT

Vascular calcification commonly associated with several pathologies and it has been suggested to be similar to bone mineralization. The axis RANKL-OPG (receptor activator of nuclear factor kappaB ligand-osteoprotegerin) finely controls bone turnover. RANKL has been suggested to increase vascular calcification, but direct evidence is missing. Thus, in the present work, we assess the effect of RANKL in vascular smooth muscle cell (VSMC) calcification. VSMCs incubated with RANKL showed a dose-dependent increase in calcification, which was abolished by coincubation with OPG. To test whether the effect was mediated by signaling to its receptor, knockdown of RANK was accomplished by short hairpin (sh)RNA. Indeed, cells lacking RANK showed no increases in vascular calcification when incubated with RANKL. To further elucidate the mechanism by which RANK activation increases calcification, we blocked both nuclear factor (NF)-kappaB activation pathways. Only IKKalpha inactivation inhibited calcification, pointing to an involvement of the alternative NF-kappaB activation pathway. Furthermore, RANKL addition increased bone morphogenetic protein (BMP)4 expression in VSMCs, and that increase disappeared in cells lacking RANK or IKKalpha. The increase in calcification was also blunted by Noggin, pointing to a mediation of BMP4 in the calcification induced by RANKL. Furthermore, in an in vivo model, the increase in vascular calcium content was parallel to an increase in RANKL and BMP4 expression, which was localized in calcified areas. However, blood levels of the ratio RANKL/OPG did not change. We conclude that RANKL increases vascular smooth muscle cell calcification by binding to RANK and increasing BMP4 production through activation of the alternative NF-kappaB pathway.


Subject(s)
Aortic Diseases/metabolism , Bone Morphogenetic Protein 4/metabolism , Calcinosis/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , RANK Ligand/metabolism , Receptor Activator of Nuclear Factor-kappa B/metabolism , Signal Transduction , Animals , Aortic Diseases/chemically induced , Aortic Diseases/pathology , Calcinosis/chemically induced , Calcinosis/pathology , Calcitriol , Carrier Proteins/metabolism , Cells, Cultured , Disease Models, Animal , I-kappa B Kinase/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Nephrectomy , Osteoprotegerin/metabolism , RANK Ligand/genetics , RNA Interference , RNA, Small Interfering/metabolism , Rats , Rats, Sprague-Dawley , Receptor Activator of Nuclear Factor-kappa B/genetics
14.
Cancers (Basel) ; 13(19)2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34638474

ABSTRACT

TGF-ß has a dichotomous function, acting as tumor suppressor in premalignant cells but as a tumor promoter for cancerous cells. These contradictory functions of TGF-ß are caused by different cellular contexts, including both intracellular and environmental determinants. The TGF-ß/SMAD and the PI3K/PTEN/AKT signal transduction pathways have an important role in the regulation of epithelial cell homeostasis and perturbations in either of these two pathways' contributions to endometrial carcinogenesis. We have previously demonstrated that both PTEN and SMAD2/3 display tumor-suppressive functions in the endometrium, and genetic ablation of either gene results in sustained activation of PI3K/AKT signaling that suppresses TGF-ß-induced apoptosis and enhances cell proliferation of mouse endometrial cells. However, the molecular and cellular effects of PTEN deficiency on TGF-ß/SMAD2/3 signaling remain controversial. Here, using an in vitro and in vivo model of endometrial carcinogenesis, we have demonstrated that loss of PTEN leads to a constitutive SMAD2/3 nuclear translocation. To ascertain the function of nuclear SMAD2/3 downstream of PTEN deficiency, we analyzed the effects of double deletion PTEN and SMAD2/3 in mouse endometrial organoids. Double PTEN/SMAD2/3 ablation results in a further increase of cell proliferation and enlarged endometrial organoids compared to those harboring single PTEN, suggesting that nuclear translocation of SMAD2/3 constrains tumorigenesis induced by PTEN deficiency.

15.
J Biol Chem ; 284(47): 32980-8, 2009 Nov 20.
Article in English | MEDLINE | ID: mdl-19801649

ABSTRACT

E47 is a basic helix-loop-helix transcription factor involved in neuronal differentiation and survival. We had previously shown that the basic helix-loop-helix protein E47 binds to E-box sequences within the promoter of the TrkB gene and activates its transcription. Proper expression of the TrkB receptor plays a key role in development and function of the vertebrate nervous system, and altered levels of TrkB have been associated with important human diseases. Here we show that E47 interacts with MLK2, a mixed lineage kinase (MLK) involved in JNK-mediated activation of programmed cell death. MLK2 enhances phosphorylation of the AD2 activation domain of E47 in vivo in a JNK-independent manner and phosphorylates in vitro defined serine and threonine residues within a loop-helix structure of AD2 that also contains a putative MLK docking site. Although these residues are essential for MLK2-mediated inactivation of E47, inhibition of MLKs by CEP11004 causes up-regulation of TrkB at a transcriptional level in cerebellar granule neurons and differentiating neuroblastoma cells. These findings allow us to propose a novel mechanism by which MLK regulates TrkB expression through phosphorylation of an activation domain of E47. This molecular link would explain why MLK inhibitors not only prevent activation of cell death processes but also enhance cell survival signaling as a key aspect of their neuroprotective potential.


Subject(s)
Gene Expression Regulation, Enzymologic , MAP Kinase Kinase Kinases/metabolism , Neurons/metabolism , Receptor, trkB/biosynthesis , TCF Transcription Factors/physiology , Animals , Cell Death , Cell Line, Tumor , Cell Survival , Dimerization , Humans , Mice , Phosphorylation , TCF Transcription Factors/metabolism , Transcription Factor 7-Like 1 Protein , Transcription, Genetic
16.
J Am Soc Nephrol ; 20(2): 255-9, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19056869

ABSTRACT

Renal morphogenesis requires a balance between positive and negative signals, which are provided in part by the receptor tyrosine kinase Ret and the putative tumor suppressor Sprouty1, respectively. Tyrosine 1062 of Ret is a binding site for several adaptor and effector proteins, such as Grb2/Sos/Ras, which activate the ERK pathway. Mice lacking Ret tyrosine 1062 nearly mimic the phenotype of Ret-knockout mice, which includes renal agenesis. Sprouty1 regulates Ret activity by modulating the ERK pathway, but the mechanism by which this occurs is uncertain. Here, we show that loss of Sprouty1 rescues the renal agenesis and early postnatal lethality caused by lack of Ret tyrosine 1062. The kidneys and lower urinary tracts of double-mutant mice developed normally. This effect was specific to the urinary system, because loss of Sprouty1 did not rescue the defects in the enteric nervous system characteristic of animals lacking Ret tyrosine 1062. These results suggest that Sprouty1 can modulate ERK signaling downstream of Ret, independent of Grb2/Sos/Ras, during renal morphogenesis.


Subject(s)
Gene Expression Regulation , Kidney/abnormalities , Kidney/metabolism , Membrane Proteins/genetics , Membrane Proteins/physiology , Mutation , Phosphoproteins/genetics , Phosphoproteins/physiology , Proto-Oncogene Proteins c-ret/genetics , Adaptor Proteins, Signal Transducing , Animals , Extracellular Signal-Regulated MAP Kinases/metabolism , Genotype , Heterozygote , Keratins/metabolism , Mice , Mice, Knockout , Mice, Transgenic , Proto-Oncogene Proteins c-ret/metabolism , Urinary Tract/metabolism
18.
Mol Cell Biol ; 24(7): 2662-72, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15024057

ABSTRACT

Differentiation of precursor into specialized cells involves an increasing restriction in proliferative capacity, culminating in cell cycle exit. In this report we used a human neuroblastoma cell line to study the molecular mechanisms that coordinate cell cycle arrest and neuronal differentiation. Exposure to retinoic acid (RA), a differentiation agent in many cell types, causes an upregulation of neurotrophin receptor TrkB and the cyclin kinase inhibitor p21(Cip1) at a transcriptional level. Full transcriptional activation of these two genes requires canonical E-box sequences found in the TrkB and p21(Cip1) promoters. As reported for other E-box-regulated promoters, ectopic expression of E47 and E12 basic helix-loop-helix (bHLH) proteins enhances RA-dependent expression of TrkB and p21(Cip1), whereas the inhibitory HLH Id2 exerts opposite effects. In addition, ectopic expression of E47 and NeuroD, a neuronal bHLH protein, is able to activate TrkB transcription in the absence of RA. More importantly, we show that E47 and NeuroD proteins bind the TrkB and p21(Cip1) promoter sequences in vivo. Since they establish a direct transcriptional link between a cell cycle inhibitor, p21(Cip1), and a neurotrophic receptor, TrkB, bHLH proteins would play an important role in coordinating key events of cell cycle arrest and neuronal differentiation.


Subject(s)
Cell Cycle/physiology , Cell Differentiation/physiology , Cyclins/metabolism , Helix-Loop-Helix Motifs , Neuroblastoma/metabolism , Promoter Regions, Genetic , Receptor, trkB/metabolism , Repressor Proteins , Antineoplastic Agents/metabolism , Basic Helix-Loop-Helix Transcription Factors , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p21 , Cyclins/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation , Genes, Reporter , Humans , Inhibitor of Differentiation Protein 2 , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Protein Binding , Receptor, trkB/genetics , TCF Transcription Factors , Transcription Factor 7-Like 1 Protein , Transcription Factors/genetics , Transcription Factors/metabolism , Transfection , Tretinoin/metabolism
19.
Cell Death Differ ; 24(8): 1443-1458, 2017 08.
Article in English | MEDLINE | ID: mdl-28524854

ABSTRACT

The TGF-ß/Smad and the PI3K/AKT signaling pathways are important regulators of proliferation and apoptosis, and their alterations lead to cancer development. TGF-ß acts as a tumor suppressor in premalignant cells, but it is a tumor promoter for cancerous cells. Such dichotomous actions are dictated by different cellular contexts. Here, we have unveiled a PTEN-Smad3 regulatory loop that provides a new insight in the complex cross talk between TGF-ß/Smad and PI3K/AKT signaling pathways. We demonstrate that TGF-ß triggers apoptosis of wild-type polarized endometrial epithelial cells by a Smad3-dependent activation of PTEN transcription, which results in the inhibition of PI3K/AKT signaling pathway. We show that specific Smad3 knockdown or knockout reduces basal and TGF-ß-induced PTEN expression in endometrial cells, resulting in a blockade of TGF-ß-induced apoptosis and an enhancement of cell proliferation. Likewise Smad3 deletion, PTEN knockout prevents TGF-ß-induced apoptosis and increases cell proliferation by increasing PI3K/AKT/mTOR signaling. In summary, our results demonstrate that Smad3-PTEN signaling axis determine cellular responses to TGF-ß.


Subject(s)
Endometrium/drug effects , Epithelial Cells/drug effects , PTEN Phosphohydrolase/genetics , Smad3 Protein/genetics , Transforming Growth Factor beta/pharmacology , Animals , Apoptosis/drug effects , Apoptosis/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics , Endometrium/cytology , Endometrium/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Feedback, Physiological , Female , Gene Expression Regulation , Mice , Mice, Knockout , PTEN Phosphohydrolase/antagonists & inhibitors , PTEN Phosphohydrolase/deficiency , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Smad3 Protein/antagonists & inhibitors , Smad3 Protein/deficiency , Transcription, Genetic , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
20.
Clin Cancer Res ; 23(5): 1334-1345, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-27620278

ABSTRACT

Purpose: Medullary thyroid carcinoma (MTC) is a rare disease with few genetic drivers, and the etiology specific to each known susceptibility mutation remains unknown. Exploiting multilayer genomic data, we focused our interest on the role of aberrant DNA methylation in MTC development.Experimental Design: We performed genome-wide DNA methylation profiling assessing more than 27,000 CpGs in the largest MTC series reported to date, comprising 48 molecularly characterized tumors. mRNA and miRNA expression data were available for 33 and 31 tumors, respectively. Two human MTC cell lines and 101 paraffin-embedded MTCs were used for validation.Results: The most distinctive methylome was observed for RETM918T-related tumors. Integration of methylation data with mRNA and miRNA expression data identified genes negatively regulated by promoter methylation. These in silico findings were confirmed in vitro for PLCB2, DKK4, MMP20, and miR-10a, -30a, and -200c. The mutation-specific aberrant methylation of PLCB2, DKK4, and MMP20 was validated in 25 independent MTCs by bisulfite pyrosequencing. The methylome and transcriptome data underscored JAK/Stat pathway involvement in RETM918T MTCs. Immunostaining [immunohistochemistry (IHC)] for the active form of signaling effector STAT3 was performed in a series of 101 MTCs. As expected, positive IHC was associated with RETM918T-bearing tumors (P < 0.02). Pharmacologic inhibition of STAT3 activity increased the sensitivity to vandetanib of the RETM918T-positive MTC cell line, MZ-CRC-1.Conclusions: Multilayer OMIC data analysis uncovered methylation hallmarks in genetically defined MTCs and revealed JAK/Stat signaling effector STAT3 as a potential therapeutic target for the treatment of RETM918T MTCs. Clin Cancer Res; 23(5); 1334-45. ©2016 AACR.


Subject(s)
Carcinoma, Neuroendocrine/genetics , DNA Methylation/genetics , Proto-Oncogene Proteins c-ret/genetics , STAT3 Transcription Factor/genetics , Thyroid Neoplasms/genetics , Carcinoma, Neuroendocrine/drug therapy , Carcinoma, Neuroendocrine/pathology , Female , Gene Expression Regulation, Neoplastic/genetics , Genome, Human , Genomics , Humans , Male , Mutation , Piperidines/administration & dosage , Quinazolines/administration & dosage , Signal Transduction/genetics , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL